JPH0716078B2 - Ga (0.5) In (0.5) P crystal growth method - Google Patents

Ga (0.5) In (0.5) P crystal growth method

Info

Publication number
JPH0716078B2
JPH0716078B2 JP60270339A JP27033985A JPH0716078B2 JP H0716078 B2 JPH0716078 B2 JP H0716078B2 JP 60270339 A JP60270339 A JP 60270339A JP 27033985 A JP27033985 A JP 27033985A JP H0716078 B2 JPH0716078 B2 JP H0716078B2
Authority
JP
Japan
Prior art keywords
crystal
energy gap
growth temperature
iii
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60270339A
Other languages
Japanese (ja)
Other versions
JPS62128521A (en
Inventor
明子 五明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60270339A priority Critical patent/JPH0716078B2/en
Publication of JPS62128521A publication Critical patent/JPS62128521A/en
Publication of JPH0716078B2 publication Critical patent/JPH0716078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は半導体結晶の製造方法に関するものである。TECHNICAL FIELD The present invention relates to a method for manufacturing a semiconductor crystal.

(従来の技術) GaAs基板に格子整合したGa0.5In0.5Pは可視光半導体レ
ーザ用の材料として有望なAlGaInP系の基本となる結晶
であり、半導体レーザの活性層となる。そのため、レー
ザの発振波長を決定する上でエネルギーギャップを制御
することは重要である。
(Prior Art) Ga 0.5 In 0.5 P lattice-matched to a GaAs substrate is a basic crystal of the AlGaInP system, which is a promising material for visible light semiconductor lasers, and serves as an active layer of a semiconductor laser. Therefore, it is important to control the energy gap in determining the oscillation wavelength of the laser.

従来GaxIn1-xP(0x1)のエネルギーギャップはI
II族元素のGaおよびInの比xによって決まっており、Ga
As基板に格子整合したGa0.5In0.5P結晶のエネルギーギ
ャップは1.90eVであった。
The energy gap of conventional Ga x In 1-x P (0x1) is I
It is determined by the ratio x of Ga and In of the II group element, and Ga
The energy gap of the Ga 0.5 In 0.5 P crystal lattice-matched to the As substrate was 1.90 eV.

(発明が解決しようとする問題点) 半導体レーザの発振波長を変化させたい場合にはGaxIn
1-xPのGa組成比xを変化させてGaxIn1-xPのエネルギー
ギャップを変化させていた。
(Problems to be solved by the invention) When changing the oscillation wavelength of a semiconductor laser, Ga x In
1-x and P varying the Ga composition ratio x was varied the energy gap of Ga x an In 1-x P.

ところが、該Ga組成比xの変化に伴いGaxIn1-xPの格子
定数が変化し、GaAs基板とGaxIn1-xPの間に格子のずれ
が生じる。この様な格子のずれを有する半導体結晶をレ
ーザ素子化した場合、該レーザ素子の信頼性が著しく低
下していた。
However, the lattice constant of Ga x In 1-x P changes as the Ga composition ratio x changes, and a lattice shift occurs between the GaAs substrate and Ga x In 1-x P. When a semiconductor crystal having such a lattice shift is made into a laser element, the reliability of the laser element is remarkably lowered.

しかし、これまでGaAs基板に格子整合したまま、GaとIn
の固相組成比を一定に保ちGaxIn1-xP結晶のエネルギー
ギャップを変化させる方法は提供されていなかった。
However, until now, while keeping lattice matching with the GaAs substrate, Ga and In
No method has been provided for changing the energy gap of the Ga x In 1-x P crystal while keeping the solid-phase composition ratio of the crystal constant.

本発明の目的は上記の問題を解決した、Ga組成比を0.5
に固定したGa0.5In0.5P結晶のエネルギーギャップを変
化させる、エネルギーギャップの制御方法を提供するこ
とである。
The object of the present invention is to solve the above-mentioned problems and to reduce the Ga composition ratio to 0.5.
Another object of the present invention is to provide a method for controlling the energy gap, which changes the energy gap of a Ga 0.5 In 0.5 P crystal fixed at.

(問題点を解決するための手段) 本発明においてはGaAs基板に格子整合するGa0.5In0.5P
結晶の成長をMOCVD法により行ない、該結晶成長時の温
度および原料ガスのV族対III族の正味のガス流量比の
組み合わせを変化させることにより結晶性をそこなうこ
となく、GaAs基板に格子整合したままでGa0.5In0.5Pの
エネルギーギャップを1.9eVから1.85eVまで変化させ
る、Ga0.5In0.5Pの結晶のエネルギーギャップの制御法
を示す。
(Means for Solving Problems) In the present invention, Ga 0.5 In 0.5 P lattice-matched to the GaAs substrate
Crystals were grown by the MOCVD method, and by changing the combination of the temperature at the time of the crystal growth and the net gas flow ratio of group V to group III of the source gas, the crystallinity was not impaired and lattice matching was performed with the GaAs substrate. Until now, we will show how to control the energy gap of Ga 0.5 In 0.5 P crystal by changing the energy gap of Ga 0.5 In 0.5 P from 1.9 eV to 1.85 eV.

(作用) MOCVD法により成長するGaAs上のGa0.5In0.5Pのエネルギ
ーギャップは以下のごとく制御できる。
(Function) The energy gap of Ga 0.5 In 0.5 P on GaAs grown by the MOCVD method can be controlled as follows.

Ga0.5In0.5P結晶の成長のIII族のInの原料にトリメチル
インジウムあるいはトリエチルインジウムを用い、Gaの
原料にトリメチルガリウムあるいはトリエチルガリウム
を用い、InおよびGaの原料ガスをそれぞれ一定値に固定
する。V族原料にホスフィン(PH3)を用い、PH3の流量
を変化させることにより(V族流量)/(III族流量)
の比を500以下で変化させ、また、成長温度を550℃から
800℃まで変化させる。ここで、III族流量とは、Gaおよ
びInのそれぞれの原料ガスの正味の流量を加えた量であ
る。
Trimethylindium or triethylindium is used as a raw material of group III In for growth of Ga 0.5 In 0.5 P crystal, and trimethylgallium or triethylgallium is used as a raw material of Ga, and the raw material gases of In and Ga are fixed at fixed values. By using phosphine (PH 3 ) as the V group raw material and changing the flow rate of PH 3 (V group flow rate) / (III group flow rate)
Of the growth temperature from 550 ℃
Change to 800 ℃. Here, the group III flow rate is the sum of the net flow rates of the source gases of Ga and In.

図にこのときの成長温度およびV/III比およびエネルギ
ーギヤップの関係を示す。X軸に成長温度,Y軸にV/III
比,Z軸にエネルギーギヤップを示す。
The figure shows the relationship between growth temperature, V / III ratio, and energy gap at this time. Growth temperature on X axis, V / III on Y axis
The ratio, Z axis shows the energy gap.

成長温度600℃から750℃の範囲,V/III比60から450の範
囲内でGaAs基板に格子整合したGa0.5In0.5Pのフォトル
ミネッセンス測定によるエネルギーギヤップは1.84eVか
ら1.91eVまで連続的に変化し、V/III比410,成長温度650
〜700℃における1.84eVを底面とした放物曲面を描く。
Energy gap of Ga 0.5 In 0.5 P lattice-matched to a GaAs substrate was continuously changed from 1.84 eV to 1.91 eV in the growth temperature range of 600 ℃ to 750 ℃ and V / III ratio of 60 to 450. , V / III ratio 410, growth temperature 650
Draw a parabolic surface with a bottom of 1.84 eV at ~ 700 ° C.

上述のごとく、MOCVD法によるGaAs上のGa0.5In0.5Pの成
長温度およびV/III比の組み合わせにより、Ga0.5In0.5P
のフォトルミネッセンス測定より得られるエネルギーギ
ヤップを制御できる。
As described above, by combining the growth temperature of Ga 0.5 In 0.5 P on GaAs by the MOCVD method and the V / III ratio, Ga 0.5 In 0.5 P
The energy gap obtained by the photoluminescence measurement of can be controlled.

尚、上記の曲面はフォトルミネッセンス測定より求めた
エネルギーギヤップをz成長温度をx,V/IIIをyとする
と、Ga0.5In0.5Pのエネルギーギャップと成長温度とV/I
IIの関係は、(x,y,z)の点が(700,60,1.895),(70
0,230,1.86),(700,410,1.85),(750,230,1.89
5),(650,230,1.86),(600,230,1.865)の各点を通
る。
Note that the above curved surface is the energy gap of Ga 0.5 In 0.5 P and the growth temperature and V / I, where z is the energy gap determined by photoluminescence measurement, and z is the growth temperature and y is V / III.
The relationship of II is that (x, y, z) points are (700,60,1.895), (70
0,230,1.86), (700,410,1.85), (750,230,1.89)
5), (650,230,1.86), (600,230,1.865).

の式で表される。ここで、x1,y1,z1,a,b,cは上記の6
点から求まる定数である。xおよびzの単位はそれぞれ
℃およびeVである。
It is expressed by the formula. Where x 1 , y 1 , z 1 , a, b, c are the above 6
It is a constant obtained from the point. The units of x and z are ° C and eV, respectively.

Ga0.5In0.5Pのエネルギーギャップをその組成比を変え
ずに変化させることができる理由について説明する。
The reason why the energy gap of Ga 0.5 In 0.5 P can be changed without changing the composition ratio will be described.

MOVPE成長時の成長温度およびV/III比あるいはV族
原料ガスのPH3の流量により、Ga0.5In0.5P結晶成長表面
におけるIII族原子CaおよびInの平均的な拡散距離が変
化する。即ち成長機構が変化する。また、Ga0.5In0.5P
結晶では結晶中のGaとInの配列状態は成長温度と強く相
関をもつ。
The average diffusion length of group III atoms Ca and In on the Ga 0.5 In 0.5 P crystal growth surface changes depending on the growth temperature and the V / III ratio during MOVPE growth or the flow rate of PH 3 of the group V source gas. That is, the growth mechanism changes. Also, Ga 0.5 In 0.5 P
In crystals, the arrangement state of Ga and In in the crystal has a strong correlation with the growth temperature.

上記の要因で、MOVPE成長時の成長温度あるいV/III比に
より、Ga0.5In0.5P結晶のIII族副格子上のGaとInの配列
状態、すなわち、配列の乱雑さが変化する。ここで、Ga
As基板に格子整合したGa0.5In0.5PのGaとInの配列状態
とエネルギーギャップEgは一意的に対応をもつ。III族
副格子上のGaとInの配列が乱雑な結晶のEgは1.9eVであ
り、GaとInが超格子構造を有する結晶のEgは1.9eVから
1.8eVまで、結晶中の超格子構造に対応して変化する。
例えば、(001)面GaAs基板上に成長した、Eg=1.85eV
をもつGa0.5In0.5P結晶は、(11)面のGa面と(1
1)面のIn面が交互に並んで配列した超格子構造を有す
る。この様な超格子構造を有する事により、結晶のエネ
ルギーバンド構造がGaとInが乱雑な配列をもつ結晶と比
較して、変化し、Ga0.5In0.5P結晶のエネルギーギャッ
プが小さくなる。上記のごとく、エネルギーギャップを
Ga組成比を一定に保ったまま変化させる事ができる。
Due to the above factors, the arrangement state of Ga and In on the group III sublattice of the Ga 0.5 In 0.5 P crystal, that is, the arrangement disorder, changes depending on the growth temperature or the V / III ratio during MOVPE growth. Where Ga
The Ga and In array states of Ga 0.5 In 0.5 P lattice-matched to the As substrate and the energy gap Eg have a unique correspondence. The Eg of a crystal with a disordered arrangement of Ga and In on the group III sublattice is 1.9 eV, and the Eg of a crystal with a superlattice structure of Ga and In is 1.9 eV.
It changes corresponding to the superlattice structure in the crystal up to 1.8 eV.
For example, Eg = 1.85eV grown on a (001) plane GaAs substrate.
The Ga 0.5 In 0.5 P crystal with has a Ga plane of (11) and (1
1) It has a superlattice structure with In planes arranged alternately. By having such a superlattice structure, the energy band structure of the crystal changes compared with a crystal having a disordered arrangement of Ga and In, and the energy gap of the Ga 0.5 In 0.5 P crystal becomes smaller. As mentioned above, the energy gap
It can be changed while keeping the Ga composition ratio constant.

(実施例) 以下、MOCVD法により成長したGaAs上のGa0.5In0.5P結晶
のGaおよびInの組成比を変えずにエネルギーギャップを
変化させた例を示す。
(Example) Hereinafter, an example in which the energy gap is changed without changing the composition ratio of Ga and In of the Ga 0.5 In 0.5 P crystal on GaAs grown by the MOCVD method will be shown.

III族原料にトリメチルインジウムおよびトリエチルガ
リウムを用い、それぞれ2.16×10-5mol/minおよび2.64
×10-5mol/minの流量に固定した。V族原料にホスフィ
ン(PH3)を用い、PH3の流量を変化させることにより
(V族流量)/(III族流量)の比66,120,230,410の各
々の値に設定した。成長温度は600℃,650℃,700℃,750
℃で行なった。上記のV/III比と成長温度を組み合わせ
て成長したGa0.5In0.5P結晶の室温におけるフォトルミ
ネッセンス測定より求めたエネルギーギャップは図中に
・印で示したごとく、図中の曲面上によくのる点であっ
た。また、二結晶X線回折法により求めた、上記のGa
0.5In0.5PのGaとInの組成はGaAs基板に格子整合するも
のから0.3%以内のずれであり、該ずれは小さいもので
あった。
Trimethylindium and triethylgallium were used as Group III raw materials, and 2.16 × 10 -5 mol / min and 2.64 respectively.
The flow rate was fixed at × 10 -5 mol / min. Phosphine (PH 3 ) was used as the group V raw material, and the flow rate of PH 3 was changed to set the respective values of the (group V flow rate) / (group III flow rate) ratios of 66, 120, 230, 410. Growth temperature is 600 ℃, 650 ℃, 700 ℃, 750
Performed at ° C. The energy gap obtained by photoluminescence measurement at room temperature of Ga 0.5 In 0.5 P crystal grown by combining the above V / III ratio and the growth temperature is as shown by the mark in the figure. It was a point. In addition, the above Ga obtained by the double crystal X-ray diffraction method
The composition of 0.5 In 0.5 P of Ga and In was within 0.3% from the lattice matching with the GaAs substrate, and the deviation was small.

上記のV/III比と成長温度とエネルギーギャップの関係
は再現性よく得られた。また、上記の範囲内でGa0.5In
0.5Pの電気的および光学的性質はそこなわれなかった。
そして、成長温度700℃,V/III比400において成長したGa
0.5In0.5Pをダブルヘテロ構造(DH)レーザの活性層に
用い、発振波長6890Åで室温におけるCW発振が達せられ
た。また、成長温度700℃,V/III比66において成長したG
a0.5In0.5Pを活性層としたDHレーザで、発振波長6700Å
の室温CW発振が達せられた。
The above relationship between V / III ratio, growth temperature and energy gap was obtained with good reproducibility. Within the above range, Ga 0.5 In
The electrical and optical properties of 0.5 P were not compromised.
Ga grown at a growth temperature of 700 ° C and a V / III ratio of 400
By using 0.5 In 0.5 P for the active layer of the double heterostructure (DH) laser, CW oscillation was achieved at room temperature with an oscillation wavelength of 6890Å. Also, G grown at a growth temperature of 700 ° C and a V / III ratio of 66
a DH laser with 0.5 In 0.5 P active layer, oscillation wavelength 6700Å
The room temperature CW oscillation was achieved.

(発明の効果) 本方法によりGaAs基板に格子整合したGa0.5In0.5P結晶
のフォトルミネッセンス測定により得られるエネルギー
ギャップをGa0.5In0.5Pの組成を変化させることなく制
御できる。また、それに伴いAlGaInP系半導体レーザの
発振波長を制御できる。
(Effects of the Invention) The energy gap obtained by photoluminescence measurement of Ga 0.5 In 0.5 P crystal lattice-matched to a GaAs substrate can be controlled by this method without changing the composition of Ga 0.5 In 0.5 P. In addition, the oscillation wavelength of the AlGaInP semiconductor laser can be controlled accordingly.

【図面の簡単な説明】[Brief description of drawings]

図はGaAs基板に格子整合したGa0.5In0.5Pの成長温度お
よびV/III比およびフォトルミネッセンス測定から求め
たピークエネルギーの関係を示す。
The figure shows the relationship between the growth temperature of Ga 0.5 In 0.5 P lattice-matched to a GaAs substrate, the V / III ratio, and the peak energy obtained from photoluminescence measurements.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所望のエネルギーギャップになるように成
長温度および原料ガスのV族元素とIII族元素の比を、
(700,60,1.895),(700,230,1.86),(700,410,1.8
5),(750,230,1.895),(650,230,1.86),(600,23
0,1.865)の各点を通る式 を満足するように組合せて有機金属熱分解法によりGaAs
基板上に格子整合したGa0.5In0.5P結晶を成長させるこ
とを特徴とするGa0.5In0.5P結晶の成長方法。
1. A growth temperature and a ratio of a group V element to a group III element of a source gas are adjusted so that a desired energy gap is obtained.
(700,60,1.895), (700,230,1.86), (700,410,1.8)
5), (750,230,1.895), (650,230,1.86), (600,23)
Expression passing through each point (0,1.865) And GaAs by organometallic pyrolysis
Growth method of Ga 0.5 In 0.5 P crystal and growing the Ga 0.5 In 0.5 P crystal lattice matched to the substrate.
JP60270339A 1985-11-29 1985-11-29 Ga (0.5) In (0.5) P crystal growth method Expired - Lifetime JPH0716078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60270339A JPH0716078B2 (en) 1985-11-29 1985-11-29 Ga (0.5) In (0.5) P crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60270339A JPH0716078B2 (en) 1985-11-29 1985-11-29 Ga (0.5) In (0.5) P crystal growth method

Publications (2)

Publication Number Publication Date
JPS62128521A JPS62128521A (en) 1987-06-10
JPH0716078B2 true JPH0716078B2 (en) 1995-02-22

Family

ID=17484875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60270339A Expired - Lifetime JPH0716078B2 (en) 1985-11-29 1985-11-29 Ga (0.5) In (0.5) P crystal growth method

Country Status (1)

Country Link
JP (1) JPH0716078B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091690A (en) * 1983-10-25 1985-05-23 Nec Corp Semiconductor composite light-emitting element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091690A (en) * 1983-10-25 1985-05-23 Nec Corp Semiconductor composite light-emitting element

Also Published As

Publication number Publication date
JPS62128521A (en) 1987-06-10

Similar Documents

Publication Publication Date Title
DE102007027446B4 (en) Group III-V nitride-based semiconductor substrate and Group III-V nitride-based light emitting device
JP3879173B2 (en) Compound semiconductor vapor deposition method
JPH0573252B2 (en)
JPH01282197A (en) Method for growing crystal of algainp-base crystal and semiconductor laser
JP2000091234A (en) Manufacture of iii-v nitride compound semiconductor
US3716405A (en) Vapor transport method for growing crystals
JPH0716078B2 (en) Ga (0.5) In (0.5) P crystal growth method
US5622559A (en) Method of preparing compound semiconductor
US5827365A (en) Compound semiconductor and its fabrication
KR100262018B1 (en) Compound semiconductor and its fabrication
US5868834A (en) Method of manufacturing a group II-VI compound semiconductor
JP2754549B2 (en) Ga <bottom 0>. ▲ lower 5 ▼ In ▲ lower 0 ▼. (5) Method of growing P crystal
Hartmann Vapour phase epitaxy of II–VI compounds: A review
JPS6332916A (en) Ga0.5in0.5p crystal growth
JPH053440B2 (en)
JP2519232B2 (en) Method for producing compound semiconductor crystal layer
KR100392783B1 (en) Zinc magnesium oxide thin films and method for preparing same by metal-organic chemical vapor deposition
JP2841799B2 (en) (III)-Vapor phase growth method of group V compound semiconductor
JP2587150B2 (en) Compound semiconductor single crystal epitaxial substrate and method for growing the same
JP2879224B2 (en) Metalorganic vapor phase epitaxy
Hayakawa et al. Limiting mechanism of molecular beam epitaxial growth of AlGaAs on (111) face
JP3455390B2 (en) Multi-step structure, diffraction grating for very short wavelength light, and method of manufacturing the same
JPH1168235A (en) Crystal growth method of algaas compound semiconductor and manufacture of semiconductor laser
JP2590728B2 (en) Selective growth method of compound semiconductor
JPS63102222A (en) Epitaxial growth method