JP2754549B2 - Ga <bottom 0>. ▲ lower 5 ▼ In ▲ lower 0 ▼. (5) Method of growing P crystal - Google Patents
Ga <bottom 0>. ▲ lower 5 ▼ In ▲ lower 0 ▼. (5) Method of growing P crystalInfo
- Publication number
- JP2754549B2 JP2754549B2 JP63007172A JP717288A JP2754549B2 JP 2754549 B2 JP2754549 B2 JP 2754549B2 JP 63007172 A JP63007172 A JP 63007172A JP 717288 A JP717288 A JP 717288A JP 2754549 B2 JP2754549 B2 JP 2754549B2
- Authority
- JP
- Japan
- Prior art keywords
- plane
- crystal
- growth
- gaas substrate
- superlattice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) この発明は半導体結晶の製造方法に関するものであ
る。Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a semiconductor crystal.
(従来の技術) GaAs基板に格子整合したGa0.5In0.5Pは可視半導体レ
ーザ用の材料として有望なAlGaInP系の基本とする結晶
であり、半導体レーザの活性層となる。この半導体レー
ザの活性層として原子配列がGa,In,Ga,In…などと(10
0)面のIII族副格子上にGaとInが交互に規則的に並んで
いる構造などの超格子構造を用い電気光学的性質に新し
い自由度をつけ加えることができる。Ga 0.5 In 0.5 P lattice matched to (prior art) GaAs substrate is a crystal of a basic promising AlGaInP system as a material for a visible semiconductor laser, the active layer of the semiconductor laser. The atomic arrangement of the active layer of this semiconductor laser is Ga, In, Ga, In.
A new degree of freedom can be added to the electro-optical properties by using a superlattice structure such as a structure in which Ga and In are alternately and regularly arranged on the group III sublattice of the 0) plane.
従来有機金属気相成長法(MOVPE法)によりGaAs基板
に格子整合するGa0.5In0.5P結晶は、前記GaAs基板に(0
01)面から[011]方向へ2°傾いた面が成長面である
基板を用い成長温度550〜750℃、V/III比500以下の範囲
で結晶成長中の材料ガス流量を一定に保ち、成長されて
いた。上記の条件の下でGa0.5In0.5P結晶を成長する
と、成長温度およびV/III比の組み合わせによりGaAs基
板に格子整合したままでGa0.5In0.5P室温におけるバン
ドギャップエネルギー(Eg)が1.85〜1.91eVまで変化し
ていた。そして、このバンドギャップエネルギーの変化
が、Ga0.5In0.5P結晶中のIII族副格子中の原子配列の違
いによって起こっていた。すなわち、バンドギャップエ
ネルギーが1.85eVの結晶中にはIII族副格子上のGaとIn
が規則的に配列した超構造が形成され、1.9eVの結晶で
は、III族原子のGaとInが乱雑にIII族副格子中に配列し
ていたアプライド・フィジクス・レターズ(Appl.Phys.
Lett.)50巻673−675頁、1987年)。Conventionally, a Ga 0.5 In 0.5 P crystal lattice-matched to a GaAs substrate by a metal organic chemical vapor deposition method (MOVPE method)
Using a substrate whose growth surface is inclined by 2 ° in the [011] direction from the 01) plane, the material gas flow rate during crystal growth is kept constant at a growth temperature of 550 to 750 ° C and a V / III ratio of 500 or less, Was growing. When Ga 0.5 In 0.5 P crystal is grown under the above conditions, the band gap energy (Eg) at room temperature of Ga 0.5 In 0.5 P at room temperature remains lattice-matched to the GaAs substrate depending on the combination of the growth temperature and the V / III ratio. It had changed to 1.91 eV. This change in band gap energy was caused by a difference in atomic arrangement in the group III sublattice in the Ga 0.5 In 0.5 P crystal. That is, Ga and In on the group III sublattice are contained in a crystal having a band gap energy of 1.85 eV.
Is formed, and in a 1.9 eV crystal, Applied Physics Letters (Appl. Phys.), In which the group III atoms Ga and In are randomly arranged in the group III sublattice.
Lett.) 50: 673-675, 1987).
しかしながら、同じ位相をもつ、あるいは同じ方向、
周期性をもつ超格子の形成される領域の大きさ等の制御
を行なうことができなかった。However, with the same phase or in the same direction,
It has not been possible to control the size of the region where the periodic superlattice is formed.
(発明が解決しようとする問題点) したがって、超格子を利用して、半導体素子を作製し
た場合、所望の特性が得られなくなる。(Problems to be Solved by the Invention) Therefore, when a semiconductor element is manufactured using a superlattice, desired characteristics cannot be obtained.
しかし、これまで、同じ位相をもつ超格子の形成され
る領域の大きさを制御する方法は提供されていなかっ
た。However, until now, no method has been provided for controlling the size of a region where a superlattice having the same phase is formed.
本発明の目的は上記の問題を解決した、位相、方向、
周期性を制御し、MOVPE成長時の原料ガス流量を一定流
量に保った状態で、超格子構造をもったGa0.5In0.5P結
晶を成長する成長方法を提供することである。The object of the present invention is to solve the above problems, phase, direction,
An object of the present invention is to provide a growth method for growing a Ga 0.5 In 0.5 P crystal having a superlattice structure while controlling periodicity and maintaining a constant flow rate of source gas during MOVPE growth.
(問題点を解決するための手段) 本発明においては、GaAs基板に格子整合するGa0.5In
0.5P結晶の成長をMOVPE法により行ない、該結晶成長時
の温度500〜800℃、原料ガスのV族対III族の正味のガ
ス流量比(V/III比)900以下で、ガリウム及びイソジウ
ムの有機金属ガスを反応管中に共存させて流し成長を行
ない、前記成長温度およびV/III比の組合せを変化さ
せ、かつ、前記GaAs基板の成長面に(001)面に等価な
面からのなす角が10°以内である面を用い、(001)面
からのずれの方位を制御することにより、Ga0.5In0.5P
結晶中に形成される超格子構造を変化させ、その超構造
を制御する。(Means for Solving the Problems) In the present invention, Ga 0.5 In lattice-matched to a GaAs substrate is used.
A 0.5 P crystal is grown by MOVPE method at a temperature of 500 to 800 ° C., a net gas flow ratio (V / III ratio) of group V to group III of the raw material gas of 900 or less, and gallium and isodium are grown. An organic metal gas is allowed to coexist in the reaction tube to flow and grow, changing the combination of the growth temperature and the V / III ratio, and forming the growth surface of the GaAs substrate from a plane equivalent to the (001) plane. Ga 0.5 In 0.5 P by controlling the direction of deviation from the (001) plane using a plane with an angle within 10 °
Changes the superlattice structure formed in the crystal and controls the superstructure.
(作用) MOVPE法により成長する、GaAs上のGa0.5In0.5P結晶中
の超格子構造は以下の様に成長できる。(Function) A superlattice structure in a Ga 0.5 In 0.5 P crystal on GaAs grown by MOVPE can be grown as follows.
第2図に(001)面から[011]方向に2°傾いた面を
もつGaAs基板に格子整合したGa0.5In0.5P結晶のEgと成
長温度、V/III比、正孔濃度との関係を示す。X軸に成
長温度、Y軸にV/III比、Z軸にエネルギーギャップを
表わす。また第2図中のpは正孔濃度を表わす。ここ
で、Ga0.5In0.5P結晶の成長時のV/III比および正孔濃度
は次の様に変化させる。FIG. 2 shows the relationship between the Eg of a Ga 0.5 In 0.5 P crystal lattice-matched to a GaAs substrate having a plane inclined by 2 ° in the [011] direction from the (001) plane, and the growth temperature, V / III ratio, and hole concentration. Is shown. The X axis represents the growth temperature, the Y axis represents the V / III ratio, and the Z axis represents the energy gap. P in FIG. 2 represents the hole concentration. Here, the V / III ratio and the hole concentration during the growth of the Ga 0.5 In 0.5 P crystal are changed as follows.
Ga0.5In0.5P結晶成長のIII族のInの原料にトリメチル
インジウムあるいはトリエチルインジウムを用い、Gaの
原料にトリメチルガリウムあるいはトリエチルガリウム
を用い、InおよびGaの原料ガスをそれぞれ一定値に固定
し、反応管中に共存させて流し、V族原料にホスフィン
(PH3)を用い、PH3の流量を変化させることによりV/II
I比を変化させる。ここで、III族流量とは、GaおよびIn
のそれぞれの原料ガスの正味の流量を加えた量である。
正孔濃度p≦1×1018cm-3以下の場合には、成長濃度60
0から750℃の範囲、V/III比60から450の範囲内でGaAa基
板に格子整合したGa0.5In0.5Pエネルギーギャップ(E
g)は1.84から1.91eVまで連続的に変化する。成長温
度、V/III比、Egの三者の関係は、V/III比410、成長温
度650〜700℃における1.84eVを底面とした曲面を描く。Ga 0.5 In 0.5 P Using trimethyl indium or triethyl indium as a group III In source for crystal growth, using trimethyl gallium or triethyl gallium as a Ga source, fixing the In and Ga source gases at a constant value, respectively, and reacting. V / II by changing the flow rate of PH 3 using phosphine (PH 3 ) as a group V raw material
Change the I ratio. Here, the group III flow rates are Ga and In
Is the sum of the net flow rates of the respective source gases.
When the hole concentration is p ≦ 1 × 10 18 cm −3 or less, the growth concentration is 60%.
Ga 0.5 In 0.5 P energy gap (E) lattice-matched to the GaAs substrate in the range of 0 to 750 ° C and the V / III ratio of 60 to 450.
g) varies continuously from 1.84 to 1.91 eV. The relationship between the growth temperature, the V / III ratio, and Eg is a curved surface with a V / III ratio of 410 and a growth temperature of 650 to 700 ° C. at 1.84 eV as the bottom surface.
上述のごとく、MOVPE法にによるGaAs上のGa0.5In0.5P
の成長温度およびV/III比およびp型ドーピングによる
正孔濃度の組み合わせにより、Ga0.5In0.5PのEgが変化
する。上記のGa0.5In0.5Pの1.9eV未満のEgに対して、超
格子構造をもった結晶が得られる。この関係は成長面が
(001)面に等価な面からのなす角が10°以内である場
合には保存される。As described above, Ga 0.5 In 0.5 P on GaAs by MOVPE method
The Eg of Ga 0.5 In 0.5 P changes depending on the combination of the growth temperature, the V / III ratio, and the hole concentration due to p-type doping. Against Eg of less than 1.9eV above the Ga 0.5 In 0.5 P, the crystal having a superlattice structure. This relationship is preserved when the angle between the growth plane and the plane equivalent to the (001) plane is within 10 °.
ここで、III族副格子上の超格子は、GaAs基板上のス
テップを成長の核として形成される。GaAs基板が(00
1)面に近い面である場合、超格子はGaAa基板のAsの2
本のタングリングボンドの作る面(110)面に垂直な
[11]方向あるいは[11]方向にGaとInが交互に
並んで形成される。GaAs基板上のステップが[11]方
向に近い[10]方向に形成されている場合、すなわ
ち、成長面が(001)面から[10]方向へ傾いている
面である場合、Ga0.5In0.5P中に形成される超格子は
[11]方向にGa面とIn面が交互に並ぶものが支配的で
あり、[11]方向の超格子はほとんど形成されなく
なる。また、成長面の(001)面とのなす角を0°から1
0°まで変化させることにより、[11]方向に形成さ
れる超格子と[11]方向に形成される超格子の割合
を変化させることができる。Here, the superlattice on the group III sublattice is formed using the steps on the GaAs substrate as growth nuclei. GaAs substrate is (00
1) When the surface is close to the surface, the superlattice is 2
Ga and In are alternately formed in the [11] direction or the [11] direction perpendicular to the plane (110) of the tongue bond bond. When the steps on the GaAs substrate are formed in the [10] direction close to the [11] direction, that is, when the growth surface is a surface inclined from the (001) surface to the [10] direction, Ga 0.5 In 0.5 The superlattice formed in P is predominantly one in which Ga plane and In plane are alternately arranged in the [11] direction, and the superlattice in the [11] direction is hardly formed. Also, the angle between the growth plane and the (001) plane is changed from 0 ° to 1 °.
By changing the angle to 0 °, the ratio between the superlattice formed in the [11] direction and the superlattice formed in the [11] direction can be changed.
また、成長面が(001)面から[110]方向へ傾いてい
る面である場合、[11]方向および[11]方向の
超格子がほぼ1:1の割合で形成される。When the growth plane is inclined from the (001) plane in the [110] direction, superlattices in the [11] and [11] directions are formed at a ratio of approximately 1: 1.
(実施例) 以下、MOVPE法により成長したGa0.5In0.5P結晶中の超
格子を制御した例を示す。(Example) Hereinafter, an example in which the superlattice in the Ga 0.5 In 0.5 P crystal grown by the MOVPE method is controlled will be described.
基板に(001)面から[10]方向へ2°傾いた面のG
aAs基板および(001)面から[011]方向へ2°傾いた
面のGaAs基板を用いた。III族原料にトリメチルインジ
ウムおよびトリエチルガリウムを用い、それぞれ2.16×
10-5mol/分、2.64mol/分の流量に固定した。V族原料に
ホスフィン(PH3)を用い、成長温度700℃、V族流量/I
II族流量410で成長を行なった。その時、上記2種のGaA
s基板上のGa0.5In0.5Pのバンドギャップエネルギーは1.
85eVであった。成長面が(001)面から[10]方向へ
2°傾いた面であるGa0.5In0.5P結晶中の超格子の配列
状態を第1図に模式的に示す。[11]方向にGa面とIn
面がGa,In,Ga,In,Ga…と交互に並んだ配列が支配的であ
った。また、この結晶中には、超格子のGa,In,Ga,Ga,In
…などの位相のずれがほとんどみられず、広範囲に渡っ
て均一な超格子が形成されていた。G of the plane inclined 2 ° from the (001) plane to the [10] direction on the substrate
An aAs substrate and a GaAs substrate inclined by 2 ° in the [011] direction from the (001) plane were used. Using trimethylindium and triethylgallium as group III raw materials, each 2.16 ×
The flow rates were fixed at 10 −5 mol / min and 2.64 mol / min. Phosphine (PH 3 ) was used as a group V material, growth temperature was 700 ° C, and group V flow rate / I
Growth was performed at a group II flow rate of 410. At that time, the above two types of GaA
The band gap energy of Ga 0.5 In 0.5 P on s substrate is 1.
It was 85 eV. FIG. 1 schematically shows the arrangement of superlattices in a Ga 0.5 In 0.5 P crystal whose growth plane is inclined by 2 ° in the [10] direction from the (001) plane. Ga face and In in [11] direction
The arrangement in which planes were alternately arranged as Ga, In, Ga, In, Ga... Was dominant. Also, in this crystal, Ga, In, Ga, Ga, In
.., Etc., were hardly observed and a uniform superlattice was formed over a wide range.
また、成長面が(001)面から[011]方向へ2°傾い
た面であるGaAs基板上に成長したGa0.5In0.5P結晶中のI
II族原子の配列は[11]方向にGa面とIn面が交互に並
んだ超格子と[11]方向にGa面とIn面が交互に並ん
だ超格子とが混在したものであった。また位相の合った
超格子の大きさは、成長方向に平均50Åの長さを有する
板状の大きさを有していた。In addition, I in the Ga 0.5 In 0.5 P crystal grown on the GaAs substrate whose growth surface is inclined by 2 ° in the [011] direction from the (001) plane.
The arrangement of group II atoms was a mixture of a superlattice in which Ga planes and In planes were alternately arranged in the [11] direction and a superlattice in which Ga planes and In planes were alternately arranged in the [11] direction. Also, the size of the superlattice in phase was a plate-like size having an average length of 50 ° in the growth direction.
また、成長温度750°、V/III比450で上記2種のGaAs
基板上にGa0.5In0.5P結晶の成長を行なった場合、バン
ドギャップエネルギーは1.89eVであった。結晶中に存在
する該超格子は、先の実施例の700℃、V/III比410で成
長した結晶の場合よりも少なくなり、超格子が部分的に
形成された配列状態となるが、基板の傾斜の方位と形成
される超格子の方位との関係は先の例の場合と同様であ
った。At the growth temperature of 750 ° and V / III ratio of 450, the above two types of GaAs
When Ga 0.5 In 0.5 P crystal was grown on the substrate, the band gap energy was 1.89 eV. The superlattice present in the crystal is less than that of the crystal grown at 700 ° C. and a V / III ratio of 410 in the previous embodiment, and the superlattice is partially formed in an aligned state. The relationship between the azimuth of the tilt and the azimuth of the formed superlattice was the same as in the previous example.
また、成長温度600℃、V/III比60で成長を行なった場
合にも同様であった。The same was true when the growth was performed at a growth temperature of 600 ° C. and a V / III ratio of 60.
さらに成長温度500℃、V/III比30の場合や、成長温度
800℃、V/III比1750の場合も成長することが可能であっ
た。Furthermore, when the growth temperature is 500 ° C and the V / III ratio is 30,
Growth was also possible at 800 ° C and a V / III ratio of 1750.
上記の成長基板面方位と超格子構造の形成される方向
との関係は再現性よく得られた。また、成長面の(00
1)面からのずれが10℃以内の範囲でGa0.5In0.5Pの電気
的および光学的性質はそこなわれなかった。The relationship between the orientation of the growth substrate and the direction in which the superlattice structure is formed was obtained with good reproducibility. In addition, (00
1) The electrical and optical properties of Ga 0.5 In 0.5 P were not degraded within a range of 10 ° C. or less from the plane.
(発明の効果) 本方法により、Ga0.5In0.5P結晶中に形成される超格
子構造の形成される方向を制御できる。これを半導体素
子に用いることにより、素子の電気的、光学的性質に新
しい自由度をつけ加えることができる。(Effect of the Invention) According to the present method, the direction in which the superlattice structure formed in the Ga 0.5 In 0.5 P crystal is formed can be controlled. By using this for a semiconductor device, a new degree of freedom can be added to the electrical and optical properties of the device.
第1図は(001)面から[10]方向へ2°傾いた面上
に成長したGa0.5In0.5Pの超格子構造の1例を模式的に
表わした図である。第2図はGaAs基板に格子整合したGa
0.5In0.5Pの成長温度およびV/III比およびバンドギャッ
プエネルギーの関係を示す図である。FIG. 1 is a diagram schematically showing an example of a Ga 0.5 In 0.5 P superlattice structure grown on a plane inclined by 2 ° in the [10] direction from the (001) plane. FIG. 2 shows Ga lattice-matched to a GaAs substrate.
FIG. 4 is a diagram showing the relationship between the growth temperature of 0.5 In 0.5 P, the V / III ratio, and the band gap energy.
Claims (1)
を含んでいる原料ガスおよびドーパント原料ガスを前記
反応管内に導入して所定の成長温度の下で前記GaAs基板
上に該基板に格子整合したGa0.5In0.5P結晶を有機金属
気相成長法により形成する結晶成長方法において、成長
温度500〜800℃、V/III比1800以下で、ガリウム及びイ
ンジウムの有機金属ガスを反応管中に共存させて流し成
長を行ない、前記GaAs基板の成長面が(001)面に等価
な面からのなす角が10°以内であり、前記成長面の(00
1)面に等価な面からのずれの方位を制御することによ
り、Ga0.5In0.5P結晶中のIII族原始GaおよびInのIII族
副格子上に形成される超格子構造を制御することを特徴
とする結晶成長方法。1. A GaAs substrate is placed in a reaction tube, a source gas containing a group III element and a dopant source gas are introduced into the reaction tube, and the substrate is placed on the GaAs substrate at a predetermined growth temperature. In a crystal growth method for forming a Ga 0.5 In 0.5 P crystal lattice-matched to a metalorganic vapor phase epitaxy, a gallium and indium organometallic gas is supplied to a reaction tube at a growth temperature of 500 to 800 ° C. and a V / III ratio of 1800 or less. The growth surface of the GaAs substrate is formed at an angle of 10 ° or less from a plane equivalent to the (001) plane, and the growth plane of the GaAs substrate is (00).
1) Controlling the superlattice structure formed on the group III sublattice of group III primitive Ga and In in the Ga 0.5 In 0.5 P crystal by controlling the direction of deviation from the plane equivalent to the plane. Characteristic crystal growth method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63007172A JP2754549B2 (en) | 1988-01-14 | 1988-01-14 | Ga <bottom 0>. ▲ lower 5 ▼ In ▲ lower 0 ▼. (5) Method of growing P crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63007172A JP2754549B2 (en) | 1988-01-14 | 1988-01-14 | Ga <bottom 0>. ▲ lower 5 ▼ In ▲ lower 0 ▼. (5) Method of growing P crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01183498A JPH01183498A (en) | 1989-07-21 |
JP2754549B2 true JP2754549B2 (en) | 1998-05-20 |
Family
ID=11658662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63007172A Expired - Fee Related JP2754549B2 (en) | 1988-01-14 | 1988-01-14 | Ga <bottom 0>. ▲ lower 5 ▼ In ▲ lower 0 ▼. (5) Method of growing P crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2754549B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010153564A (en) * | 2008-12-25 | 2010-07-08 | Mitsubishi Electric Corp | Semiconductor laser element and manufacturing method thereof |
-
1988
- 1988-01-14 JP JP63007172A patent/JP2754549B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
Appl.Phys.Lett.50(11),16 March 1987、P.673−675 |
Also Published As
Publication number | Publication date |
---|---|
JPH01183498A (en) | 1989-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3124861B2 (en) | Thin film growth method and semiconductor device manufacturing method | |
EP1119029A2 (en) | Atomic layer epitaxy of compound semiconductor | |
JPS63240012A (en) | Iii-v compound semiconductor and formation thereof | |
JP2000044400A (en) | Gallium nitride single crystal substrate and its production | |
JPH01282197A (en) | Method for growing crystal of algainp-base crystal and semiconductor laser | |
JPH0688871B2 (en) | Chemical beam deposition method | |
EP0524817B1 (en) | Crystal growth method of III - V compound semiconductor | |
JP2754549B2 (en) | Ga <bottom 0>. ▲ lower 5 ▼ In ▲ lower 0 ▼. (5) Method of growing P crystal | |
US5622559A (en) | Method of preparing compound semiconductor | |
KR100262018B1 (en) | Compound semiconductor and its fabrication | |
US5827365A (en) | Compound semiconductor and its fabrication | |
US5868834A (en) | Method of manufacturing a group II-VI compound semiconductor | |
EP0342656B1 (en) | Method of manufacturing a compound semiconductor light emitting device | |
JPH053440B2 (en) | ||
Horikoshi | Migration-Enhanced Epitaxy and its Application | |
JP2847198B2 (en) | Compound semiconductor vapor phase growth method | |
JP2841799B2 (en) | (III)-Vapor phase growth method of group V compound semiconductor | |
JP2803375B2 (en) | Semiconductor structure | |
JPH0716078B2 (en) | Ga (0.5) In (0.5) P crystal growth method | |
JPH078756B2 (en) | Compound semiconductor thin film formation method | |
JPS63102222A (en) | Epitaxial growth method | |
JP2687862B2 (en) | Method of forming compound semiconductor thin film | |
Nag | Heterostructure Growth | |
JPH04369830A (en) | Compound semiconductor single crystal epitaxial substrate and growing method | |
JPH05315210A (en) | Gallium arsenide phosphide mixed-crystal epitaxial wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |