JPH0210115A - Warmth detecting device - Google Patents
Warmth detecting deviceInfo
- Publication number
- JPH0210115A JPH0210115A JP16003288A JP16003288A JPH0210115A JP H0210115 A JPH0210115 A JP H0210115A JP 16003288 A JP16003288 A JP 16003288A JP 16003288 A JP16003288 A JP 16003288A JP H0210115 A JPH0210115 A JP H0210115A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heating element
- heat
- output
- temperature sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000126 substance Substances 0.000 claims abstract description 8
- 238000002310 reflectometry Methods 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims abstract description 3
- 238000010438 heat treatment Methods 0.000 claims description 47
- 238000001514 detection method Methods 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 8
- 238000009413 insulation Methods 0.000 claims description 3
- 238000004378 air conditioning Methods 0.000 abstract description 2
- 206010016334 Feeling hot Diseases 0.000 abstract 1
- 239000011810 insulating material Substances 0.000 abstract 1
- 239000003570 air Substances 0.000 description 12
- 230000005855 radiation Effects 0.000 description 6
- 230000035807 sensation Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、人間に快適な環境を提供する空気調和装置に
おける環境の温熱状態を検知する温熱検知装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thermal detection device for detecting the thermal state of an environment in an air conditioner that provides a comfortable environment for humans.
従来の技術
従来この種の温熱検知装置は、第6図に示すように、発
熱体1を人体と熱的特性が概略一致するゼリー状物質か
らなる被覆体2で被覆するとともに、前記被覆体2の温
度を検知する熱電対でなる検知体3を具備し、前記被覆
体2の外側には多数の通気孔4を有しかつ輻射熱を透過
するポリエチレン等の樹脂で球形に成型されたカバー5
が設けられ、前記発熱体1への電力供給線6と、前記検
知体3からの]言置線7が具備された構成の温熱検知素
子が出願されており(例えば特開昭60170731号
公報)この素子を用いて、前記電3・・−。BACKGROUND OF THE INVENTION As shown in FIG. 6, a conventional thermal detection device of this type covers a heating element 1 with a covering 2 made of a jelly-like substance whose thermal characteristics roughly match those of the human body. A cover 5 is provided with a detection body 3 made of a thermocouple that detects the temperature of the body, and has a large number of ventilation holes 4 on the outside of the cover 2 and is molded into a spherical shape from a resin such as polyethylene that transmits radiant heat.
An application has been filed for a thermal sensing element having a configuration in which a power supply line 6 to the heating element 1 and a speech line 7 from the sensing element 3 are provided (for example, Japanese Patent Laid-Open No. 60170731). Using this element, the electricity 3...-.
ノJ供給線6に一定の電力を供給しつつ、前記信号線7
より環境の温熱状態に応じた信号を得、人体の温冷感を
判断するようになっていた。While supplying constant power to the J supply line 6, the signal line 7
The system is now able to obtain signals that are more responsive to the thermal state of the environment and determine the thermal sensation of the human body.
発明が解決しようとする課題
しかしながら上記のような構成では、環境の気温、気流
、輻射温の影響を総合して判断することはできるが、個
々の要素がどのように影響しているかを検知することは
不可能であった。Problems to be Solved by the Invention However, with the above configuration, although it is possible to make a judgment by comprehensively considering the effects of environmental temperature, airflow, and radiant temperature, it is difficult to detect how each individual element is affecting the environment. That was impossible.
本発明はかかる従来の課題を解消するもので、簡単な構
成で、気温・気流・輻射温の温熱的影響の一括検知とと
もに、輻射温による温熱的影響も検知できることを目的
とする。The present invention solves such conventional problems, and aims to be able to collectively detect the thermal effects of air temperature, airflow, and radiant temperature, as well as detect the thermal effects of radiant temperature, with a simple configuration.
課題を解決するための手段
上記課題を解決するために本発明の温熱検知装置は、開
口部を有し光熱に対する内面の反射性が良好な中空体と
、前記中空体の外周を覆うように設けた断熱性の良い材
料からなる断熱部と、前記中空体の開口部に設けた多孔
状カバーと、前記中空体内部に設けた自身の温度により
電気抵抗が変化する物質からなる発熱素子と、周囲気温
を検知する気温センサーと、前記発熱素子を異なる設定
温度に維持する制御手段と、前記気温センサーの出力か
ら前記発熱素子へ供給される電力を予測する予測手段と
、前記予測手段からの出力と前記発熱素子へ供給される
電力とを比較し輻射温の人体への影響を演算する演算部
とからなる構成としたものである。Means for Solving the Problems In order to solve the above problems, the thermal detection device of the present invention includes a hollow body having an opening and whose inner surface has good reflectivity against light heat, and a hollow body provided so as to cover the outer periphery of the hollow body. a heat insulating section made of a material with good heat insulation properties, a porous cover provided at the opening of the hollow body, a heating element made of a substance whose electrical resistance changes depending on its own temperature provided inside the hollow body, An air temperature sensor that detects air temperature, a control means that maintains the heating element at a different set temperature, a prediction means that predicts electric power to be supplied to the heating element from the output of the air temperature sensor, and an output from the prediction means. The heating element is configured to include a calculation section that compares the electric power supplied to the heating element and calculates the influence of radiant temperature on the human body.
作 用
本発明は上記した構成によって、前記発熱素子が多孔状
カバーを通して直接あるいは中空体内面で反射して、周
囲の物体及び日射と輻射熱交換するとともに周囲気流に
よって生じる中空体内部の二次気流と対流熱交換を行な
い、さらに前記多孔状カバーが周囲の物体及び日射と輻
射熱交換することにより前記多孔状カバー及び前記中空
体が加熱または冷却されることにより前記発熱体との間
で輻射熱交換をするとともに伝導によりその一部の熱が
授受される。このとき前記中空体の形状および寸法は、
前記発熱素子と周囲環境との対流熱伝達および輻射熱伝
達の割合が人体のそれと概略5・\−・
一致するように形成しているため、前記発熱素子を前記
制御手段によって一定温度Tsに維持するための負荷の
大小が人体の体温を一定に維持するための負荷に対応し
て得られるため、これから人体の温冷感を判断すること
ができる。さらに前記気温センサーの出力から前記発熱
素子へ供給される電力を予測する予測手段の出力と前記
発熱素子へ供給される電力とを比較した情報を加えるこ
とにより前記演算部における簡単な計算で環境の輻射温
による影響を求めることができる。この温冷感の判断と
輻射温による影響に基づいて空気調和装置を制御するこ
とにより、快適な空間を容易に実現することができるの
である。According to the above-described configuration, the heating element exchanges radiant heat with surrounding objects and solar radiation by directly passing through the porous cover or by reflecting on the inner surface of the hollow body, and also exchanges radiant heat with the secondary airflow inside the hollow body generated by the surrounding airflow. Convection heat exchange is performed, and the porous cover exchanges radiant heat with surrounding objects and solar radiation, whereby the porous cover and the hollow body are heated or cooled, thereby exchanging radiant heat with the heating element. At the same time, some of the heat is exchanged by conduction. At this time, the shape and dimensions of the hollow body are:
Since the heat generating element is formed so that the rate of convective heat transfer and radiant heat transfer between the heat generating element and the surrounding environment approximately corresponds to that of the human body, the heat generating element is maintained at a constant temperature Ts by the control means. The magnitude of the load for this purpose is obtained in accordance with the load for maintaining the human body's body temperature constant, so the thermal sensation of the human body can be determined from this. Furthermore, by adding information comparing the output of a prediction means for predicting the power supplied to the heat generating element from the output of the temperature sensor and the power supplied to the heat generating element, a simple calculation in the arithmetic unit can be performed to estimate the environment. The influence of radiant temperature can be determined. By controlling the air conditioner based on this judgment of thermal sensation and the influence of radiant temperature, it is possible to easily create a comfortable space.
実施例
以下、本発明の実施例を添付図面にもとづいて説明する
。Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.
第1図に示すブロック図において10はサーミスタを用
いた発熱素子であり、第2図の一部切欠斜視図に詳しく
示すように、光熱に対して反射性の良好なアルミニウム
で内面11をメツキした樹6・\−/
脂性の中空体12に細かい開口を表面を艶消黒色で塗装
しである多孔状カバー13を設け、さらに前記中空体1
2の外側に発泡スチロール製の断熱部14から構成され
ている。In the block diagram shown in Fig. 1, 10 is a heating element using a thermistor, and as shown in detail in the partially cutaway perspective view of Fig. 2, the inner surface 11 is plated with aluminum, which has good reflectivity against light and heat. A porous cover 13 having fine openings and a surface painted with matte black is provided in the resinous hollow body 12, and the hollow body 1
A heat insulating part 14 made of styrene foam is provided on the outside of the 2.
内面11は放物曲線面で構成され前記発熱素子10を前
記内面11の放物曲線面の概ね焦点の位置に設けである
ことにより、前記多孔状カバー13を通して周囲環境か
らの輻射を前記発熱素子10に収束させるとともに、前
記発熱素子10は、周囲を中空体12により囲まれた窪
みの中に設置しかつ前記多孔状カバー13を介すること
により、前記発熱素子10に直接接触する気流の速度を
大きく減衰させるよう構成しているため、前記発熱素子
10の輻射熱伝達率及び対流熱伝達率を人体の輻射熱伝
達率及び平均対流熱伝達率と概略等しくすることができ
、前記発熱素子10を一定温度に維持する熱負荷は、同
じ環境で人体がその体温を維持するに必要な熱負荷と高
い相関が得られる。The inner surface 11 is constituted by a parabolic curved surface, and the heating element 10 is provided at approximately the focal point of the parabolic curved surface of the inner surface 11, thereby directing radiation from the surrounding environment through the porous cover 13 to the heating element. 10, and the heat generating element 10 is installed in a recess surrounded by a hollow body 12 and passes through the porous cover 13, thereby reducing the speed of the airflow that directly contacts the heat generating element 10. Since it is configured to greatly attenuate, the radiant heat transfer coefficient and convective heat transfer coefficient of the heating element 10 can be made approximately equal to the radiant heat transfer coefficient and the average convective heat transfer coefficient of the human body, and the heating element 10 can be kept at a constant temperature. The heat load maintained by the human body is highly correlated with the heat load required for the human body to maintain its body temperature in the same environment.
さらにこの熱負荷と人体の温冷感との相関がある。Furthermore, there is a correlation between this heat load and the thermal sensation of the human body.
すなわち前記発熱素子10は制御手段15により、7・
、−7
前記発熱素子10が一定の温度に発熱するよう制御され
、このときの前記制御手段15の制御負荷の信号から人
体の温熱感覚に対応する情報が得られる。That is, the heating element 10 is controlled by the control means 15 to
, -7 The heating element 10 is controlled to generate heat to a constant temperature, and information corresponding to the thermal sensation of the human body can be obtained from the signal of the control load of the control means 15 at this time.
第3図は前記制御手段15の一実施例であるが、前記発
熱素子10と、演算増幅器17及び固定抵抗器18、固
定抵抗器19、固定抵抗器2oとで前記発熱素子10の
温度を一定の温度Tsに制御する構成としている。回路
を動作させると前記発熱素子10は前記固定抵抗器18
、前記固定抵抗器19、前記固定抵抗器20の抵抗値と
前記発熱素子10の温度−抵抗特性で決定されるある一
定温度に発熱するが、ここで環境の気温・風速・輻射温
度の何れかが変化して発熱素子1oの温度を低下させる
ように働くと、サーミスタである発熱素子10の抵抗が
上りb点の電位が上昇するので、前記演算増幅器17に
より8点とb点の電位差が増幅され0点の電位が上昇し
その結果前記発熱素子10に流れる電流が増加する。こ
の電流の増加により前記発熱素子10の発熱量が大きく
なり、前記発熱素子10の温度が」1昇し、元の温度で
安定する。このときb点あるいは0点の電位により、前
記発熱素子10の発熱に要する負荷Qが得られる。前記
発熱素子10を設定温度Tsに維持したときの前記発熱
素子10の表面と環境との熱収支は次式で示される。FIG. 3 shows an embodiment of the control means 15, in which the temperature of the heating element 10 is kept constant by the heating element 10, the operational amplifier 17, the fixed resistor 18, the fixed resistor 19, and the fixed resistor 2o. The structure is such that the temperature is controlled to Ts. When the circuit is operated, the heating element 10 is connected to the fixed resistor 18.
, heat is generated to a certain temperature determined by the resistance values of the fixed resistor 19 and the fixed resistor 20 and the temperature-resistance characteristics of the heating element 10. changes and acts to lower the temperature of the heating element 1o, the resistance of the heating element 10, which is a thermistor, increases and the potential at point b rises, so the operational amplifier 17 amplifies the potential difference between point 8 and point b. As a result, the potential at the zero point increases, and as a result, the current flowing through the heating element 10 increases. This increase in current increases the amount of heat generated by the heating element 10, and the temperature of the heating element 10 rises by 1 and becomes stable at the original temperature. At this time, the load Q required for the heating element 10 to generate heat can be obtained by the potential at point b or point 0. The heat balance between the surface of the heating element 10 and the environment when the heating element 10 is maintained at the set temperature Ts is expressed by the following equation.
Q=aa(Ts−Ta)+ar(Ts−Tr) −−
(1)ただし、
Q: 発熱素子の単位表面積当りの放熱量(発熱素子の
温度を一定に制御するための負荷)
αC: 発熱素子と環境との対流熱伝達率Ts: 発熱
素子の温度(一定に制御)Ta: 気温
αr: 発熱素子と環境との輻射熱伝達率Tr: 周
囲輻射温度
−・方、環境の気温と輻JJJVXA度が等しい場合の
前記発熱素子10の熱収支は、以下のようになる。Q=aa(Ts-Ta)+ar(Ts-Tr) --
(1) However, Q: Amount of heat dissipation per unit surface area of the heating element (load to control the temperature of the heating element at a constant level) αC: Convective heat transfer coefficient between the heating element and the environment Ts: Temperature of the heating element (constant value) Ta: Temperature αr: Radiant heat transfer coefficient between the heating element and the environment Tr: Ambient radiation temperature - The heat balance of the heating element 10 when the environmental temperature and the radiation JJJVXA degree are equal is as follows. Become.
Q’−(αc+αr )x (Ts−Ta )
・−−==(2)ここで、第4図に示すブロック図にお
いて、多孔9・・ ・
状カバー13の近傍に設け、周囲気温を検出する気温セ
ンサー22の出力から前記発熱素子10へ供給される電
力を予測する予測手段16は、第5図に示す気流をパラ
メータとして気温センサー22の出力と発熱素子10へ
供給される電力との関係、すなわち(2式を記憶してい
る記憶部25と、気流の値を入力する気流入力部24と
気温センサー22の出力を入力する気温入力部23と、
前記入力部23.24からの出力により記憶部25から
予測値を取り出し出力する出力部26とからなり、空気
調和装置の風量設定により気流入力部24に入力された
気流の値と、気温入力部23に入力された気温センサー
22の出力とから出力部26において記憶部25に記憶
されている発熱素子10へ供給される電)Jの予測値σ
を出ノJする。Q'-(αc+αr)x (Ts-Ta)
・−−==(2) Here, in the block diagram shown in FIG. 4, the porous 9... is provided near the cover 13 and supplies the heat generating element 10 from the output of the air temperature sensor 22 that detects the ambient air temperature. The prediction means 16 predicts the electric power supplied to the heating element 10 by calculating the relationship between the output of the temperature sensor 22 and the electric power supplied to the heating element 10 using the airflow shown in FIG. , an airflow input section 24 that inputs the value of the airflow, and a temperature input section 23 that inputs the output of the temperature sensor 22;
It consists of an output section 26 that retrieves and outputs predicted values from the storage section 25 based on the outputs from the input sections 23 and 24, and outputs the air flow value input to the air flow input section 24 by the air volume setting of the air conditioner, and the air temperature input section. From the output of the temperature sensor 22 inputted to the output section 23, the predicted value σ of the electric power J supplied to the heating element 10 stored in the storage section 25 is calculated at the output section 26.
Output.
次に演算部16において、予測手段21からの出力Q′
と前記発熱素子10へ供給される電力Qとを比較し輻射
温の人体への影響を演算する。Next, in the calculation unit 16, the output Q' from the prediction means 21 is
and the electric power Q supplied to the heating element 10 to calculate the influence of radiant temperature on the human body.
すなわち、(1)式−(2)式より
Q−Q’−a r (T a −Tr ) −・・13
)10ヘー・
となり、人体への輻射の影響の正確な検知が可能である
。That is, from equation (1) - equation (2), Q-Q'-a r (T a -Tr ) -...13
) 10h・ , making it possible to accurately detect the effects of radiation on the human body.
発明の効果
以」−のように本発明の温熱検知装置によれば次の効果
が得られる。Effects of the Invention According to the thermal detection device of the present invention, the following effects can be obtained.
発熱素子と気温センサの2つの素子で気温・気流・幅創
温の3つの要素を人体の温熱感覚への総合的な効果と、
輻射温の影響とを検知することが可能であり、これらの
情報により環境の温熱状態のモニタおよび空調機器の最
適制御が可能である。Two elements, a heating element and a temperature sensor, combine the three elements of temperature, airflow, and width of the wound to create a comprehensive effect on the human body's thermal sensation.
It is possible to detect the influence of radiant temperature, and based on this information, it is possible to monitor the thermal state of the environment and optimally control air conditioning equipment.
第1図は本発明の一実施例を示す温熱検知装置のブロッ
ク図、第2図は同装置の発熱素子および中空体の構成を
示す一部切欠斜視図、第3図は同装置の制御手段を示す
回路図、第4図は同装置の予測手段を示すブロック図、
第5図は同装置の予測手段での記憶内容を示す特性図、
第6図は従来の温熱検知装置の検知体の構造を示す一部
切欠斜視図である。
10 ・・・・発熱素子、12・・・・中空体、131
1 ・、
多孔状カバー 14・・・・・・断熱部、15・・・・
・制御手段、16・・・・・・演算部、21・・・・・
・予測手段、22・・・・・・気温センサ。
代理人の氏名 弁理士 中 尾 敏 男 はか1名第
図
気蚤
第
図Fig. 1 is a block diagram of a thermal detection device showing an embodiment of the present invention, Fig. 2 is a partially cutaway perspective view showing the configuration of a heating element and a hollow body of the device, and Fig. 3 is a control means of the device. 4 is a block diagram showing the prediction means of the device,
FIG. 5 is a characteristic diagram showing the memory contents of the prediction means of the device;
FIG. 6 is a partially cutaway perspective view showing the structure of a sensing body of a conventional thermal sensing device. 10...Heating element, 12...Hollow body, 131
1. Porous cover 14... Heat insulation part, 15...
・Control means, 16...Calculating unit, 21...
- Prediction means, 22...Temperature sensor. Name of agent: Patent attorney Toshio Nakao
Claims (2)
な中空体と、前記中空体の外周を覆うように設けた断熱
性の良い材料からなる断熱部と、前記中空体の開口部に
設けた多孔状カバーと、前記中空体内部に設けた自身の
温度により電気抵抗が変化する物質からなる発熱素子と
、周囲気温を検知する気温センサーと、前記発熱素子を
設定温度に維持する制御手段と、前記気温センサーの出
力から前記発熱素子へ供給される電力を予測する予測手
段と、前記予測手段からの出力と前記発熱素子へ供給さ
れる電力とを比較し輻射温の人体への影響を演算する演
算部とからなる温熱検知装置。(1) A hollow body having an opening and having an inner surface that has good reflectivity for light and heat; a heat insulating part made of a material with good heat insulation provided so as to cover the outer periphery of the hollow body; a porous cover provided therein; a heating element made of a substance whose electrical resistance changes depending on its own temperature provided inside the hollow body; an air temperature sensor that detects ambient temperature; and a control means that maintains the heating element at a set temperature. a prediction means for predicting the electric power supplied to the heating element from the output of the temperature sensor; and a prediction means for predicting the electric power supplied to the heating element from the output of the temperature sensor, and comparing the output from the prediction means and the electric power supplied to the heating element to estimate the effect of radiant temperature on the human body. A thermal detection device consisting of a calculation section that performs calculations.
サーの出力と発熱素子へ供給される電力との関係を記憶
している記憶部と、気流の値を入力する気流入力部と気
温センサーの出力を入力する気温入力部と、前記入力部
からの出力により記憶部から予測値を取り出し出力する
出力部とからなる特許請求の範囲第1項記載の温熱検知
装置。(2) The prediction means includes a storage section that stores the relationship between the output of the temperature sensor and the power supplied to the heating element using the airflow as a parameter, an airflow input section that inputs the value of the airflow, and the output of the temperature sensor. 2. The temperature detection device according to claim 1, comprising a temperature input section for inputting the temperature, and an output section for extracting and outputting the predicted value from the storage section based on the output from the input section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16003288A JPH0715394B2 (en) | 1988-06-28 | 1988-06-28 | Thermal detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16003288A JPH0715394B2 (en) | 1988-06-28 | 1988-06-28 | Thermal detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0210115A true JPH0210115A (en) | 1990-01-12 |
JPH0715394B2 JPH0715394B2 (en) | 1995-02-22 |
Family
ID=15706479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16003288A Expired - Fee Related JPH0715394B2 (en) | 1988-06-28 | 1988-06-28 | Thermal detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0715394B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110398512A (en) * | 2019-08-27 | 2019-11-01 | 武汉国灸科技开发有限公司 | The temperature testing device of spontaneous heating moxibustion plaster |
-
1988
- 1988-06-28 JP JP16003288A patent/JPH0715394B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110398512A (en) * | 2019-08-27 | 2019-11-01 | 武汉国灸科技开发有限公司 | The temperature testing device of spontaneous heating moxibustion plaster |
Also Published As
Publication number | Publication date |
---|---|
JPH0715394B2 (en) | 1995-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2581625B2 (en) | Method and apparatus for calculating thermal sensation, method and apparatus for calculating predicted average thermal sensation | |
JPS6365318A (en) | Warmth detecting element | |
US6996490B2 (en) | Thermal comfort sensor device and an anthropomorphic dummy for simulating heat exchange which includes a plurality of such devices | |
JPH0210115A (en) | Warmth detecting device | |
KR920006072B1 (en) | Heat inspection device | |
JP2902472B2 (en) | Air conditioning control device | |
JPH04316947A (en) | Control device for air-conditioner | |
KR100204234B1 (en) | A sensing device and controlling method with comfortable operation for air conditioner | |
JPH0672818B2 (en) | Thermal detector | |
JP2701275B2 (en) | Environment detection sensor for vehicle air conditioning controller | |
JP2897415B2 (en) | Control device for air conditioner | |
JPH0672819B2 (en) | Thermal detector | |
JPH0672821B2 (en) | Thermal detector | |
JPH0672822B2 (en) | Thermal detector | |
JPS63149519A (en) | Thermal detection apparatus | |
JPH0672816B2 (en) | Thermal detector | |
JPS6321529A (en) | Thermosensor | |
JPH076842B2 (en) | Radiant heat detector | |
JPH0672820B2 (en) | Thermal detector | |
JPS61181916A (en) | Thermal detection element | |
JPH0672809B2 (en) | Thermal detector | |
JPH0468540B2 (en) | ||
WO2022235153A1 (en) | Thermal comfort measuring system | |
JPH0678921B2 (en) | Thermal detector | |
JPH0672823B2 (en) | Thermal detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |