KR100392783B1 - Zinc magnesium oxide thin films and method for preparing same by metal-organic chemical vapor deposition - Google Patents
Zinc magnesium oxide thin films and method for preparing same by metal-organic chemical vapor deposition Download PDFInfo
- Publication number
- KR100392783B1 KR100392783B1 KR10-2001-0019300A KR20010019300A KR100392783B1 KR 100392783 B1 KR100392783 B1 KR 100392783B1 KR 20010019300 A KR20010019300 A KR 20010019300A KR 100392783 B1 KR100392783 B1 KR 100392783B1
- Authority
- KR
- South Korea
- Prior art keywords
- magnesium
- thin film
- vapor deposition
- zinc
- chemical vapor
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000005229 chemical vapour deposition Methods 0.000 title claims abstract description 15
- PNHVEGMHOXTHMW-UHFFFAOYSA-N magnesium;zinc;oxygen(2-) Chemical compound [O-2].[O-2].[Mg+2].[Zn+2] PNHVEGMHOXTHMW-UHFFFAOYSA-N 0.000 title abstract description 8
- 239000011777 magnesium Substances 0.000 claims abstract description 57
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 29
- 239000011701 zinc Substances 0.000 claims abstract description 23
- 125000002524 organometallic group Chemical group 0.000 claims abstract description 22
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 10
- 239000001301 oxygen Substances 0.000 claims abstract description 10
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 9
- 239000007789 gas Substances 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 239000010408 film Substances 0.000 claims description 20
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 claims description 5
- QBJCZLXULXFYCK-UHFFFAOYSA-N magnesium;cyclopenta-1,3-diene Chemical compound [Mg+2].C1C=CC=[C-]1.C1C=CC=[C-]1 QBJCZLXULXFYCK-UHFFFAOYSA-N 0.000 claims description 5
- 239000011654 magnesium acetate Substances 0.000 claims description 4
- 235000011285 magnesium acetate Nutrition 0.000 claims description 4
- 229940069446 magnesium acetate Drugs 0.000 claims description 4
- 239000004246 zinc acetate Substances 0.000 claims description 4
- -1 zinc acetate anhydride Chemical class 0.000 claims description 4
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 claims description 2
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 claims description 2
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 claims description 2
- AKTIAGQCYPCKFX-FDGPNNRMSA-L magnesium;(z)-4-oxopent-2-en-2-olate Chemical compound [Mg+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O AKTIAGQCYPCKFX-FDGPNNRMSA-L 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- NHXVNEDMKGDNPR-UHFFFAOYSA-N zinc;pentane-2,4-dione Chemical compound [Zn+2].CC(=O)[CH-]C(C)=O.CC(=O)[CH-]C(C)=O NHXVNEDMKGDNPR-UHFFFAOYSA-N 0.000 claims description 2
- 239000000376 reactant Substances 0.000 abstract description 8
- 229910003363 ZnMgO Inorganic materials 0.000 description 28
- 238000002441 X-ray diffraction Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000000103 photoluminescence spectrum Methods 0.000 description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 238000004549 pulsed laser deposition Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000013213 extrapolation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001314 profilometry Methods 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45576—Coaxial inlets for each gas
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F3/00—Compounds containing elements of Groups 2 or 12 of the Periodic Table
- C07F3/02—Magnesium compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F3/00—Compounds containing elements of Groups 2 or 12 of the Periodic Table
- C07F3/06—Zinc compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
본 발명은 유기금속 화학증착법에 의한 산화아연-마그네슘 박막의 제조방법에 관한 것으로서, 아연-함유 유기금속 및 마그네슘-함유 유기금속, 및 산소-함유 기체 또는 유기물을 별개의 라인을 통해 반응기에 주입시키고, 10-3내지 760 mmHg의 압력, 200 내지 800℃의 내부온도를 갖는 반응기 조건하에서, 상기 반응물질들의 유량을 각각 0.1 내지 10 sccm, 5 내지 50 sccm 및 20 내지 100 sccm의 범위로 조절함으로써 마그네슘의 몰분율을 제어함을 통해 기재 위에 상기 박막을 성장시키는 것을 포함하며, 본 발명에 따른 유기금속 화학증착법에 의하면, 대량생산이 가능하고 결정성이 우수한 산화아연-마그네슘 박막을 제조할 수 있다.The present invention relates to a method for preparing a zinc oxide-magnesium thin film by an organometallic chemical vapor deposition method, in which zinc-containing organometallic and magnesium-containing organometallics, and oxygen-containing gas or organics are injected into a reactor through separate lines. , Under a reactor condition with a pressure of 10 −3 to 760 mmHg and an internal temperature of 200 to 800 ° C., the magnesium was adjusted by adjusting the flow rate of the reactants in the range of 0.1 to 10 sccm, 5 to 50 sccm and 20 to 100 sccm, respectively. Including the growth of the thin film on the substrate by controlling the mole fraction of, according to the organometallic chemical vapor deposition method according to the present invention, it is possible to produce a zinc oxide-magnesium thin film capable of mass production and excellent crystallinity.
Description
본 발명은 유기금속 화학증착법(metal-organic chemical vapor deposion; MOCVD)에 의한 Zn1-xMgxO 박막의 제조방법에 관한 것으로, 구체적으로는 반응물질로서 아연, 마그네슘, 및 산소 함유 기체 또는 유기물을 별개의 라인을 통해 반응기에 주입시키고, 반응조건을 제어하면서 유기금속 화학증착법에 의해 막을 성장시킴으로써 제조된 Zn1-xMgxO (0<x<1) 박막 및 이의 제조방법에 관한 것이다.The present invention relates to a method for producing a Zn 1-x Mg x O thin film by metal-organic chemical vapor deposition (MOCVD), specifically, zinc, magnesium, and oxygen-containing gas or organic material as a reactant The present invention relates to a Zn 1-x Mg x O (0 <x <1) thin film prepared by injecting a into a reactor through a separate line and growing the film by organometallic chemical vapor deposition while controlling the reaction conditions, and a method of manufacturing the same.
ZnO 박막에, Zn+2와 이온 반경이 유사한 마그네슘을 첨가하면 밴드갭이 증가하므로, 첨가하는 마그네슘의 몰분율을 조절함으로써 원하는 파장대의 광검출 및 발광소자를 제조할 수 있다. 또한 ZnO/ZnMgO 이종접합구조(heterostructure)로 이루어진 양자우물(quantum wall), 양자점(quantum dots) 등의 양자 구조는 전자의 구속을 통해 전하상태밀도(density of states)를 변화시킴으로써 발광효율을 증대시킨다. 따라서, 마그네슘이 대량 함유된 고품질의 ZnMgO 막은 ZnO와 더불어 그 중요성이 부가되고 있다.Since the bandgap increases when Zn + 2 is added with magnesium having a similar ion radius to Zn + 2 , the photodetection and the light emitting device can be manufactured by controlling the mole fraction of magnesium to be added. In addition, quantum structures such as quantum walls and quantum dots composed of ZnO / ZnMgO heterostructures increase luminous efficiency by changing the density of states through electron confinement. . Therefore, the high-quality ZnMgO film containing a large amount of magnesium has added importance with ZnO.
열역학적으로 안정한 상태로 존재하는 ZnMgO는 통상적으로 마그네슘을 4% 이상 함유할 수 없지만, 오토모(A. Ohtomo) 등에 의하여 펄스 레이져 증착법(pulsed laser deposition; PLD) 또는 분자 빔 에피탁시 증착법(molecular beam epitaxy; MBE) 등의 물리적 증착법을 이용해 막을 성장시킴으로써 마그네슘을 33% 이상 함유하게 되고 밴드갭이 4.0 eV까지 증가한 준안정상의 ZnMgO을 성장시켰다고 보고된 바 있다(Appl. Phys. Lett.,72, 2466 (1998)).ZnMgO, which is present in a thermodynamically stable state, typically cannot contain more than 4% magnesium, but may be pulsed laser deposition (PLD) or molecular beam epitaxy by A. Ohtomo et al. It has been reported to grow metastable ZnMgO containing more than 33% of magnesium and increase the band gap to 4.0 eV by physical vapor deposition such as MBE) ( Appl. Phys. Lett. , 72 , 2466 ( 1998)).
그러나 상기 물리적 증착법들은 넓은 면적으로 박막을 증착시키기 어렵고,비용이 많이 들어 대량생산이 불리하며, 마그네슘의 몰분율을 제어하기가 용이하지 않다는 단점이 있다.However, the physical vapor deposition methods have a disadvantage in that it is difficult to deposit a thin film in a large area, it is expensive and disadvantageous in mass production, and it is not easy to control the mole fraction of magnesium.
이에 본 발명자들은 상기와 같은 문제점을 해결하기 위하여, 넓은 면적의 증착이 가능하면서, 기체 상태의 전구체를 이용함으로써 마그네슘의 몰분율 제어가 보다 용이하며 저온 증착이 가능한, 유기금속 화학증착법(MOCVD)에 의한 Zn1-xMgxO 박막의 제조방법을 개발하기에 이른 것이다.In order to solve the above problems, the present inventors can deposit a large area, and by using a gaseous precursor, it is easier to control the mole fraction of magnesium, and the organic metal chemical vapor deposition (MOCVD) method enables low temperature deposition. It is early to develop a method for producing a Zn 1-x Mg x O thin film.
본 발명의 목적은 아연-함유 유기금속, 마그네슘-함유 유기금속, 및 산소함유 기체 또는 유기물을 각각 반응기에서 별도의 라인을 통해 유량을 조절하여 주입하면서 200 내지 800℃의 온도, 10-3내지 760 mmHg의 압력 조건에서 화학적 증착법에 의해 Zn1-xMgxO 박막을 대량으로 제조하는 방법을 제공하는데 있다.An object of the present invention is to provide a zinc-containing organometallic, magnesium-containing organometallic, and oxygen-containing gas or organic material at a temperature of 200 to 800 ℃, 10 -3 to 760 while adjusting the flow rate through a separate line in the reactor To provide a method for producing a large amount of Zn 1-x Mg x O thin film by chemical vapor deposition at a pressure of mmHg.
도 1은 본 발명에 사용되는 유기금속 화학증착 장치의 개략도이고,1 is a schematic diagram of an organometallic chemical vapor deposition apparatus used in the present invention,
도 2a 및 2b는 각각 본 발명에 따른 실시예로부터 제조된 ZnMgO 막 및 비교 예로서의 ZnO 막의 X-선 회절법(XRD) θ-2θ 스캔 결과, 및 XRD 진동 곡선(rocking curve)을 나타내며,2A and 2B show X-ray diffraction (XRD) θ-2θ scan results, and XRD rocking curves of ZnMgO films prepared from Examples according to the present invention and ZnO films as comparative examples, respectively,
도 3은 본 발명에 따른 실시예로부터 제조된 ZnMgO 막 및 비교예로서의 ZnO 막의 X-선 회절법(XRD) θ-2θ 스캔 결과를 토대로 외삽법을 이용하여 결정된 c-축 격자상수를 나타내며,3 shows c-axis lattice constants determined using extrapolation based on X-ray diffraction (XRD) θ-2θ scan results of ZnMgO films prepared from Examples according to the present invention and ZnO films as Comparative Examples,
도 4a 및 4b는 각각 본 발명에 따른 실시예로부터 제조된 ZnMgO 막과 비교예로서의 ZnO 막의 -258 ℃ 및 25 ℃에서의 광발광 스펙트럼이다.4A and 4B are photoluminescence spectra at −258 ° C. and 25 ° C., respectively, of ZnMgO films prepared from examples according to the present invention and ZnO films as comparative examples.
상기 목적을 달성하기 위하여 본 발명에서는, 대량생산에 유리한 화학 기상 증착법 중에서도 특히 고순도의 박막 성장에 유리한 유기금속 화학증착법을 도입하였으며, 반응 전구체로서 아연-함유 유기금속, 마그네슘-함유 유기금속, 및 산소-함유 기체 또는 유기물을 이들의 전반응을 억제하기 위하여 각각 별개의 라인을 통해 반응기에 주입시키고 10-3내지 760 mmHg의 압력, 200 내지 800℃의 내부온도의 반응조건에서, 산화아연-마그네슘 박막의 제조방법을 제공한다. 이때, 상기 아연-함유 유기금속 및 마그네슘-함유 유기금속을 각각 반응기로 운반하는 수송기체의 유량 및 항온조의 온도를 조절함으로써, 마그네슘의 몰분율을 변화시켜가면서, 상기 산화아연마그네슘 박막을 증착시킬 수 있다.In order to achieve the above object, the present invention introduces an organometallic chemical vapor deposition method, which is particularly advantageous for high-purity thin film growth, among chemical vapor deposition methods that are advantageous for mass production, and includes zinc-containing organometallic, magnesium-containing organometallic, and oxygen as reaction precursors A zinc oxide-magnesium thin film, which is injected into the reactor via a separate line in order to suppress their prereaction, and reacted at a pressure of 10 -3 to 760 mmHg and an internal temperature of 200 to 800 ° C. It provides a method of manufacturing. At this time, the zinc-magnesium oxide thin film may be deposited while varying the mole fraction of magnesium by controlling the flow rate of the transport gas carrying the zinc-containing organometallic and magnesium-containing organometallic to the reactor and the temperature of the thermostat. .
상기 반응물질들, 즉 아연-함유 유기금속, 마그네슘-함유 유기금속 및 산소-함유 기체 또는 유기물의 유량은 각각 0.1 내지 10 sccm, 5 내지 50 sccm 및 20 내지 100 sccm의 범위인 것이 바람직하다.The flow rates of the reactants, ie zinc-containing organometallic, magnesium-containing organometallic and oxygen-containing gas or organic, are preferably in the range of 0.1 to 10 sccm, 5 to 50 sccm and 20 to 100 sccm, respectively.
이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
도 1은 본 발명에 사용되는 유기금속 화학증착 장치의 개략도로서, 본 발명의 ZnMgO 박막 제조방법에 따르면, 별개의 반응물질 라인을 사용하여 반응물질들이 미리 반응하거나 반응기의 벽면에서 증착이 이루어졌다가 다시 재분해되는 것을 방지함으로써, ZnMgO 박막의 품질을 저하시키는 것을 현저히 감소시킬 수 있다.1 is a schematic diagram of an organometallic chemical vapor deposition apparatus used in the present invention. According to the ZnMgO thin film manufacturing method of the present invention, reactants are reacted in advance using a separate reactant line or deposition is performed on a wall of a reactor. By preventing re-decomposition again, it is possible to significantly reduce the deterioration of the quality of the ZnMgO thin film.
또한 산화아연-마그네슘 박막을 제조하기 위해 사용되는 본 발명의 유기금속 화학증착법은 반응물질들의 유량 제어가 용이하여, ZnMgO 박막내 Mg의 몰분율을 조절하는 것이 가능하며, 원하는 농도로 증착시킬 수 있는 비례적 증착이 가능하다.In addition, the organometallic chemical vapor deposition method of the present invention used to prepare a zinc oxide-magnesium thin film is easy to control the flow rate of the reactants, it is possible to control the mole fraction of Mg in the ZnMgO thin film, it can be deposited to a desired concentration proportion Red deposition is possible.
본 발명에 사용된 아연-함유 유기금속으로는 디메틸아연(Zn(CH3)2), 디에틸아연(Zn(C2H5)2), 아연 아세테이트(Zn(OOCCH3)2·2H2O), 아연 아세테이트 무수물(Zn(OOCCH3)2) 및 아연 아세틸아세토네이트(Zn(C5H7O2)2·H2O) 등을 들 수 있다. 본 발명에 사용된 마그네슘-함유 유기금속으로는 비스사이클로펜타디에닐마그네슘(bis-cyclopentadienyl-Mg; (C5H5)2Mg), 비스메틸시클로펜타디에닐마그네슘 (bis-methylcyclopentadienyl-Mg; (CH3C5H4)2Mg), 비스에틸시클로펜타디에닐마그네슘 (bis-cyclopentadienyl-Mg; (C2H5C5H4)2Mg), 비스펜타메틸시클로펜타디에닐마그네슘 (bis-pentamethylcyclopentadienyl-Mg; [(CH3)5C5]2Mg), 마그네슘 아세테이트 (Mg(OOCCH3)2·2H2O), 마그네슘 아세테이트 무수물(Mg(OOCCH3)2) 및 마그네슘 아세틸아세토네이트(Mg(C5H7O2)2·H2O) 등을 들 수 있다.Zinc-containing organometals used in the present invention include dimethylzinc (Zn (CH 3 ) 2 ), diethylzinc (Zn (C 2 H 5 ) 2 ), zinc acetate (Zn (OOCCH 3 ) 2 .2H 2 O ), Zinc acetate anhydride (Zn (OOCCH 3 ) 2 ), zinc acetylacetonate (Zn (C 5 H 7 O 2 ) 2 .H 2 O), and the like. Magnesium-containing organometals used in the present invention include biscyclopentadienyl magnesium (bis-cyclopentadienyl-Mg; (C 5 H 5 ) 2 Mg), bismethylcyclopentadienyl magnesium (bis-methylcyclopentadienyl-Mg; ( CH 3 C 5 H 4 ) 2 Mg), bisethylcyclopentadienylmagnesium (bis-cyclopentadienyl-Mg; (C 2 H 5 C 5 H 4 ) 2 Mg), bispentamethylcyclopentadienylmagnesium (bis- pentamethylcyclopentadienyl-Mg; [(CH 3 ) 5 C 5 ] 2 Mg), magnesium acetate (Mg (OOCCH 3 ) 2 2H 2 O), magnesium acetate anhydride (Mg (OOCCH 3 ) 2 ) and magnesium acetylacetonate (Mg (C 5 H 7 O 2 ) 2 H 2 O), and the like.
또한, 본 발명에 사용된 산소-함유 기체로는 O2, O3, NO2, 수증기 및 CO2등을 들 수 있으며, 산소-함유 유기물로는 C4H8O를 들 수 있다.In addition, the oxygen-containing gas used in the present invention includes O 2 , O 3 , NO 2 , water vapor and CO 2 , and the like, and C 4 H 8 O as the oxygen-containing organic material.
본 발명에 의해 제조된 ZnMgO 박막의 결정 배향성 및 c-축 격자상수의 변화를 X-선 회절법(XRD)으로 측정한 결과를 각각 도 2 및 도 3에 나타내었다. 이로부터 상기 ZnMgO막은 우수한 결정성을 가짐을 알 수 있다. 또한 본 발명의 방법에 의하면 산화아연마그네슘 박막을 대량으로 제조할 수 있다.The results of measurement of the change in crystal orientation and c-axis lattice constant of the ZnMgO thin film prepared by the present invention by X-ray diffraction (XRD) are shown in FIGS. 2 and 3, respectively. From this, it can be seen that the ZnMgO film has excellent crystallinity. In addition, according to the method of the present invention, a zinc magnesium oxide thin film can be produced in large quantities.
본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.The invention can be better understood by the following examples, which are intended for the purpose of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.
실시예Example
도 1에 도시된 유기금속 화학증착 장치를 사용하여 Al2O3(0001)의 기재 위에 ZnMgO 막을 성장시켰다. 반응물질로서 디에틸아연, 비스사이클로펜타디에닐마그네슘 및 O2를 사용하였고, 운반기체로서 아르곤을 사용하였다. 분리된 라인들을 통해 디에틸아연을 함유한 아르곤, 비스사이클로펜타디에닐마그네슘을 함유한 아르곤, 및 O2를 각각 반응기 내로 주입하였다. 이때 반응기 내의 압력 및 온도를 각각 5 mmHg, 500 ℃로 일정하게 유지하면서, 각 반응물질들의 흐름속도는 각각 아르곤 50 sccm, 디에틸아연 0.1 내지 1 sccm, 비스사이클로펜타디에닐마그네슘 10 내지 50 sccm 및 O220 sccm의 범위로 조절하면서 약 1시간에 걸쳐 증착에 의해 막을 성장시켰다.ZnMgO films were grown on a substrate of Al 2 O 3 (0001) using the organometallic chemical vapor deposition apparatus shown in FIG. Diethylzinc, biscyclopentadienylmagnesium and O 2 were used as reactants, and argon was used as a carrier gas. In separate lines, argon containing diethyl zinc, argon containing biscyclopentadienyl magnesium, and O 2 were each injected into the reactor. At this time, while maintaining a constant pressure and temperature in the reactor to 5 mmHg, 500 ℃, respectively, the flow rate of each reactant is 50 sccm of argon, 0.1 to 1 sccm of diethyl zinc, 10 to 50 sccm of biscyclopentadienyl magnesium and The film was grown by vapor deposition over about 1 hour while adjusting to a range of 20 sccm 0 2 .
증착반응의 완료 후, 표면 윤곽측정법(surface profilometry) 및 단면 주사 전자 현미경법으로 측정한 결과, 형성된 산화아연마그네슘 막의 두께가 0.5 ∼ 1 ㎛이었다. 그리고 상기 박막의 결정 배향성 및 c-축 격자상수의 변화를 X-선 회절법(XRD)으로 결정하였고, EDAX(energy dispersion type X-ray analyzer)를 이용하여 마그네슘의 성분 함량을 측정하였으며, 광발광 측정법을 통해서 밴드갭의 변화를 측정하였다.After completion of the deposition reaction, the thickness of the formed zinc magnesium oxide film was 0.5 to 1 m as measured by surface profilometry and cross-sectional scanning electron microscopy. The crystal orientation and c-axis lattice constant of the thin film were determined by X-ray diffraction (XRD), and the magnesium content was measured using an energy dispersion type X-ray analyzer (EDAX). The change of the band gap was measured by the measuring method.
1) X선 회절 분석1) X-ray diffraction analysis
비교예로서 Mg을 함유하지 않는 ZnO 박막, Mg을 각각 11%, 47%, 60% 함유하는 ZnMgO 박막, 및 100%의 Mg을 함유하는 MgO 박막을 Al2O3(0001) 기재 위에 형성시키고, 이들 막에 대한 XRD θ-2θ 스캔 결과를 도 2a에 각각 나타내었다.As a comparative example, a ZnO thin film containing no Mg, a ZnMgO thin film containing 11%, 47%, and 60% Mg, and a MgO thin film containing 100% Mg were formed on an Al 2 O 3 (0001) substrate, The XRD θ-2θ scan results for these films are shown in Fig. 2A, respectively.
이들은 기재 피크 이외에 두드러진 ZnO(0002) 피크를 나타냄으로써, ZnMgO 박막이 기재 표면에 수직인 c-축 방향을 따라 크게 배향되었음을 알 수 있다.These exhibited prominent ZnO (0002) peaks in addition to the substrate peak, indicating that the ZnMgO thin film was highly oriented along the c-axis direction perpendicular to the substrate surface.
ZnO(0002) 피크가 34.78도에서 나타남에 비해, Mg이 47% 함유된 ZnMgO 박막의 피크는 이보다 우측에서 나타나는데, 이는 Mg이 첨가됨으로써 c-축의 격자상수가 변했음을 알 수 있다. 한편, 첨가되는 Mg의 함량이 약 60% 이상으로 증가하는 경우에는, MgO의 상분리가 발생하여 별도의 MgO(111) 피크가 나타났다. 도 2a로부터, Mg을 47% 함유하는 ZnMgO 박막에서는 상분리가 일어나지 않았으며, 이는 종래의 물리적 증착법에 의해 형성된 ZnMgO 박막이 최대 33%를 함유한 것에 비해 42%p 증가하였음을 알 수 있다.While the ZnO (0002) peak is shown at 34.78 degrees, the peak of the ZnMgO thin film containing 47% Mg appears on the right side, indicating that the lattice constant of the c-axis was changed by the addition of Mg. On the other hand, when the amount of Mg added is increased to about 60% or more, phase separation of MgO occurs, resulting in a separate MgO (111) peak. From FIG. 2A, phase separation did not occur in the ZnMgO thin film containing 47% Mg, which indicates that the ZnMgO thin film formed by the conventional physical vapor deposition method increased by 42% p compared with the maximum containing 33%.
또한, Al2O3(0001) 기재 위에 형성된 ZnO 박막 및 Zn0.89Mg0.11O 박막의 (0002)면에 대한 XRD 진동 곡선(rocking curve)을 도 2b에 나타내었다. 진동 곡선은 상기 막들의 (0002) 반사에서 각각 측정되었다. 도 2b로부터 알 수 있듯이, Al2O3(0001) 위에 형성된 ZnO 및 ZnMgO 막의 진동 곡선에서의 최대값/2에서의 총 너비(full width at half maximum, FWHM)는 각각 0.045 및 0.065°이었다. 이 값은 종래에 보고된 0.13°보다 훨씬 좁은 값이며, 단결정 Al2O3(0006) 면의 FWHM 값인 0.042°와 거의 유사한 값으로서, 본 실시예에서 성장시킨 ZnMgO 박막의 결정성이 매우 우수함을 나타낸다.In addition, the XRD rocking curves for the (0002) plane of the ZnO thin film and Zn 0.89 Mg 0.11 O thin film formed on the Al 2 O 3 (0001) substrate are shown in FIG. 2B. Vibration curves were each measured at the (0002) reflection of the films. As can be seen from FIG. 2B, the full width at half maximum (FWHM) in the vibration curves of the ZnO and ZnMgO films formed on Al 2 O 3 (0001) was 0.045 and 0.065 °, respectively. This value is much narrower than the previously reported 0.13 °, and is almost similar to 0.042 °, which is the FWHM value of the single crystal Al 2 O 3 plane, and shows excellent crystallinity of the ZnMgO thin film grown in this example. Indicates.
2) Mg 함량에 따른 c-축 격자상수의 변화2) Change of c-axis lattice constant according to Mg content
비교예로서의 Mg을 함유하지 않는 ZnO 박막과 Mg을 각각 11%, 21%, 47%을 함유하는 ZnMgO 박막에 대해, X선 회절법(XRD) θ-2θ 스캔 결과를 기초로 하고, 외삽법을 이용하여 c-축 격자상수를 결정하고, 그 결과를 도 3에 나타내었다. 도 3으로부터 알 수 있듯이, Mg 함량이 47% 증가함에 따라 c-축 격자상수가 1.2% 감소하였고, 이는 펄스 레이져 증착법 또는 분자 빔 에피탁시 증착법 등의 물리적 증착법을 이용하여 성장된 ZnMgO 박막과 유사한 결과를 나타낸다.As a comparative example, the ZnO thin film containing no Mg and the ZnMgO thin film containing 11%, 21%, and 47% Mg, respectively, were based on the X-ray diffraction (XRD) θ-2θ scan results, and an extrapolation method was used. The c-axis lattice constant was determined, and the results are shown in FIG. 3. As can be seen from FIG. 3, the c-axis lattice constant decreased by 1.2% as the Mg content increased by 47%, which is similar to the ZnMgO thin film grown using physical vapor deposition such as pulsed laser deposition or molecular beam epitaxy deposition. Results are shown.
3) 실온에서의 광발광 스펙트럼3) photoluminescence spectrum at room temperature
여기 원으로서 He-Cd 레이저(325nm)를 사용하여 -258 ℃에서 ZnO 박막 및 Mg을 각각 11%, 21%, 47% 함유하는 ZnMgO 박막의 광발광 스펙트럼을 각각 측정하여 도 4a에 나타내었다. 도 4b에는 25 ℃에서의 ZnO 박막 및 Mg을 9% 함유하는 ZnMgO 박막의 광발광 스펙트럼을 측정하여 나타내었다. 도 4a로부터, -258 ℃와 같은 저온에서 ZnO 막의 광발광 스펙트럼은 3.364 eV에서 날카로운 피크를 보이며, Mg을 각각 9%, 11%, 21%, 47% 함유하는 ZnMgO 박막의 광발광 스펙트럼은 밴드 에지 발광피크의 에너지 값이 각각 3.462 eV, 3.522 eV, 3.798 eV, 3.932 eV로서 Mg이 함유되지 않는 막에 비해 높았으며, 또한 밴드갭이 증가하였음을 알 수 있다. 또한 도 4b에서, ZnO 막의 25 ℃에서의 광발광 스펙트럼은 3.282 eV에서 발광 피크를 보였으며, Mg이 9% 함유된 ZnMgO 막의 경우에는 광발광 스펙트럼이 3.399 eV로서 더 높고, 밴드갭도 증가하였음을 알 수 있다.The photoluminescence spectra of the ZnO thin film and the ZnMgO thin film containing 11%, 21%, and 47% Mg, respectively, were measured at −258 ° C. using a He-Cd laser (325 nm) as the excitation source, and are shown in FIG. 4A. 4B shows photoluminescence spectra of a ZnO thin film and a ZnMgO thin film containing 9% Mg at 25 ° C. From FIG. 4A, the photoluminescence spectrum of the ZnO film at a low temperature such as -258 ° C. shows sharp peaks at 3.364 eV, and the photoluminescence spectrum of the ZnMgO thin film containing 9%, 11%, 21%, and 47% Mg, respectively, is shown at the band edge. The energy values of the emission peaks were 3.462 eV, 3.522 eV, 3.798 eV and 3.932 eV, respectively, which were higher than those of Mg-free films, and the band gap was increased. In addition, in FIG. 4B, the photoluminescence spectrum of the ZnO film at 25 ° C. showed an emission peak at 3.282 eV, and the ZnMgO film containing 9% Mg had a higher photoluminescence spectrum of 3.399 eV and an increased band gap. Able to know.
본 발명의 유기금속 화학증착법에 의해 형성된 ZnMgO 박막은, Mg을 첨가함에 따라 큰 변화 없이 밴드갭이 증가되고, Mg을 적어도 47%까지 함유하면서도 상분리가 일어나지 않으며, Mg의 몰분율을 조절함으로써 원하는 파장대의 광검출 및 발광 소자로서 사용될 수 있으며, 나아가 ZnO/ZnMgO와 같은 이종접합구조를 갖는 양자 우물 구조를 이용함으로써 전자를 효율적으로 구속시켜 발광효율을 증대시킬 수 있다.ZnMgO thin film formed by the organometallic chemical vapor deposition method of the present invention, the band gap is increased without significant change with the addition of Mg, containing Mg at least 47% phase separation does not occur, by controlling the mole fraction of Mg of the desired wavelength band It can be used as a photodetector and a light emitting device, and furthermore, by using a quantum well structure having a heterojunction structure such as ZnO / ZnMgO, the electrons can be efficiently constrained to increase luminous efficiency.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications and variations of the present invention can be easily made by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0019300A KR100392783B1 (en) | 2001-04-11 | 2001-04-11 | Zinc magnesium oxide thin films and method for preparing same by metal-organic chemical vapor deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0019300A KR100392783B1 (en) | 2001-04-11 | 2001-04-11 | Zinc magnesium oxide thin films and method for preparing same by metal-organic chemical vapor deposition |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020080109A KR20020080109A (en) | 2002-10-23 |
KR100392783B1 true KR100392783B1 (en) | 2003-07-23 |
Family
ID=27700719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0019300A KR100392783B1 (en) | 2001-04-11 | 2001-04-11 | Zinc magnesium oxide thin films and method for preparing same by metal-organic chemical vapor deposition |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100392783B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100456016B1 (en) * | 2002-01-10 | 2004-11-06 | 학교법인 포항공과대학교 | A process for preparing a zinc oxide nanowire by metal organic chemical vapor deposition and a nanowire prepared therefrom |
US9245742B2 (en) * | 2013-12-18 | 2016-01-26 | Asm Ip Holding B.V. | Sulfur-containing thin films |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1070082A (en) * | 1996-08-27 | 1998-03-10 | Sony Corp | Method of forming p-type nitride based iii-v compound semiconductor layer |
US5747111A (en) * | 1995-02-28 | 1998-05-05 | Nisshin Steel Co., Ltd. | Steel sheet coated with Zn-Mg binary coating layer excellent in corrosion resistance and manufacturing method thereof |
-
2001
- 2001-04-11 KR KR10-2001-0019300A patent/KR100392783B1/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5747111A (en) * | 1995-02-28 | 1998-05-05 | Nisshin Steel Co., Ltd. | Steel sheet coated with Zn-Mg binary coating layer excellent in corrosion resistance and manufacturing method thereof |
JPH1070082A (en) * | 1996-08-27 | 1998-03-10 | Sony Corp | Method of forming p-type nitride based iii-v compound semiconductor layer |
Also Published As
Publication number | Publication date |
---|---|
KR20020080109A (en) | 2002-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5451280B2 (en) | Wurtzite crystal growth substrate, manufacturing method thereof, and semiconductor device | |
EP3056592B1 (en) | Method for producing group iii nitride crystal and apparatus for producing group iii nitride crystal | |
Gaskill et al. | Growth of GaN films using trimethylgallium and hydrazine | |
US20030024475A1 (en) | Method and apparatus for producing group-III nitrides | |
JP2010132556A (en) | n-TYPE GALLIUM NITRIDE SINGLE CRYSTAL SUBSTRATE | |
JP2000044400A (en) | Gallium nitride single crystal substrate and its production | |
US20110175109A1 (en) | Film of n type (100) oriented single crystal diamond semiconductor doped with phosphorous atoms, and a method of producing the same | |
JP3198912B2 (en) | Method for producing group 3-5 compound semiconductor | |
Hussain et al. | Effect of oxygen content on the structural and optical properties of ZnO films grown by atmospheric pressure MOCVD | |
US8222669B2 (en) | Mixed source growth apparatus and method of fabricating III-nitride ultraviolet emitters | |
KR100392783B1 (en) | Zinc magnesium oxide thin films and method for preparing same by metal-organic chemical vapor deposition | |
JPH09251957A (en) | Manufacturing method for 3-5 group compound semiconductor | |
Ma et al. | Structural and optoelectrical properties of ZnO thin films deposited on GaAs substrate by metal-organic chemical vapour deposition (MOCVD) | |
JPH0936429A (en) | Fabrication of iii-v compound semiconductor | |
WO2001080386A1 (en) | Iii-v semiconductors separate confinement superlattice optoelectronic devices | |
KR100385634B1 (en) | Metal-organic chemical vapor deposition of zinc oxide thin films exhibiting lasers | |
JPH088186A (en) | Method of forming semiconductor light emitting element layer | |
KR100262018B1 (en) | Compound semiconductor and its fabrication | |
US20110033718A1 (en) | ZnO THIN FILM | |
US5827365A (en) | Compound semiconductor and its fabrication | |
JP2686859B2 (en) | Method for growing crystal of n-type II-VI compound semiconductor | |
KR20100130296A (en) | Method of fabricating a zinc oxide based nanowire using a buffer layer in a high temperature process and method of fabricating a electronic device using the same | |
JPH1168235A (en) | Crystal growth method of algaas compound semiconductor and manufacture of semiconductor laser | |
JP2706337B2 (en) | Method for manufacturing compound semiconductor thin film | |
JP5893981B2 (en) | Magnesium / Zinc Oxide Crystal Growth Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20090715 Year of fee payment: 7 |
|
LAPS | Lapse due to unpaid annual fee |