JPH07154920A - Method of detecting single operation - Google Patents

Method of detecting single operation

Info

Publication number
JPH07154920A
JPH07154920A JP5296173A JP29617393A JPH07154920A JP H07154920 A JPH07154920 A JP H07154920A JP 5296173 A JP5296173 A JP 5296173A JP 29617393 A JP29617393 A JP 29617393A JP H07154920 A JPH07154920 A JP H07154920A
Authority
JP
Japan
Prior art keywords
value
reference value
difference
detection
harmonic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5296173A
Other languages
Japanese (ja)
Other versions
JP3448325B2 (en
Inventor
Takeo Ishida
健雄 石田
Etsuko Yamamoto
悦子 山本
Wataru Horio
渉 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP29617393A priority Critical patent/JP3448325B2/en
Publication of JPH07154920A publication Critical patent/JPH07154920A/en
Application granted granted Critical
Publication of JP3448325B2 publication Critical patent/JP3448325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To suppress the influence of noise so as to improve detection accuracy by updating the reference value to judge the sharp increase of the third higher harmonic components each time it detects the third higher harmonic components, and making the new reference value the average load value between the present reference value set at detection before and the current detection value. CONSTITUTION:A single motion detector 40 is composed of an input level adjuster 41, a band pass filter 42, which abstracts the third higher harmonic components (3H) from the voltage V of a connection point being adjusted on a proper level, an integrating circuit 44, which outputs a signal on a level geared to the amplitude of absolute value circuits 43 and 3H performing the full wave rectification of abstracted 3H, and a microcomputer (MP), which takes in the output of the integrating circuit 44 so as to detect the sharp increase of 3H. Here, MP45 sets the average load value between the detection value and the present reference value as the reference value in the next judgment of difference in the case that the difference between the detection value and the reference value is not over the threshold in the judgment of difference which seeks the difference between the detection value of 3H and the reference value and compares it with threshold.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、系統連系システムにお
ける単独運転検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting an isolated operation in a system interconnection system.

【0002】[0002]

【従来の技術】近年、太陽電池や燃料電池などの数KW
程度の直流電源と、その出力を交流に変換するインバー
タとを備えた分散電源設備を商用電力系統と連系(接
続)し、家電製品などの負荷に給電する系統連系システ
ムが種々提案されている。
2. Description of the Related Art In recent years, several kW for solar cells, fuel cells, etc.
Various grid-connected systems have been proposed that connect (connect) a distributed power supply system equipped with a DC power supply of a certain degree and an inverter that converts its output to AC with a commercial power grid to supply power to loads such as home appliances. There is.

【0003】系統連系システムでは、商用電力系統の保
全作業の安全を確保するため、商用電力系統の不測の停
電時及び作業停電時において、直ちにインバータの動作
を停止させるか、又は直ちに開閉器を作動させて連系を
解除することにより、インバータを商用電力系統から解
列させる機能、すなわちインバータの単独運転を防止す
る機能が不可欠である。
In the grid interconnection system, in order to ensure the safety of maintenance work of the commercial power system, the operation of the inverter is immediately stopped or the switch is immediately opened in the event of an unexpected power failure or work power failure of the commercial power system. It is essential to have a function of disconnecting the inverter from the commercial power system by operating it to release the interconnection, that is, a function of preventing the inverter from operating independently.

【0004】電流制御形インバータを用いたシステムに
おいては、系統停電時に柱上トランスの励磁特性に起因
した第3次高調波電圧が発生するので、連系点電圧の第
3次高調波成分を検出して平常時に対する増加の度合い
を判定することにより、インバータの単独運転状態を検
出することができる。
In a system using a current control type inverter, a third harmonic voltage due to the excitation characteristic of a pole transformer is generated during a system power failure, so that the third harmonic component of the interconnection point voltage is detected. By determining the degree of increase with respect to the normal condition, the islanding operation state of the inverter can be detected.

【0005】しかし、図4(A)に示すように、判定の
基準値として固定値を設定し、基準値と第3次高調波成
分の検出値との差が閾値を越えるか否かを判定する単純
閾値判定による場合には、商用電力系統に接続される多
種多様の負荷の中に第3次高調波発生源があったとき
に、誤検出の発生するおそれがある。
However, as shown in FIG. 4 (A), a fixed value is set as a reference value for determination, and it is determined whether or not the difference between the reference value and the detected value of the third harmonic component exceeds a threshold value. According to the simple threshold determination, if there is a third harmonic generation source in a variety of loads connected to the commercial power system, there is a possibility that erroneous detection may occur.

【0006】そこで、図4(B)に示すように、一定の
周期で第3高調波成分を検出し、前回の検出値を基準値
として増加の度合いを判定する差分判定を行う方法、す
なわち第3高調波成分の急激な増大を検出する単独運転
検出方法が提案されている。
Therefore, as shown in FIG. 4B, a method of detecting the third harmonic component at a constant cycle and making a difference judgment for judging the degree of increase with the previous detection value as a reference value, that is, An islanding operation detection method has been proposed which detects a sudden increase in the third harmonic component.

【0007】[0007]

【発明が解決しようとする課題】上述の差分判定によれ
ば、平常時において比較的に第3高調波電圧のレベルが
高くなることがあっても、それに応じて判定の基準値が
変更されるので、単純閾値判定の不都合を解消すること
ができる。ただし、突発的なノイズによって、基準値が
正規の値(真の平常レベル)とかけ離れた値になる場合
がある。その場合には、次に得られた検出値に対して正
しい差分判定を行うことができず、第3高調波の急増を
見逃したり、不要に第3高調波検出信号を発してしまう
おそれがある。つまり、従来の検出方法は、ノイズの影
響を受け易いという問題があった。
According to the above-described difference determination, even if the level of the third harmonic voltage may be relatively high in normal times, the determination reference value is changed accordingly. Therefore, the inconvenience of the simple threshold value determination can be eliminated. However, due to sudden noise, the reference value may deviate from the normal value (true normal level). In that case, a correct difference determination cannot be performed on the detected value obtained next, and there is a possibility that a sudden increase in the third harmonic may be overlooked or a third harmonic detection signal may be emitted unnecessarily. . That is, the conventional detection method has a problem that it is easily affected by noise.

【0008】本発明は、このような問題に鑑み、ノイズ
の影響を抑えて検出精度を高めることを目的としてい
る。
In view of the above problems, the present invention aims to suppress the influence of noise and improve the detection accuracy.

【0009】[0009]

【課題を解決するための手段】請求項1の発明に係る方
法は、上述の課題を解決するため、一定の周期で、イン
バータと商用電力系統との連系点における電圧の第3高
調波成分を検出するとともに、その検出値と基準値との
差を求めて閾値と比較する差分判定を行うことにより、
前記第3高調波成分の急増を検出する単独運転検出方法
であって、各回の差分判定において前記検出値と基準値
との差が前記閾値を越えない場合には、次回の差分判定
の基準値として前記検出値と現時点の基準値との荷重平
均値を設定する方法である。
In order to solve the above-mentioned problems, the method according to the invention of claim 1 is, in order to solve the above-mentioned problems, the third harmonic component of the voltage at the connection point between the inverter and the commercial power system at a constant cycle. By detecting the difference between the detected value and the reference value and comparing with the threshold value,
An isolated operation detection method for detecting a sudden increase in the third harmonic component, wherein the difference between the detection value and the reference value does not exceed the threshold value in each difference determination, and the reference value for the next difference determination. Is a method of setting a weighted average value of the detected value and the reference value at the present time.

【0010】請求項2の発明に係る方法は、前記荷重平
均値の設定に際して、前記現時点の基準値の重み付け
を、前記検出値の重み付けよりも大きくする方法であ
る。請求項3の発明に係る方法は、前記検出値と基準値
との差が前記閾値を越えた場合には、前記現時点の基準
値を保持した状態で、前記第3高調波成分の検出及びそ
の後の差分判定を行い、一定時間にわたって検出値と基
準値との差が連続して前記閾値を越えたときに、前記第
3高調波成分の急増を示す検出信号を発する方法であ
る。
According to a second aspect of the present invention, when setting the weighted average value, the weighting of the reference value at the present time is made larger than the weighting of the detected value. In the method according to the invention of claim 3, when the difference between the detected value and the reference value exceeds the threshold value, the third reference harmonic component is detected and thereafter while maintaining the reference value at the present time. Is performed, and when the difference between the detected value and the reference value continuously exceeds the threshold value for a certain period of time, the detection signal indicating the rapid increase of the third harmonic component is emitted.

【0011】[0011]

【作用】平常時において、第3高調波成分の急増の有無
を判定するための基準値は、第3高調波成分を検出する
毎に更新される。新たな基準値は、前回の検出時に設定
された現時点の基準値と今回の第3高調波成分の検出値
との荷重平均値とされ、そのとき現時点の基準値に大き
な重み付けが与えられる。
In normal operation, the reference value for determining the presence / absence of a sudden increase in the third harmonic component is updated every time the third harmonic component is detected. The new reference value is a weighted average value of the reference value at the present time set at the time of the previous detection and the detected value of the third harmonic component at this time, and a large weight is given to the reference value at the present time.

【0012】これにより、図3に示すように、ノイズに
起因する基準値の変動が抑えられ、常に基準値はノイズ
の無い理想状態における第3高調波成分の値に近い値と
なる。その結果、次回の検出で得られた検出値に対して
適正な差分判定を行うことができ、単独運転の誤検出を
防止することができる。
As a result, as shown in FIG. 3, the fluctuation of the reference value due to noise is suppressed, and the reference value is always close to the value of the third harmonic component in the ideal state without noise. As a result, an appropriate difference determination can be performed on the detection value obtained in the next detection, and erroneous detection of isolated operation can be prevented.

【0013】また、検出値と基準値との差が閾値を越え
る状態が一定時間にわたって継続したときに、つまり、
連続した複数回の差分判定で同様の結果が得られたとき
に、第3高調波成分の急増を示す検出信号が発せられ
る。これにより、さらに確実な単独運転の検出を実現す
ることができる。
When the difference between the detected value and the reference value exceeds the threshold value for a certain period of time, that is,
When the same result is obtained by successive difference determinations, a detection signal indicating a sharp increase in the third harmonic component is issued. As a result, more reliable detection of isolated operation can be realized.

【0014】[0014]

【実施例】図1は本発明を適用した単独運転検出装置4
0を有する太陽光発電システム1のブロック図、図2は
単独運転検出処理のフローチャートである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an islanding operation detection device 4 to which the present invention is applied.
FIG. 2 is a block diagram of the photovoltaic power generation system 1 having 0, and FIG. 2 is a flowchart of islanding operation detection processing.

【0015】図1において、太陽光発電システム1は、
定格電圧が200V程度の太陽電池10、電圧形電流制
御方式のインバータ20、系統保護用の開閉装置30、
及び単独運転検出装置40から構成され、図示しない配
電盤や電力計などを介して商用電力系統2と連系されて
いる。配電線Lには各種の家電製品などの負荷Zが接続
されている。
In FIG. 1, the solar power generation system 1 is
A solar cell 10 having a rated voltage of about 200 V, a voltage source current control type inverter 20, a system protection switchgear 30,
And the islanding operation detection device 40, and is connected to the commercial power system 2 via a switchboard, a power meter, etc. not shown. A load Z such as various home appliances is connected to the distribution line L.

【0016】インバータ20は、複数のスイッチング素
子からなるインバータ回路21及びその制御系22を有
している。制御系22は、変流器23により検出された
インバータ回路21の出力電流、変圧器24により検出
された連系点電圧V、及び図示しないアイソレーション
アンプなどにより検出された太陽電池10の出力電圧に
基づいて、運転力率が1になり且つ太陽電池10から最
大電力を引き出すように、インバータ回路21の出力電
流のPWM制御を行う。
The inverter 20 has an inverter circuit 21 composed of a plurality of switching elements and a control system 22 thereof. The control system 22 outputs the output current of the inverter circuit 21 detected by the current transformer 23, the interconnection point voltage V detected by the transformer 24, and the output voltage of the solar cell 10 detected by an isolation amplifier (not shown). Based on the above, PWM control of the output current of the inverter circuit 21 is performed so that the driving power factor becomes 1 and the maximum power is drawn from the solar cell 10.

【0017】単独運転検出装置40は、入力レベル調整
部41、適当にレベル調整された連系点電圧Vから第3
次高調波成分を抽出するバンドパスフィルタ42、抽出
された第3次高調波成分の全波整流を行う絶対値回路4
3、第3次高調波成分の振幅に応じたレベルの信号を出
力する積分回路44、及び積分回路44の出力を取り込
んで第3次高調波成分の急増を検出するマイクロコンピ
ュータ45から構成されている。
The islanding operation detecting device 40 comprises an input level adjusting section 41, a third level based on an appropriately level-adjusted interconnection point voltage V.
A band pass filter 42 for extracting the third harmonic component, an absolute value circuit 4 for performing full-wave rectification of the extracted third harmonic component
3, an integrating circuit 44 that outputs a signal of a level corresponding to the amplitude of the third harmonic component, and a microcomputer 45 that captures the output of the integrating circuit 44 and detects a sudden increase in the third harmonic component. There is.

【0018】次に、図2を参照して、マイクロコンピュ
ータ45が実行する単独運転検出処理について説明す
る。マイクロコンピュータ45内の図示しないCPU
は、アナログポートに入力された高調波抽出信号Shv
を、一定周期(例えば10ms)でサンプリングし、そ
れと並行して複数回分(例えば5回分)のサンプリング
値の平均値を求め、その平均値を第3次高調波成分の検
出値Vinとして取り込む。つまり、CPUによって、
50(=10×5)msの周期で第3次高調波成分が検
出される(#11)。
Next, with reference to FIG. 2, the islanding operation detection process executed by the microcomputer 45 will be described. CPU (not shown) in the microcomputer 45
Is the harmonic extraction signal Shv input to the analog port
Is sampled at a constant cycle (for example, 10 ms), an average value of sampling values for a plurality of times (for example, 5 times) is calculated in parallel, and the average value is taken in as the detection value Vin of the third harmonic component. In other words, by the CPU
The third harmonic component is detected at a cycle of 50 (= 10 × 5) ms (# 11).

【0019】インバータ20による連系運転を開始した
直後、例えばインバータ回路21の起動から1秒以内の
期間は、インバータ回路21の出力が不安定であって、
インバータ回路21の出力に第3次高調波成分が比較的
に多く含まれることがあるので、この期間は第3次高調
波成分の急増の有無の判定(差分判定)を避け、後の差
分判定の準備として基準値の更新を行う(#12,1
7)。
Immediately after the interconnection operation by the inverter 20 is started, for example, the output of the inverter circuit 21 is unstable for a period of 1 second or less after the start of the inverter circuit 21,
Since the output of the inverter circuit 21 may include a relatively large amount of the third-order harmonic component, during this period, the determination as to whether or not the third-order harmonic component has rapidly increased (difference determination) is avoided, and the subsequent difference determination is performed. The reference value is updated in preparation for (# 12, 1
7).

【0020】すなわち、検出値Vinを取り込む毎に、
新たな基準値Vbaseとして、その時点の基準値Vb
aseと、取り込んだ検出値Vinとの平均値を設定す
る。なお、基準値Vbaseの初期値としては、連系開
始時の初期化処理において、例えば零が設定される。
That is, each time the detected value Vin is fetched,
As a new reference value Vbase, the reference value Vb at that time
The average value of the as and the captured detection value Vin is set. The initial value of the reference value Vbase is set to, for example, zero in the initialization process at the start of interconnection.

【0021】インバータ回路21の起動からの経過時間
が1秒を越えると、その後は検出値Vinを取り込む毎
に差分判定を行う(#13)。差分判定は、単位時間当
たりの変化量ΔVとして、新たに取り込んだ検出値Vi
nと基準値Vbaseとの差を求め、変化量ΔVが所定
の閾値Vthを越えるか否かを調べる処理である。閾値
Vthとしては、例えば商用電力系統2の基準電圧が1
01V(実効値)の場合、連系点での電圧レベルに換算
して0.7〜1V程度の値が選定される。
When the elapsed time from the start-up of the inverter circuit 21 exceeds 1 second, thereafter, the difference judgment is made every time the detection value Vin is fetched (# 13). The difference determination is performed by setting the change amount ΔV per unit time as the newly acquired detection value Vi.
This is a process of obtaining the difference between n and the reference value Vbase, and checking whether or not the amount of change ΔV exceeds a predetermined threshold value Vth. As the threshold value Vth, for example, the reference voltage of the commercial power system 2 is 1
In the case of 01 V (effective value), a value of about 0.7 to 1 V is selected in terms of the voltage level at the interconnection point.

【0022】変化量ΔV(=Vin−Vbase)が閾
値Vthを越えない場合は、次回の差分判定に備えて基
準値Vbaseの更新を行う(#19)。ただし、従来
のように今回の判定対象の検出値Vinをそのまま基準
値Vbaseとして設定するのではなく、次回の差分判
定の基準値Vbaseとして、検出値Vinと現時点の
基準値Vbaseとの荷重平均値を設定する。このと
き、現時点の基準値Vbaseの重み付けを、検出値V
inよりも大きい値(例えば数倍程度)とする。
When the variation ΔV (= Vin-Vbase) does not exceed the threshold value Vth, the reference value Vbase is updated in preparation for the next difference judgment (# 19). However, instead of setting the detection value Vin of the present determination target as the reference value Vbase as it is as in the past, the weighted average value of the detection value Vin and the reference value Vbase at the present time is set as the reference value Vbase of the next difference determination. To set. At this time, the weighting of the reference value Vbase at the present time is set to the detected value Vbase.
The value is larger than in (for example, about several times).

【0023】このように荷重平均値を基準値Vbase
とすることにより、基準値Vbaseが、ノイズの無い
理想状態における第3高調波成分の値に近い値となり、
次回の検出で得られた検出値Vinに対して適正な差分
判定を行うことができる。
In this way, the weighted average value is used as the reference value Vbase.
As a result, the reference value Vbase becomes a value close to the value of the third harmonic component in an ideal state without noise,
Appropriate difference determination can be performed on the detected value Vin obtained in the next detection.

【0024】一方、第3高調波成分が急増し、ステップ
#13の差分判定において変化量ΔVが閾値Vthを越
えた場合には、時限タイマとして設けたダウンカウンタ
による一定時間Tの計時を進める(#14)。すなわち
時限タイマの更新(デクリメント)を行う。
On the other hand, when the third harmonic component rapidly increases and the change amount ΔV exceeds the threshold value Vth in the difference determination in step # 13, the down counter provided as the time limit timer counts the fixed time T (( # 14). That is, the timed timer is updated (decremented).

【0025】ここで、一定時間Tは、例えば0.4sで
あり、第3高調波成分の検出周期である50msより十
分に長く、且つ商用電力系統2の運用で規定されている
受動的停電検出の反応時間(例えば0.5s)より短い
時間である。なお、時限タイマについては、第3高調波
成分の急増がない平常時において、第3高調波成分の検
出毎に初期化が行われる(#18,20)。
Here, the fixed time T is, for example, 0.4 s, which is sufficiently longer than the detection cycle of the third harmonic component of 50 ms, and the passive power failure detection which is defined in the operation of the commercial power system 2 is performed. The reaction time is shorter than the reaction time (for example, 0.5 s). Note that the time limit timer is initialized each time the third harmonic component is detected during normal times when there is no sudden increase in the third harmonic component (# 18, 20).

【0026】一定時間Tの計時中において、CPUは、
第3高調波成分の検出及び差分判定を繰り返し実行する
(#15,11〜14)。その際、変化量ΔVが閾値V
th以下とならない限り、最初に第3高調波成分の急増
を検出した時点の基準値Vbaseを保持する。変化量
ΔVが閾値Vth以下となった場合は、上述のように荷
重平均演算によって基準値Vbaseを更新して時限タ
イマを初期化する。
During counting of the fixed time T, the CPU
The detection of the third harmonic component and the difference determination are repeatedly executed (# 15, 11-14). At that time, the change amount ΔV is equal to the threshold value V
Unless it becomes th or less, the reference value Vbase at the time when the rapid increase of the third harmonic component is first detected is held. When the amount of change ΔV becomes equal to or less than the threshold value Vth, the reference value Vbase is updated by the weighted average calculation as described above, and the timed timer is initialized.

【0027】そして、CPUは、変化量ΔVが閾値Vt
hを越える状態が一定時間Tにわたって連続した場合、
つまり、同一の基準値Vbaseに基づく連続した複数
回の差分判定で同様の結果が得られた場合に、系統停電
に起因する第3高調波成分の急増を示す単独運転検出フ
ラグをセットする(#16)。
Then, the CPU determines that the change amount ΔV is the threshold value Vt.
When the state of exceeding h continues for a certain time T,
In other words, when the same result is obtained by consecutively performing the difference determinations based on the same reference value Vbase, the islanding operation detection flag indicating the rapid increase of the third harmonic component due to the system power failure is set (# 16).

【0028】以上の単独運転検出処理において単独運転
検出フラグがセットされると、CPUが実行する他のサ
ブルーチンである出力処理において、単独運転状態を検
出したことを示す単独運転検出信号SDが、マイクロコ
ンピュータ45の出力ポートから開閉装置30へ出力さ
れる。
When the islanding operation detection flag is set in the above islanding operation detection process, the islanding operation detection signal SD indicating that the islanding operation state is detected in the output process which is another sub-routine executed by the CPU is It is output from the output port of the computer 45 to the switching device 30.

【0029】開閉装置30は、単独運転検出信号SDに
呼応して作動し、インバータ20と商用電力系統2との
連系を解除する。これにより太陽光発電システム1が商
用電力系統2から解列される。
The switchgear 30 operates in response to the islanding operation detection signal SD to release the interconnection between the inverter 20 and the commercial power system 2. As a result, the solar power generation system 1 is disconnected from the commercial power system 2.

【0030】上述の実施例によれば、一定時間Tにわた
って第3高調波成分の高レベル状態が持続したときに、
単独運転検出信号SDを出力するようにしたので、1回
の第3高調波成分の急増に呼応して単独運転検出信号S
Dを出力する場合に比べて、検出の信頼性を高めること
ができる。
According to the above-mentioned embodiment, when the high level state of the third harmonic component continues for a certain time T,
Since the islanding operation detection signal SD is output, the islanding operation detection signal S is generated in response to one sudden increase in the third harmonic component.
The reliability of detection can be improved as compared with the case of outputting D.

【0031】上述の実施例において、荷重平均の重み付
けは、ノイズの発生状況などに応じて最適化することが
できる。また、単独運転検出装置40の回路構成、及び
単独運転検出処理の内容については、種々の変更が可能
である。
In the above embodiment, the weighting of the weighted average can be optimized in accordance with the noise occurrence situation. Further, various changes can be made to the circuit configuration of the islanding operation detection device 40 and the content of the islanding operation detection process.

【0032】なお、本発明は、燃料電池などの太陽電池
以外の直流電源を備えた分散電源設備の単独運転検出に
も適用することができる。
The present invention can also be applied to detection of isolated operation of a distributed power supply facility equipped with a DC power supply other than a solar cell such as a fuel cell.

【0033】[0033]

【発明の効果】本発明によれば、ノイズの影響を軽減す
ることができ、高精度の検出を実現することができる。
According to the present invention, the influence of noise can be reduced, and highly accurate detection can be realized.

【0034】請求項3の発明によれば、より確実な単独
運転検出を実現することができる。
According to the third aspect of the present invention, more reliable isolated operation detection can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した単独運転検出装置を有する太
陽光発電システムのブロック図である。
FIG. 1 is a block diagram of a photovoltaic power generation system having an islanding operation detection device to which the present invention is applied.

【図2】単独運転検出処理のフローチャートである。FIG. 2 is a flowchart of islanding operation detection processing.

【図3】本発明に係る差分判定の基準値の推移の一例を
示す図である。
FIG. 3 is a diagram showing an example of transition of a reference value for difference determination according to the present invention.

【図4】従来の検出方法を示す図である。FIG. 4 is a diagram showing a conventional detection method.

【符号の説明】[Explanation of symbols]

2 商用電力系統 20 インバータ V 連系点の電圧 Vin 検出値 Vbase 基準値 ΔV 変化量(差) Vth 閾値 SD 単独運転検出信号(検出信号) 2 Commercial power system 20 Inverter V Voltage at interconnection point Vin Detected value Vbase Reference value ΔV Change amount (difference) Vth threshold SD Independent operation detection signal (detection signal)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02J 7/35 K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area H02J 7/35 K

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一定の周期で、インバータと商用電力系統
との連系点における電圧の第3高調波成分を検出すると
ともに、その検出値と基準値との差を求めて閾値と比較
する差分判定を行うことにより、前記第3高調波成分の
急増を検出する単独運転検出方法であって、 各回の差分判定において前記検出値と基準値との差が前
記閾値を越えない場合には、次回の差分判定の基準値と
して前記検出値と現時点の基準値との荷重平均値を設定
することを特徴とする単独運転検出方法。
1. A difference for detecting a third harmonic component of a voltage at a connection point between an inverter and a commercial power system at a constant cycle, obtaining a difference between the detected value and a reference value, and comparing the difference with a threshold value. A method for detecting an isolated operation in which a rapid increase in the third harmonic component is detected by making a determination, and when the difference between the detected value and the reference value does not exceed the threshold value in each difference determination, Is set as a reference value for the difference judgment of the above-mentioned detection value and a reference value at the present time.
【請求項2】前記荷重平均値の設定に際して、前記現時
点の基準値の重み付けを、前記検出値の重み付けよりも
大きくすることを特徴とする請求項1記載の単独運転検
出方法。
2. The islanding operation detection method according to claim 1, wherein, when setting the weighted average value, the weighting of the reference value at the present time is made larger than the weighting of the detection value.
【請求項3】前記検出値と基準値との差が前記閾値を越
えた場合には、前記現時点の基準値を保持した状態で、
前記第3高調波成分の検出及びその後の差分判定を行
い、一定時間にわたって検出値と基準値との差が連続し
て前記閾値を越えたときに、前記第3高調波成分の急増
を示す検出信号を発することを特徴とする請求項1又は
請求項2記載の単独運転検出方法。
3. When the difference between the detected value and the reference value exceeds the threshold value, the reference value at the present time is held,
The detection of the third harmonic component and the subsequent difference determination are performed, and when the difference between the detected value and the reference value continuously exceeds the threshold value for a certain period of time, the detection indicating the rapid increase of the third harmonic component is detected. The islanding operation detection method according to claim 1 or 2, wherein a signal is emitted.
JP29617393A 1993-11-26 1993-11-26 Islanding detection method for distributed power supply equipment Expired - Fee Related JP3448325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29617393A JP3448325B2 (en) 1993-11-26 1993-11-26 Islanding detection method for distributed power supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29617393A JP3448325B2 (en) 1993-11-26 1993-11-26 Islanding detection method for distributed power supply equipment

Publications (2)

Publication Number Publication Date
JPH07154920A true JPH07154920A (en) 1995-06-16
JP3448325B2 JP3448325B2 (en) 2003-09-22

Family

ID=17830110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29617393A Expired - Fee Related JP3448325B2 (en) 1993-11-26 1993-11-26 Islanding detection method for distributed power supply equipment

Country Status (1)

Country Link
JP (1) JP3448325B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035619A (en) * 2006-07-28 2008-02-14 Omron Corp Determination method for individual operation of dispersed power system
JP2010038787A (en) * 2008-08-06 2010-02-18 Midori Anzen Co Ltd Insulation monitoring device
JP2010074943A (en) * 2008-09-18 2010-04-02 Kansai Electric Power Co Inc:The Method and device for detecting individual operation
CN102130467A (en) * 2010-01-19 2011-07-20 通用电气公司 Open circuit voltage protection system and method
JP2014117016A (en) * 2012-12-06 2014-06-26 Panasonic Corp Single operation detection device and method, power conditioner and distributed power source system
JP2015061417A (en) * 2013-09-19 2015-03-30 積水化学工業株式会社 Energy management system
JP2019193318A (en) * 2018-04-18 2019-10-31 新電元工業株式会社 Harmonic measuring apparatus and individual operation detecting method using the same, individual operation detecting apparatus and distributed power supply system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035619A (en) * 2006-07-28 2008-02-14 Omron Corp Determination method for individual operation of dispersed power system
JP2010038787A (en) * 2008-08-06 2010-02-18 Midori Anzen Co Ltd Insulation monitoring device
JP2010074943A (en) * 2008-09-18 2010-04-02 Kansai Electric Power Co Inc:The Method and device for detecting individual operation
CN102130467A (en) * 2010-01-19 2011-07-20 通用电气公司 Open circuit voltage protection system and method
JP2014117016A (en) * 2012-12-06 2014-06-26 Panasonic Corp Single operation detection device and method, power conditioner and distributed power source system
JP2015061417A (en) * 2013-09-19 2015-03-30 積水化学工業株式会社 Energy management system
JP2019193318A (en) * 2018-04-18 2019-10-31 新電元工業株式会社 Harmonic measuring apparatus and individual operation detecting method using the same, individual operation detecting apparatus and distributed power supply system

Also Published As

Publication number Publication date
JP3448325B2 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
EP2457313B1 (en) Method and apparatus for detection and control of dc arc faults
US5229651A (en) Method and apparatus for line power monitoring for uninterruptible power supplies
JPH07154920A (en) Method of detecting single operation
JP3108282B2 (en) Islanding detection device
EP1359654B1 (en) Electronic fault detector for variable frequency ac systems and circuit breaker incorporating same
CN110703124B (en) Method for detecting and protecting three-phase power supply and load phase loss
JPH05343722A (en) Short-circuit detector for solar battery
JP3432882B2 (en) Islanding detection method
JP3022152B2 (en) Islanding detection method
JPH07322506A (en) Detection operation of single operation
JP3519760B2 (en) Islanding detection device
JP2940777B2 (en) Grid connection system and its disconnection control method
JP3180991B2 (en) Grid connection protection device
JP2001320835A (en) System interconnection inverter unit, system interconnection power system, photovoltaic power generation system and method for detecting service interruption of system
JPH02272365A (en) Phase detecting circuit for switching device control apparatus
CN110380446A (en) A kind of power grid disconnection detection method of photovoltaic combining inverter
JPH04178109A (en) Eatrh leakage breaker
JPH0888978A (en) Method of detecting single operation of distributed power supply system
JP2001320834A (en) System interconnection inverter unit, system interconnection power system, photovoltaic power generation system and method for detecting service interruption of system
AU2021102969A4 (en) Rate of change of ‘d’ and frequency component-based adaptive protection for detection of series-shunt faults for low X/R distributed generators
JP2000236623A (en) Overvoltage-detecting device
JP7402718B2 (en) Islanding detection device, islanding detection method, and power conditioner equipped with islanding detection device
JP3319906B2 (en) Circuit breaker with open phase protection
US20220334151A1 (en) Open-phase detection circuit and power conversion apparatus
JPH07308025A (en) Method and system for protecting linkage operation of distributed power supply and power system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees