JPH05343722A - Short-circuit detector for solar battery - Google Patents
Short-circuit detector for solar batteryInfo
- Publication number
- JPH05343722A JPH05343722A JP4145522A JP14552292A JPH05343722A JP H05343722 A JPH05343722 A JP H05343722A JP 4145522 A JP4145522 A JP 4145522A JP 14552292 A JP14552292 A JP 14552292A JP H05343722 A JPH05343722 A JP H05343722A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- short
- voltage
- output
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/18—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to reversal of direct current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/24—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to undervoltage or no-voltage
- H02H3/243—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to undervoltage or no-voltage for DC systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/20—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
- Protection Of Static Devices (AREA)
- Direct Current Feeding And Distribution (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、太陽電池の発電電力に
より負荷を運転するシステムの短絡検出装置に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a short-circuit detecting device for a system that operates a load by the electric power generated by a solar cell.
【0002】[0002]
【従来の技術】従来、太陽電池を電源として負荷を運転
する太陽光発電システムにおいては、太陽電池出力の短
絡検出に、配電用遮断器,サーキットプロテクタ等を利
用し、この配電用遮断器,サーキットプロテクタ等の持
つ過電流保護機能により短絡電流を検出するか、あるい
はトリップコイル付きの遮断器に不足電圧引き外し装置
を組合せて、短絡で生じる電圧低下を検出することによ
り短絡状態を検出し、遮断器により回路を遮断して保護
していた。2. Description of the Related Art Conventionally, in a photovoltaic power generation system in which a solar cell is used as a power source to drive a load, a distribution breaker, a circuit protector, etc. are used to detect a short circuit in the output of the solar cell. The short-circuit current is detected by the overcurrent protection function of the protector, or the short-circuit condition is detected and cut off by detecting the voltage drop caused by the short-circuit by combining the circuit breaker with trip coil with the undervoltage trip device. The circuit was cut off and protected by a container.
【0003】[0003]
【発明が解決しようとする課題】ところが、太陽電池が
有する後述の特殊な発電特性のため、上記の従来技術で
は、以下のようなことが生じることがあった。However, due to the special power generation characteristics of the solar cell, which will be described later, the following problems may occur in the above-mentioned prior art.
【0004】たとえば、負荷に入力された太陽電池出力
が、負荷の主回路入力部において、負荷電流を制御する
パワーMOSFETのゲート酸化膜破壊によるソースと
ドレインの導通によって、太陽電池出力短絡が生じて
も、配電用遮断器の過電流保護機能による電流値検出で
は、太陽電池出力短絡検出および回路の遮断を良好に行
なうことはできなかった。For example, the output of a solar cell input to a load causes a short circuit in the output of the solar cell due to conduction of a source and a drain in a main circuit input portion of the load due to destruction of a gate oxide film of a power MOSFET that controls a load current. However, with the current value detection by the overcurrent protection function of the circuit breaker for distribution, the solar cell output short circuit detection and the circuit interruption could not be performed well.
【0005】これは、図4に示した太陽電池の電圧−電
流特性からわかるように、太陽電池短絡電流Is c は、
太陽電池最適動作電流Io p の約1.1〜1.2倍しか
なく、電源に系統電源や化学電池を用いたときの負荷短
絡のように、通常の負荷電流の何倍もの極端な大電流が
流れることはないこと、および短絡時の日射が少ない場
合の短絡電流Is c は、短絡していないときで日射の多
い場合の動作電流Io p より少ないことによる。As can be seen from the voltage-current characteristics of the solar cell shown in FIG. 4, this is because the solar cell short-circuit current I sc is
It is only about 1.1 to 1.2 times the optimum operating current I op of the solar cell, and is an extremely large current that is many times the normal load current, such as a load short circuit when a system power source or a chemical battery is used as the power source. it does not flow, and the short-circuit current I sc when less solar radiation during a short circuit is by less than the operating current I o p of when large sunlight when not short-circuited.
【0006】また、遮断器に不足電圧引き外し装置を組
合せて、太陽電池の出力短絡における電圧低下を検出し
て遮断する方法では、日照時間内での運転には有効であ
るが、1日中システムを稼動した場合、日没により太陽
電池の発電量が低下して、それに伴う出力電圧の低下で
誤検出し、遮断器がトリップするので、1日中太陽電池
を負荷と接続しておくシステムにおいては適していなか
った。Further, a method of combining an undervoltage trip device with a circuit breaker to detect a voltage drop due to a short circuit of an output of a solar cell and to cut off the voltage is effective for operation within the sunshine hours, but When the system is operated, the amount of power generated by the solar cell will drop due to sunset, and the output voltage will drop, resulting in false detection and tripping of the circuit breaker. A system that keeps the solar cell connected to the load all day long. Was not suitable for.
【0007】本発明の目的は、以上のような問題点を解
決するために、誤検出をなくして確実な短絡状態を検出
することにある。An object of the present invention is to eliminate erroneous detection and detect a reliable short-circuit state in order to solve the above problems.
【0008】[0008]
【課題を解決するための手段】本発明の太陽電池短絡検
出装置においては、太陽電池と負荷との間に、トリップ
コイルを有する遮断器と、電圧値検出手段と、電流値検
出手段と、短絡状態判定部とを設け、この短絡状態判定
部には、検出された電圧値と基準電圧とを比較する比較
器と、検出された電流値と基準電圧とを比較する比較器
と、これらの比較器の出力より短絡状態を決定する論理
回路とを設けた。In a solar cell short-circuit detecting device of the present invention, a circuit breaker having a trip coil, a voltage value detecting means, a current value detecting means, and a short circuit are provided between a solar cell and a load. A state determination unit is provided, and in the short-circuit state determination unit, a comparator that compares the detected voltage value with the reference voltage, a comparator that compares the detected current value with the reference voltage, and a comparison between them. And a logic circuit for determining a short circuit state from the output of the container.
【0009】[0009]
【作用】太陽電池の短絡状態検出は以下のように行なわ
れる。電流値検出手段により検出した電流値に対応する
電圧値と所定の基準電圧とを、短絡状態判定部の比較器
により比較する。そして上記検出電圧がその基準電圧よ
り大きいときに第1の検出信号を出力する。一方、電圧
値検出手段の検出電圧と所定の基準電圧を短絡状態判定
部の比較器により比較する。そして、電圧値検出手段の
検出電圧と所定の基準電圧とを比較して、検出電圧がそ
の基準電圧より小さいとき第2の検出信号を出力する。
上記2つの比較器の出力端から第1および第2の検出信
号が同時に出力するとき、短絡状態判定部の論理回路に
おいて短絡状態と判断して、短絡検出信号を出力しトリ
ップコイルによって遮断器を動作させる。The function of detecting the short circuit state of the solar cell is carried out as follows. The voltage value corresponding to the current value detected by the current value detection means and a predetermined reference voltage are compared by the comparator of the short-circuit state determination unit. Then, the first detection signal is output when the detection voltage is higher than the reference voltage. On the other hand, the detection voltage of the voltage value detecting means and a predetermined reference voltage are compared by the comparator of the short-circuit state judging unit. Then, the detection voltage of the voltage value detecting means is compared with a predetermined reference voltage, and when the detection voltage is smaller than the reference voltage, the second detection signal is output.
When the first and second detection signals are simultaneously output from the output terminals of the two comparators, the logic circuit of the short-circuit state determination unit determines that the circuit is short-circuited, outputs the short-circuit detection signal, and trips the circuit breaker. To operate.
【0010】[0010]
【実施例】図1は、本発明の一実施例のブロック図であ
る。FIG. 1 is a block diagram of an embodiment of the present invention.
【0011】太陽電池1と負荷2との間に直列に、短絡
検出信号を受けてトリップするトリップコイル4aを有
する遮断器4を接続し、電圧値検出手段5を電源に並列
に挿入し、電流値検出手段6を直列に挿入する。電圧値
検出手段5と電流値検出手段6で検出した信号は、短絡
状態判定部7により短絡状態を判断し、短絡状態であれ
ば短絡状態判定部7より短絡検出信号を出力し、遮断器
4をトリップする。A circuit breaker 4 having a trip coil 4a that trips when a short-circuit detection signal is received is connected in series between the solar cell 1 and the load 2, and a voltage value detecting means 5 is inserted in parallel with a power source to generate a current. The value detecting means 6 is inserted in series. The signals detected by the voltage value detecting means 5 and the current value detecting means 6 determine the short-circuit state by the short-circuit state judging section 7, and if the signal is in the short-circuit state, the short-circuit state judging section 7 outputs the short-circuit detection signal to the circuit breaker 4. To trip.
【0012】図2は、図1のさらに詳細な回路図の一例
である。FIG. 2 is an example of a more detailed circuit diagram of FIG.
【0013】太陽電池1の出力電圧は抵抗9で分圧によ
り検出し、太陽電池出力電流はホールカレントセンサ1
0により電圧値として検出する。The output voltage of the solar cell 1 is detected by the resistor 9 by voltage division, and the solar cell output current is detected by the hall current sensor 1.
A value of 0 is detected as a voltage value.
【0014】短絡状態判定部7は、比較器3aおよび3
b,基準電圧8aおよび8b,これらの出力のアンド回
路11等により構成される。The short-circuit state judging section 7 includes comparators 3a and 3a.
b, reference voltages 8a and 8b, and an AND circuit 11 for these outputs.
【0015】太陽電池出力電圧から検出した電圧値は、
比較器3aのマイナス入力端子に入力され、また比較器
3aのプラス入力端子には基準電圧8aが入力されて比
較される。ここで基準電圧8aより電圧値の検出電圧が
低下した場合、すなわち短絡か日射の低下による発電電
力の低下により、太陽電池出力電圧が低下した場合、比
較器3aの出力がH(High)となる。The voltage value detected from the solar cell output voltage is
It is input to the negative input terminal of the comparator 3a, and the reference voltage 8a is input to the positive input terminal of the comparator 3a for comparison. Here, when the detected voltage of the voltage value is lower than the reference voltage 8a, that is, when the solar cell output voltage is reduced due to a decrease in generated power due to a short circuit or a decrease in solar radiation, the output of the comparator 3a becomes H (High). ..
【0016】一方、太陽電池出力電流の検出電圧値は、
ホールカレントセンサ10より比較器3bのプラス入力
端子に入力され、またそのマイナス入力端子には基準電
圧8bを入力する。そして基準電圧8bより電流検出電
圧が高くなった場合、すなわち短絡時か、日射量の増加
により出力電流が多くなったときに、比較器3aの出力
がH(High)となる。On the other hand, the detected voltage value of the solar cell output current is
The Hall current sensor 10 inputs the positive input terminal of the comparator 3b, and the negative input terminal thereof receives the reference voltage 8b. When the current detection voltage becomes higher than the reference voltage 8b, that is, at the time of short circuit or when the output current increases due to an increase in the amount of solar radiation, the output of the comparator 3a becomes H (High).
【0017】そして、前記2つの比較器3a,3bの出
力信号をアンド回路11に入力し、論理積により同時に
H電圧が出力したときに短絡と判断して、アンド回路1
1の出力より短絡検出信号を出してトリップ回路4aで
遮断器4を動作させ、回路を遮断する。Then, the output signals of the two comparators 3a and 3b are input to the AND circuit 11, and when the H voltage is simultaneously output by the logical product, it is judged to be a short circuit, and the AND circuit 1
The short circuit detection signal is output from the output of 1 to operate the circuit breaker 4 by the trip circuit 4a to break the circuit.
【0018】下記の表1は、システムの状態と各部の出
力との関係を示す表である。Table 1 below is a table showing the relationship between the state of the system and the output of each section.
【0019】[0019]
【表1】 [Table 1]
【0020】太陽電池の動作を図4の電圧−電流特性図
で説明すると、負荷2が太陽電池1の最適動作点付近で
運転されていた(状態1)として、何らかの原因で短絡
した場合(状態3)、日射量が同じならば、太陽電池1
の短絡時の電流は0ボルトあるいは0ボルト近くまで低
下し、電流は短絡前の電流値より増加したIs c という
電流が流れる。そして、表1状態3のように、比較器3
aと比較器3bがともに出力Hになり、アンド回路11
は短絡検出信号Hを出力して、遮断器4をトリップす
る。遮断器4が開くと太陽電池の動作点はVo c の点に
移動する(状態4)。The operation of the solar cell will be described with reference to the voltage-current characteristic diagram of FIG. 4. If the load 2 is operated near the optimum operating point of the solar cell 1 (state 1), and if a short circuit occurs for some reason (state 3) If the amount of solar radiation is the same, solar cell 1
The current at the time of the short circuit of 0 decreases to or near 0 volt, and the current I sc that is increased from the current value before the short circuit flows. Then, as shown in state 3 in Table 1, the comparator 3
a and the comparator 3b both become output H, and the AND circuit 11
Outputs the short circuit detection signal H and trips the circuit breaker 4. When the circuit breaker 4 opens, the operating point of the solar cell moves to the point of V oc (state 4).
【0021】図3(a)〜(e)は、本発明による太陽
電池短絡検出装置を設けた太陽光発電システムにおい
て、予想される各状態の各部の電圧と比較器3aおよび
3bならびにアンド回路11の出力との関係を示すグラ
フである。3 (a) to 3 (e) show the expected voltage of each part in each state, the comparators 3a and 3b, and the AND circuit 11 in the solar power generation system provided with the solar cell short-circuit detecting device according to the present invention. 3 is a graph showing the relationship with the output of FIG.
【0022】図3(a)は、1日中システムを運転した
ときと、短絡が発生したときの太陽電池出力電流値から
の検出電圧と基準電圧8bの関係を示し、図3(b)
は、図3(a)の入力時の比較器3b出力を示す。FIG. 3A shows the relationship between the detected voltage from the solar cell output current value and the reference voltage 8b when the system is operated all day and when a short circuit occurs, and FIG.
Shows the output of the comparator 3b at the time of input of FIG.
【0023】図3(c)は、同様に太陽電池出力電圧の
検出電圧と基準電圧8aとの関係を示し、図3(d)
は、図3(c)の入力時の比較器3a出力を示す。Similarly, FIG. 3C shows the relationship between the detected voltage of the solar cell output voltage and the reference voltage 8a, and FIG.
Shows the output of the comparator 3a at the time of input in FIG.
【0024】図3(e)は、図3(b)および図3
(d)の2つの比較器出力により短絡状態を検出するア
ンド回路11の出力を示している。FIG. 3 (e) is shown in FIG. 3 (b) and FIG.
The output of the AND circuit 11 which detects a short-circuit state by the two comparator outputs of (d) is shown.
【0025】以下に図3(a)〜(e)により、表1を
参照して詳細な説明を行なう。A detailed description will be given below with reference to Table 1 with reference to FIGS.
【0026】図3(a)〜(e)のA点では、日射があ
る昼間で通常運転している状態である。太陽電池の出力
電流より検出した検出電圧値は、図3(a)のとおり基
準電圧8bより高く、図3(b)のように比較器3bよ
りH電圧の出力信号を出力している。このとき、太陽電
池出力電圧の検出電圧値も日射により、図3(c)のA
点の電圧があり基準電圧8aより高く、また比較器3a
の入力端子の符号が上記の太陽電池出力電流の比較器3
bと逆のため、図3(d)のように比較器3aはL電圧
を出力するので、図3(e)のようにアンド回路11
は、短絡状態でない電圧値Lを出力する(表1状態
1)。At point A in FIGS. 3 (a) to 3 (e), normal operation is performed during the day when there is solar radiation. The detected voltage value detected from the output current of the solar cell is higher than the reference voltage 8b as shown in FIG. 3 (a), and the comparator 3b outputs an H voltage output signal as shown in FIG. 3 (b). At this time, the detected voltage value of the solar cell output voltage is also changed to A in FIG.
There is a voltage at a point and is higher than the reference voltage 8a, and the comparator 3a
The sign of the input terminal of is the comparator 3 of the above solar cell output current
Since it is the reverse of b, the comparator 3a outputs the L voltage as shown in FIG. 3 (d), and therefore the AND circuit 11a is provided as shown in FIG. 3 (e).
Outputs a voltage value L that is not in a short circuit state (state 1 in Table 1).
【0027】図3(a)〜(e)のB点では、日没前に
なり日射が低下してくる。太陽電池出力電流の検出電圧
値は基準電圧8bより低くなり、図3(b)のようにB
点の比較器3b出力は電圧Lになる。一方図3(c)の
ように、太陽電池出力電圧のB点における検出電圧値も
同様に低下し、基準電圧8aより低くなり、図3(d)
のように比較器3aのB点と出力はH電圧になる。図3
(e)に示すようにアンド回路11のB点の出力電圧値
は、論理積のためL電圧のままとなる(表1状態2)。At points B in FIGS. 3 (a) to 3 (e), the solar radiation decreases before the sunset. The detected voltage value of the solar cell output current becomes lower than the reference voltage 8b, and as shown in FIG.
The output of the comparator 3b at the point becomes the voltage L. On the other hand, as shown in FIG. 3 (c), the detected voltage value at the point B of the solar cell output voltage similarly decreases and becomes lower than the reference voltage 8a.
As described above, the point B and the output of the comparator 3a become the H voltage. Figure 3
As shown in (e), the output voltage value at the point B of the AND circuit 11 remains the L voltage due to the logical product (state 2 in Table 1).
【0028】図3(a)〜(e)のC点では、運転中の
ある時点で短絡が発生した状態であり、その時点での日
射量に応じた短絡電流Is c が流れたとき、図3(a)
のC点に示す検出電圧が発生するが、短絡発生以前より
基準電圧8bは検出電圧より低いので、図3(b)に示
すように比較器3bのC点の出力は電圧Hの出力のまま
である。一方、太陽電池出力電圧は短絡により負荷イン
ピーダンスが線路抵抗だけとなり、動作点移動で0ボル
トあるいは0ボルト付近まで電圧降下するため、図3
(c)に示すようにC点の検出電圧値は基準電圧8aよ
り低くなり、図3(d)のように比較器3aの出力は短
絡発生以前のLからHの電圧を出力するようになり、図
3(e)に示すようにアンド回路11の検出出力も、比
較器3aの出力電圧Hと比較器3bの出力電圧Hにより
論理積をとり、短絡状態を検出したH電圧の短絡検出信
号をトリップコイル4aに出力し、遮断器4を遮断する
(表1状態3)。At points C in FIGS. 3A to 3E, a short circuit occurs at a certain point during operation, and when the short circuit current I sc according to the amount of solar radiation at that point flows, 3 (a)
However, the reference voltage 8b is lower than the detection voltage before the occurrence of the short circuit, the output of the comparator 3b at the point C remains the output of the voltage H, as shown in FIG. 3 (b). Is. On the other hand, the output voltage of the solar cell becomes a line resistance due to a short circuit, and the voltage drops to 0 volt or near 0 volt when the operating point moves.
As shown in (c), the detected voltage value at the point C becomes lower than the reference voltage 8a, and the output of the comparator 3a outputs the voltage from L to H before the occurrence of the short circuit as shown in FIG. 3 (d). As shown in FIG. 3 (e), the detection output of the AND circuit 11 is also ANDed by the output voltage H of the comparator 3a and the output voltage H of the comparator 3b to detect a short circuit state. Is output to the trip coil 4a to shut off the circuit breaker 4 (state 3 in Table 1).
【0029】図3(a)〜(e)のD点は、短絡検出後
を示す。検出後、遮断器4の遮断により太陽電池出力電
流は流れないので、検出電圧値は図3(a)D点のよう
に0ボルトになり、基準電圧8bより低いため、図3
(b)に示すように比較器3bの出力はL電圧になる。
そして、太陽電池出力電圧も遮断により電圧がかからな
いから、検出電圧は図3(c)に示すように0ボルトで
基準電圧8aより低くなり、図3(d)に示すように比
較器3aよりH電圧を出力する。D点ではC点での短絡
状態検出による遮断器4の遮断で短絡状態を脱したの
で、図3(e)に示すように、アンド回路11の短絡検
出信号はHからL電圧の出力に戻る(表1状態4)。Point D in FIGS. 3 (a) to 3 (e) shows the state after the short circuit is detected. After the detection, since the solar cell output current does not flow due to the interruption of the circuit breaker 4, the detected voltage value becomes 0 V as shown at point D in FIG. 3 (a), which is lower than the reference voltage 8b.
As shown in (b), the output of the comparator 3b becomes the L voltage.
Since the solar cell output voltage is not applied due to the cutoff, the detected voltage is lower than the reference voltage 8a at 0 volt as shown in FIG. 3 (c), and is higher than the reference voltage 8a by the comparator 3a as shown in FIG. 3 (d). Output voltage. At the point D, the short-circuit state is released by shutting off the circuit breaker 4 by detecting the short-circuit state at the point C. Therefore, as shown in FIG. 3E, the short-circuit detection signal of the AND circuit 11 returns from H to the output of the L voltage. (Table 1, state 4).
【0030】以上説明したように、太陽電池の出力電流
と出力電圧の2つの検出値により短絡状態を判断するこ
とができる。As described above, the short-circuit state can be determined by the two detection values of the output current and the output voltage of the solar cell.
【0031】[0031]
【発明の効果】本発明によれば、日射のないときでも遮
断器を開けることなしにシステムを運転できるととも
に、システム運転時の短絡状態の不検出を防ぎ、確実な
検出による信頼性の高い太陽光発電システムを提供でき
る。According to the present invention, the system can be operated without opening the circuit breaker even when there is no solar radiation, the non-detection of the short-circuit state can be prevented during the system operation, and the reliable detection of the sun can be ensured. A photovoltaic system can be provided.
【図1】本発明の一実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.
【図2】図1のより詳細な回路図の一例である。FIG. 2 is an example of a more detailed circuit diagram of FIG.
【図3】(a)〜(e)は、それぞれ予想される各状態
の各部の電圧と比較器3aおよび3bならびにアンド回
路11の出力との関係を示すグラフである。3 (a) to 3 (e) are graphs showing the relationship between the expected voltage of each part in each state and the outputs of the comparators 3a and 3b and the AND circuit 11. FIG.
【図4】太陽電池の動作電圧−出力電流特性図である。FIG. 4 is an operating voltage-output current characteristic diagram of a solar cell.
1 太陽電池 2 負荷 3a,3b 比較器 4 遮断器 4a トリップコイル 5 電圧値検出手段 6 電流値検出手段 7 短絡状態判定部 10 ホールカレントセンサ 11 アンド回路 DESCRIPTION OF SYMBOLS 1 Solar cell 2 Loads 3a, 3b Comparator 4 Circuit breaker 4a Trip coil 5 Voltage value detection means 6 Current value detection means 7 Short-circuit state determination part 10 Hall current sensor 11 AND circuit
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H02J 1/00 309 J 7373−5G (72)発明者 竹林 司 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 中田 浩史 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location H02J 1/00 309 J 7373-5G (72) Inventor Tsukasa Takebayashi 22 No. 22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka No. 22 Inside Sharp Corporation (72) Inventor Hiroshi Nakata 22-22 Nagaike-cho, Abeno-ku, Osaka City, Osaka Prefecture Inside Sharp Corporation
Claims (1)
リップコイルを有する遮断器と、電圧値検出手段と、電
流値検出手段と、短絡状態判定部とを有し、短絡状態判
定部は、検出された電圧値を基準電圧と比較する比較器
と、検出された電流値を基準電圧と比較する比較器と、
これらの比較器の出力より短絡状態を決定する論理回路
とを備えていることを特徴とする太陽電池の短絡検出装
置。1. A short circuit state determination unit having a circuit breaker having a trip coil, connected between a solar cell and a load, a voltage value detection unit, a current value detection unit, and a short circuit state determination unit. Is a comparator for comparing the detected voltage value with a reference voltage, a comparator for comparing the detected current value with a reference voltage,
A short circuit detection device for a solar cell, comprising: a logic circuit which determines a short circuit state from outputs of these comparators.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4145522A JPH05343722A (en) | 1992-06-05 | 1992-06-05 | Short-circuit detector for solar battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4145522A JPH05343722A (en) | 1992-06-05 | 1992-06-05 | Short-circuit detector for solar battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05343722A true JPH05343722A (en) | 1993-12-24 |
Family
ID=15387175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4145522A Withdrawn JPH05343722A (en) | 1992-06-05 | 1992-06-05 | Short-circuit detector for solar battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05343722A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5669987A (en) * | 1994-04-13 | 1997-09-23 | Canon Kabushiki Kaisha | Abnormality detection method, abnormality detection apparatus, and solar cell power generating system using the same |
JP2010519748A (en) * | 2007-02-20 | 2010-06-03 | コミツサリア タ レネルジー アトミーク | Voltage limiter and photovoltaic module protection |
WO2012031428A1 (en) * | 2010-09-08 | 2012-03-15 | Chen Wenliang | Photovoltaic module capable of being electrically isolated and electrical isolation method thereof |
CN103701094A (en) * | 2012-10-09 | 2014-04-02 | 中电电气(南京)太阳能研究院有限公司 | Photovoltaic fire-proof and dust-proof method and device |
CN103701093A (en) * | 2012-10-09 | 2014-04-02 | 中电电气(南京)太阳能研究院有限公司 | Photovoltaic fire-proof circuit breaker and photovoltaic circuit breaking method |
EP2626712A4 (en) * | 2010-10-07 | 2017-02-22 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Failure detecting apparatus |
US9746528B2 (en) | 2011-07-04 | 2017-08-29 | Commissariat à l'énergie atomique et aux énergies alternatives | Detection of electrical arcs in photovoltaic equipment |
US9843288B2 (en) | 2013-08-29 | 2017-12-12 | Commissariat à l'énergie atomique et aux énergies alternatives | Parallel electric arc detection across the main terminals of a photovoltaic installation |
US10432139B2 (en) | 2013-08-29 | 2019-10-01 | Commissariat à l'énergie atomique et aux énergies alternatives | Electric arc detection in photovoltaic installations |
-
1992
- 1992-06-05 JP JP4145522A patent/JPH05343722A/en not_active Withdrawn
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5669987A (en) * | 1994-04-13 | 1997-09-23 | Canon Kabushiki Kaisha | Abnormality detection method, abnormality detection apparatus, and solar cell power generating system using the same |
US6278052B1 (en) | 1994-04-13 | 2001-08-21 | Canon Kabushiki Kaisha | Abnormality detection method, abnormality detection apparatus and solar cell power generating system using the same |
JP2010519748A (en) * | 2007-02-20 | 2010-06-03 | コミツサリア タ レネルジー アトミーク | Voltage limiter and photovoltaic module protection |
US8570017B2 (en) | 2007-02-20 | 2013-10-29 | Commissariat A L'energie Atomique | Voltage limiter and protection of a photovoltaic module |
EP2122432B1 (en) | 2007-02-20 | 2015-09-09 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Voltage limiter and protection for a photovoltaic module |
WO2012031428A1 (en) * | 2010-09-08 | 2012-03-15 | Chen Wenliang | Photovoltaic module capable of being electrically isolated and electrical isolation method thereof |
EP2626712A4 (en) * | 2010-10-07 | 2017-02-22 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Failure detecting apparatus |
US9746528B2 (en) | 2011-07-04 | 2017-08-29 | Commissariat à l'énergie atomique et aux énergies alternatives | Detection of electrical arcs in photovoltaic equipment |
CN103701094A (en) * | 2012-10-09 | 2014-04-02 | 中电电气(南京)太阳能研究院有限公司 | Photovoltaic fire-proof and dust-proof method and device |
CN103701093A (en) * | 2012-10-09 | 2014-04-02 | 中电电气(南京)太阳能研究院有限公司 | Photovoltaic fire-proof circuit breaker and photovoltaic circuit breaking method |
US9843288B2 (en) | 2013-08-29 | 2017-12-12 | Commissariat à l'énergie atomique et aux énergies alternatives | Parallel electric arc detection across the main terminals of a photovoltaic installation |
US10432139B2 (en) | 2013-08-29 | 2019-10-01 | Commissariat à l'énergie atomique et aux énergies alternatives | Electric arc detection in photovoltaic installations |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0884817B1 (en) | Ground fault protecting apparatus and method for solar power generation and solar power generation apparatus using the apparatus and method | |
CN100434924C (en) | Overcurrent detection method and detection circuit | |
JP2735598B2 (en) | Solid trip device | |
EP0571657B1 (en) | Inverter apparatus and inverter controlling method having fault protection | |
US20060227472A1 (en) | Inverter ground fault circuit | |
EP2482409B1 (en) | DC Arc fault detection and protection | |
EP1336528A3 (en) | Ground fault detection system and method | |
US4812943A (en) | Current fault protection system | |
JPH05501043A (en) | Loss of neutral or ground protection circuit | |
JPH05343722A (en) | Short-circuit detector for solar battery | |
JPH06303728A (en) | Overcurrent protective circuit for battery | |
AU761774B2 (en) | A protective relay-based monitoring system of DC power within an electric power substation | |
WO2022091250A1 (en) | Protection system, solar power generation system, and protection method | |
JPH07154920A (en) | Method of detecting single operation | |
JP3522802B2 (en) | Overcharge prevention circuit for solar battery storage battery | |
GB2229053A (en) | Protection against arcing in cables | |
CN114217171B (en) | Single-phase grounding fault detection method for converter valve side of flexible direct current transmission system | |
CN113049970B (en) | Battery protection plate, battery and detection method | |
CN111366776B (en) | Detection method of overcurrent protection circuit of solar air conditioner controller | |
JPH10112931A (en) | High-speed current limiting breaker for gas turbine | |
KR101999334B1 (en) | N-phase AC Solid-State Circuit Breaker and Circuit thereof | |
JP3314602B2 (en) | Grid connection protection device | |
JPH10336874A (en) | Overcurrent protection device in semiconductor circuit breaker | |
JPH07227095A (en) | Failure detector for load driver | |
JP2024030427A (en) | Electric power supply system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990831 |