JPH0715394B2 - Thermal detector - Google Patents

Thermal detector

Info

Publication number
JPH0715394B2
JPH0715394B2 JP16003288A JP16003288A JPH0715394B2 JP H0715394 B2 JPH0715394 B2 JP H0715394B2 JP 16003288 A JP16003288 A JP 16003288A JP 16003288 A JP16003288 A JP 16003288A JP H0715394 B2 JPH0715394 B2 JP H0715394B2
Authority
JP
Japan
Prior art keywords
heating element
temperature
output
heat
hollow body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16003288A
Other languages
Japanese (ja)
Other versions
JPH0210115A (en
Inventor
克己 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16003288A priority Critical patent/JPH0715394B2/en
Publication of JPH0210115A publication Critical patent/JPH0210115A/en
Publication of JPH0715394B2 publication Critical patent/JPH0715394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、人間に快適な環境を提供する空気調和装置に
おける環境の温熱状態を検知する温熱検知装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat detection device for detecting a heat state of an environment in an air conditioner that provides a comfortable environment for humans.

従来の技術 従来この種の温熱検知装置は、第6図に示すように、発
熱体1を人体と熱的特性が概略一致するゼリー状物質か
らなる被覆体2で被覆するとともに、前記被覆体2の温
度を検知する熱電対でなる検知体3を具備し、前記被覆
体2の外側には多数の通気孔4を有しかつ輻射熱を透過
するポリエチレン等の樹脂で球形に成型されたカバー5
が設けられ、前記発熱体1への電力供給線6と、前記検
知体3からの信号線7が具備された構成の温熱検知素子
が出願されており(例えば特開昭60-170731号公報)こ
の素子を用いて、前記電力供給線6に一定の電力を供給
しつつ、前記信号線7より環境の温熱状態に応じた信号
を得、人体の温冷感を判断するようになっていた。
2. Description of the Related Art Conventionally, as shown in FIG. 6, a conventional heat detection device of this type covers a heating element 1 with a coating 2 made of a jelly-like substance whose thermal characteristics are substantially the same as those of the human body, and the coating 2 A cover 5 formed of a resin such as polyethylene, which has a plurality of ventilation holes 4 and which transmits radiant heat, is provided on the outer side of the covering body 2 and which has a detecting body 3 made of a thermocouple for detecting the temperature of
Has been provided, and a heat detection element having a configuration in which a power supply line 6 to the heating element 1 and a signal line 7 from the detection element 3 are provided has been filed (for example, JP-A-60-170731). Using this element, while supplying a constant amount of power to the power supply line 6, a signal corresponding to the thermal state of the environment is obtained from the signal line 7 to determine the thermal sensation of the human body.

発明が解決しようとする課題 しかしながら上記のような構成では、環境の気温、気
流、輻射温の影響を総合して判断することはできるが、
個々の要素がどのように影響しているかを検知すること
は不可能であった。
SUMMARY OF THE INVENTION However, in the above-mentioned configuration, it is possible to comprehensively judge the influences of ambient temperature, air flow, and radiation temperature,
It was impossible to detect how the individual factors affect.

本発明はかかる従来の課題を解消するもので、簡単な構
成で、気温・気流・輻射温の温熱的影響の一括検知とと
もに、輻射温による温熱的影響も検知できることを目的
とする。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to detect the thermal effects of air temperature, air flow, and radiant temperature all together with a simple configuration, and also to detect the thermal effect of radiant temperature.

課題を解決するための手段 上記課題を解決するために本発明の温熱検知装置は、開
口部を有し光熱に対する内面の反射性が良好な中空体
と、前記中空体の外周を覆うように設けた断熱性の良い
材料からなる断熱部と、前記中空体の開口部に設けた多
孔状カバーと、前記中空体内部に設けた自身の温度によ
り電気抵抗が変化する物質からなる発熱素子と、周囲気
温を検知する気温センサーと、前記発熱素子を異なる設
定温度に維持する制御手段と、前記気温センサーの出力
から前記発熱素子へ供給される電力を予測する予測手段
と、前記予測手段からの出力と前記発熱素子へ供給され
る電力とを比較し輻射温の人体への影響を演算する演算
部とからなる構成としたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the heat detection device of the present invention has a hollow body having an opening and good internal surface reflectivity to light and heat, and is provided so as to cover the outer periphery of the hollow body. A heat insulating part made of a material having a good heat insulating property, a porous cover provided at the opening of the hollow body, a heating element made of a substance provided in the hollow body whose electric resistance changes according to its own temperature, and a surrounding area. An air temperature sensor for detecting the air temperature, a control means for maintaining the heating element at different set temperatures, a prediction means for predicting the power supplied to the heating element from the output of the temperature sensor, and an output from the prediction means. The calculation unit compares the electric power supplied to the heating element and calculates the influence of the radiant temperature on the human body.

作用 本発明は上記した構成によって、前記発熱素子が多孔状
カバーを通して直接あるいは中空体内面で反射して、周
囲の物体及び日射と輻射熱交換するとともに周囲気流に
よって生じる中空体内部の二次気流と対流熱交換を行な
い、さらに前記多孔状カバーが周囲の物体及び日射と輻
射熱交換することにより前記多孔状カバー及び前記中空
体が加熱または冷却されることにより前記発熱体との間
で輻射熱交換をするとともに伝導によりその一部の熱が
授受される。このとき前記中空体の形状および寸法は、
前記発熱素子と周囲環境との対流熱伝達および輻射熱伝
達の割合が人体のそれと概略一致するように形成してい
るため、前記発熱素子を前記制御手段によって一定温度
Tsに維持するための負荷の大小が人体の体温を一定に維
持するための負荷に対応して得られるため、これから人
体の温冷感を判断することができる。さらに前記気温セ
ンサーの出力から前記発熱素子へ供給される電力を予測
する予測手段の出力と前記発熱素子へ供給される電力と
を比較した情報を加えることにより前記演算部における
簡単な計算で環境の輻射温による影響を求めることがで
きる。この温冷感の判断と輻射温による影響に基づいて
空気調和装置を制御することにより、快適な空間を容易
に実現することができるのである。
The present invention has the above-mentioned configuration, in which the heat generating element is reflected directly through the porous cover or on the inner surface of the hollow body to exchange radiant heat with surrounding objects and solar radiation, and convection with the secondary airflow inside the hollow body caused by the surrounding airflow. Heat exchange is performed, and the porous cover and the hollow body are heated or cooled by radiant heat exchange between the porous cover and the surrounding objects and solar radiation, thereby performing radiant heat exchange with the heating element. Part of the heat is transferred by conduction. At this time, the shape and dimensions of the hollow body are
Since the ratio of convective heat transfer and radiant heat transfer between the heating element and the surrounding environment is formed to substantially match that of the human body, the heating element is controlled to have a constant temperature by the control means.
Since the magnitude of the load for maintaining Ts is obtained corresponding to the load for maintaining the body temperature of the human body constant, the thermal sensation of the human body can be determined from this. Further, by adding information comparing the output of the prediction means for predicting the electric power supplied to the heating element from the output of the temperature sensor and the electric power supplied to the heating element, the environment can be calculated by a simple calculation in the arithmetic unit. It is possible to determine the effect of radiation temperature. A comfortable space can be easily realized by controlling the air conditioner based on the determination of the thermal sensation and the influence of the radiant temperature.

実施例 以下、本発明の実施例を添付図面にもとづいて説明す
る。
Embodiments Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図に示すブロック図において10はサーミスタを用い
た発熱素子であり、第2図の一部切欠斜視図に詳しく示
すように、光熱に対して反射性の良好なアルミニウムで
内面11をメッキした樹脂性の中空体12に細かい開口を表
面を艶消黒色で塗装してある多孔状カバー13を設け、さ
らに前記中空体12の外側に発泡スチロール製の断熱部14
から構成されている。
In the block diagram shown in FIG. 1, 10 is a heating element using a thermistor. As shown in detail in the partially cut-away perspective view of FIG. 2, the inner surface 11 is plated with aluminum which has good light heat reflectivity. A resinous hollow body (12) is provided with a porous cover (13) having fine openings whose surface is coated with matt black, and further on the outside of the hollow body (12) is a heat insulation part (14) made of styrene foam.
It consists of

内面11は放物曲線面で構成され前記発熱素子10を前記内
面11の放物曲線面の概ね焦点の位置に設けてあることに
より、前記多孔状カバー13を通して周囲環境からの輻射
を前記発熱素子10に収束させるとともに、前記発熱素子
10は、周囲を中空体12により囲まれた窪みの中に設置し
かつ前記多孔状カバー13を介することにより、前記発熱
素子10に直接接触する気流の速度を大きく減衰させるよ
う構成しているため、前記発熱素子10の輻射熱伝達率及
び対流熱伝達率を人体の輻射熱伝達率及び平均対流熱伝
達率と概略等しくすることができ、前記発熱素子10を一
定温度に維持する熱負荷は、同じ環境で人体がその体温
を維持するに必要な熱負荷と高い相関が得られる。さら
にこの熱負荷と人体の温冷感との相関がある。すなわち
前記発熱素子10は制御手段15により、前記発熱素子10が
一定の温度に発熱するよう制御され、このときの前記制
御手段15の制御負荷の信号から人体の温熱感覚に対応す
る情報が得られる。
The inner surface 11 is formed of a parabolic curved surface, and the heating element 10 is provided at a position substantially at the focal point of the parabolic curved surface of the inner surface 11, so that the radiation from the ambient environment is passed through the porous cover 13 to the heating element. In addition to converging to 10, the heating element
Since 10 is installed in a recess surrounded by a hollow body 12 and via the porous cover 13, it is configured to greatly reduce the velocity of the airflow that is in direct contact with the heating element 10. The radiant heat transfer coefficient and the convective heat transfer coefficient of the heating element 10 can be made substantially equal to the radiant heat transfer coefficient and the average convective heat transfer coefficient of the human body, and the heat load for maintaining the heating element 10 at a constant temperature is the same environment. Gives a high correlation with the heat load required by the human body to maintain its body temperature. Furthermore, there is a correlation between this heat load and the thermal sensation of the human body. That is, the heating element 10 is controlled by the control means 15 so that the heating element 10 generates heat at a constant temperature, and information corresponding to the thermal sensation of the human body can be obtained from the signal of the control load of the control means 15 at this time. .

第3図は前記制御手段15の一実施例であるが、前記発熱
素子10と、演算増幅器17及び固定抵抗器18、固定抵抗器
19、固定抵抗器20とで前記発熱素子10の温度を一定の温
度Tsに制御する構成としている。回路を動作させると前
記発熱素子10は前記固定抵抗器18、前記固定抵抗器19、
前記固定抵抗器20の抵抗値と前記発熱素子10の温度−抵
抗特性で決定されるある−定温度に発熱するが、ここで
環境の気温・風速・輻射温度の何れかが変化して発熱素
子10の温度を低下させるように働くと、サーミスタであ
る発熱素子10の抵抗が上りb点の電位が上昇するので、
前記演算増幅器17によりa点とb点の電位差が増幅され
c点の電位が上昇しその結果前記発熱素子10に流れる電
流が増加する。この電流の増加により前記発熱素子10の
発熱量が大きくなり、前記発熱素子10の温度が上昇し、
元の温度で安定する。このときb点あるいはc点の電位
により、前記発熱素子10の発熱に要する負荷Qが得られ
る。前記発熱素子10を設定温度Tsに維持したときの前記
発熱素子10の表面と環境との熱収支は次式で示される。
FIG. 3 shows an embodiment of the control means 15, wherein the heating element 10, the operational amplifier 17, the fixed resistor 18, and the fixed resistor are provided.
The temperature of the heating element 10 is controlled to a constant temperature Ts by the fixed resistor 20 and the fixed resistor 20. When the circuit is operated, the heating element 10 includes the fixed resistor 18, the fixed resistor 19,
The resistance value of the fixed resistor 20 and the temperature of the heating element 10-determined by the resistance characteristic-heats to a constant temperature, but here any of the ambient temperature, wind speed, and radiant temperature changes and the heating element When the temperature of 10 is decreased, the resistance of the heating element 10 which is a thermistor rises and the potential at the point b rises.
The operational amplifier 17 amplifies the potential difference between the points a and b and raises the potential at the point c. As a result, the current flowing through the heating element 10 increases. The amount of heat generated by the heating element 10 increases due to this increase in current, and the temperature of the heating element 10 rises.
Stable at the original temperature. At this time, the load Q required for heat generation of the heating element 10 can be obtained by the potential at the point b or the point c. The heat balance between the surface of the heating element 10 and the environment when the heating element 10 is maintained at the set temperature Ts is given by the following equation.

Q=αc(Ts−Ta)+αr(Ts−Tr) ……(1) ただし、 Q :発熱素子の単位表面積当りの放熱量 (発熱素子の温度を一定に制御するための負荷) αc:発熱素子と環境との対流熱伝達率 Ts :発熱素子の温度(一定に制御) Ta :気温 αr:発熱素子と環境との輻射熱伝達率 Tr :周囲輻射温度 一方、環境の気温と輻射温度が等しい場合の前記発熱素
子10の熱収支は、以下のようになる。
Q = αc (Ts-Ta) + αr (Ts-Tr) (1) However, Q: Heat dissipation amount per unit surface area of the heating element (load for controlling the temperature of the heating element constant) αc: Heating element Convection heat transfer coefficient between the heating element and the environment Ts: Temperature of the heating element (controlled to be constant) Ta: Temperature αr: Radiation heat transfer coefficient between the heating element and the environment Tr: Ambient radiation temperature On the other hand, when the ambient temperature and the radiation temperature are equal The heat balance of the heating element 10 is as follows.

Q′=(αc+αr)×(Ts−Ta) ……(2) ここで、第4図に示すブロック図において、多孔状カバ
13の近傍に設け、周囲気温を検出する気温センサー22の
出力から前記発熱素子10へ供給される電力を予測する予
測手段16は、第5図に示す気流をパラメータとして気温
センサー22の出力と発熱素子10へ供給される電力との関
係、すなわち(2)式を記憶している記憶部25と、気流
の値を入力する気流入力部24と気温センサー22の出力を
入力する気温入力部23と、前記入力部23、24からの出力
により記憶部25から予測値を取り出し出力する出力部26
とからなり、空気調和装置の風量設定により気流入力部
24に入力された気流の値と、気温入力部23に入力された
気温センサー22の出力とから出力部26において記憶部25
に記憶されている発熱素子10へ供給される電力の予測値
Q′を出力する。
Q ′ = (αc + αr) × (Ts−Ta) (2) Here, in the block diagram shown in FIG. 4, the porous cover is used.
A predicting means 16 provided near 13 for predicting the electric power supplied to the heat generating element 10 from the output of the temperature sensor 22 for detecting the ambient temperature is the output of the temperature sensor 22 and the heat generation using the air flow shown in FIG. 5 as a parameter. The relationship with the power supplied to the element 10, that is, the storage unit 25 that stores the equation (2), the airflow input unit 24 that inputs the value of the airflow, and the air temperature input unit 23 that inputs the output of the air temperature sensor 22. An output unit 26 that extracts and outputs a predicted value from the storage unit 25 based on the outputs from the input units 23 and 24.
And the air flow input section by the air volume setting of the air conditioner.
From the value of the airflow input to 24 and the output of the temperature sensor 22 input to the temperature input unit 23, the storage unit 25 in the output unit 26
The predicted value Q'of the electric power supplied to the heating element 10 stored in is output.

次に演算部16において、予測手段21からの出力Q′と前
記発熱素子10へ供給される電力Qとを比較し輻射温の人
体への影響を演算する。
Next, the calculation unit 16 compares the output Q'from the predicting means 21 with the electric power Q supplied to the heating element 10 to calculate the influence of the radiation temperature on the human body.

すなわち、(1)式−(2)式より Q−Q′=αr(Ta−Tr) ……(3) となり、人体への輻射の影響の正確な検知が可能であ
る。
That is, according to the equation (1)-(2), Q-Q '= αr (Ta-Tr) (3), and it is possible to accurately detect the influence of radiation on the human body.

発明の効果 以上のように本発明の温熱検知装置によれば次の効果が
得られる。
EFFECTS OF THE INVENTION As described above, according to the heat detection device of the present invention, the following effects can be obtained.

発熱素子と気温センサの2つの素子で気温・気流・輻射
温の3つの要素を人体の温熱感覚への総合的な効果と、
輻射温の影響とを検知することが可能であり、これらの
情報により環境の温熱状態のモニタおよび空調機器の最
適制御が可能である。
With two elements, a heating element and an air temperature sensor, the three effects of air temperature, air flow, and radiant temperature are comprehensively applied to the human body's thermal sensation.
It is possible to detect the influence of the radiant temperature, and it is possible to monitor the thermal state of the environment and optimally control the air conditioning equipment based on this information.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す温熱検知装置のブロッ
ク図、第2図は同装置の発熱素子および中空体の構成を
示す一部切欠斜視図、第3図は同装置の制御手段を示す
回路図、第4図は同装置の予測手段を示すブロック図、
第5図は同装置の予測手段での記憶内容を示す特性図、
第6図は従来の温熱検知装置の検知体の構造を示す一部
切欠斜視図である。 10……発熱素子、12……中空体、13……多孔状カバー、
14……断熱部、15……制御手段、16……演算部、21……
予測手段、22……気温センサ。
FIG. 1 is a block diagram of a heat detection device showing an embodiment of the present invention, FIG. 2 is a partially cutaway perspective view showing the structure of a heating element and a hollow body of the device, and FIG. 3 is a control means of the device. FIG. 4 is a circuit diagram showing the above, FIG.
FIG. 5 is a characteristic diagram showing stored contents in the prediction means of the device,
FIG. 6 is a partially cutaway perspective view showing a structure of a detection body of a conventional heat detection device. 10 ... Heating element, 12 ... Hollow body, 13 ... Porous cover,
14 ... Insulation part, 15 ... Control means, 16 ... Calculation part, 21 ...
Predictor, 22 ... Air temperature sensor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】開口部を有し光熱に対する内面の反射性が
良好な中空体と、前記中空体の外周を覆うように設けた
断熱性の良い材料からなる断熱部と、前記中空体の開口
部に設けた多孔状カバーと、前記中空体内部に設けた自
身の温度により電気抵抗が変化する物質からなる発熱素
子と、周囲気温を検知する気温センサーと、前記発熱素
子を設定温度に維持する制御手段と、前記気温センサー
の出力から前記発熱素子へ供給される電力を予測する予
測手段と、前記予測手段からの出力と前記発熱素子へ供
給される電力とを比較し輻射温の人体への影響を演算す
る演算部とからなる温熱検知装置。
1. A hollow body having an opening having a good inner surface reflectivity against light and heat, a heat insulating portion made of a material having a good heat insulating property so as to cover the outer periphery of the hollow body, and an opening of the hollow body. A porous cover provided in a portion, a heating element made of a substance whose electrical resistance changes according to its own temperature provided inside the hollow body, an air temperature sensor for detecting an ambient temperature, and the heating element maintained at a set temperature. Control means, predicting means for predicting the electric power supplied to the heating element from the output of the temperature sensor, and comparing the output from the predicting means and the electric power supplied to the heating element to the human body of the radiation temperature. A heat detection device including a calculation unit that calculates an influence.
【請求項2】予測手段は、気流をパラメータとして気温
センサーの出力と発熱素子へ供給される電力との関係を
記憶している記憶部と、気流の値を入力する気流入力部
と気温センサーの出力を入力する気温入力部と、前記入
力部からの出力により記憶部から予測値を取り出し出力
する出力部とからなる特許請求の範囲第1項記載の温熱
検知装置。
2. The predicting means stores a relationship between the output of the temperature sensor and the electric power supplied to the heating element using the airflow as a parameter, an airflow input unit for inputting the value of the airflow, and the temperature sensor. The thermal detection device according to claim 1, comprising an air temperature input unit for inputting an output, and an output unit for extracting and outputting a predicted value from a storage unit according to an output from the input unit.
JP16003288A 1988-06-28 1988-06-28 Thermal detector Expired - Fee Related JPH0715394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16003288A JPH0715394B2 (en) 1988-06-28 1988-06-28 Thermal detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16003288A JPH0715394B2 (en) 1988-06-28 1988-06-28 Thermal detector

Publications (2)

Publication Number Publication Date
JPH0210115A JPH0210115A (en) 1990-01-12
JPH0715394B2 true JPH0715394B2 (en) 1995-02-22

Family

ID=15706479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16003288A Expired - Fee Related JPH0715394B2 (en) 1988-06-28 1988-06-28 Thermal detector

Country Status (1)

Country Link
JP (1) JPH0715394B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398512A (en) * 2019-08-27 2019-11-01 武汉国灸科技开发有限公司 The temperature testing device of spontaneous heating moxibustion plaster

Also Published As

Publication number Publication date
JPH0210115A (en) 1990-01-12

Similar Documents

Publication Publication Date Title
JP2581625B2 (en) Method and apparatus for calculating thermal sensation, method and apparatus for calculating predicted average thermal sensation
US6132082A (en) Device for the measurement of heat transfer characteristics of multilayer sample arrangements
JPH10103745A (en) Detecting device of thermal environment
JPH0577931B2 (en)
KR920006072B1 (en) Heat inspection device
JPH0715394B2 (en) Thermal detector
JPH0672822B2 (en) Thermal detector
JPH0672818B2 (en) Thermal detector
JPH0678920B2 (en) Thermal detector
JPH0672823B2 (en) Thermal detector
JPH0672819B2 (en) Thermal detector
JPH0672816B2 (en) Thermal detector
JPH0672821B2 (en) Thermal detector
JPH0672820B2 (en) Thermal detector
JPH0672817B2 (en) Thermal detector
JPH0672815B2 (en) Thermal detector
JP3539093B2 (en) Temperature control device for measuring equipment
JPH0678921B2 (en) Thermal detector
JPH0672814B2 (en) Thermal detector
JPS5910590Y2 (en) Constant heat flow generator
JP2829559B2 (en) Equivalent temperature sensor
JPH0672813B2 (en) Thermal detector
JPH0658267B2 (en) Thermal detector
JPH0672809B2 (en) Thermal detector
JPH0584423B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees