JPH07153613A - Core for choke coil and nonlinear choke coil - Google Patents

Core for choke coil and nonlinear choke coil

Info

Publication number
JPH07153613A
JPH07153613A JP29695193A JP29695193A JPH07153613A JP H07153613 A JPH07153613 A JP H07153613A JP 29695193 A JP29695193 A JP 29695193A JP 29695193 A JP29695193 A JP 29695193A JP H07153613 A JPH07153613 A JP H07153613A
Authority
JP
Japan
Prior art keywords
core
choke coil
magnetic core
content
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29695193A
Other languages
Japanese (ja)
Inventor
Katsuto Yoshizawa
克仁 吉沢
Yoshio Bizen
嘉雄 備前
Shunsuke Arakawa
俊介 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP29695193A priority Critical patent/JPH07153613A/en
Publication of JPH07153613A publication Critical patent/JPH07153613A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing

Abstract

PURPOSE:To obtain a nonlinear choke coil having superior nonlinear characteristics and a temperature stability by a method wherein the nonlinear choke coil consists of a core formed by constituting integrally a nanocrystal high-magnetic permeability closed magnetic circuit core, a nanocrystal alloy core and a gapped core or a gapped dust core. CONSTITUTION:A core for choke coil consists of a core formed by constituting integrally a nanocrystal high-magnetic permeability closed magnetic circuit core, a nanocrystal alloy core and a gapped core or a gapped dust core. The nanocrystal alloy core is an alloy core containing Fe as its main component and the composition of the core for choke coil is constituted in the compositional ratio of at least one kind of an element selected from between Cu and Cu to at least one kind of an element selected from among Ti, Zr, Hf, V, Nb, Ta, Mo, and W to Si to B = a content of 0.1at% or higher to 3at% of lower to a content of 1at% or higher to 7at% or lower to a content of 10at% or higher to 17at% or lower to a content of 4at% or higher to 10at% or lower and a nonlinear choke coil is formed by winding at least one conductor wire on this core.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスイッチング電源の出力
側平滑回路等に用いられる非線形特性を有するチョ−ク
コイル用磁心ならびに非線形チョ−クコイルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a choke coil magnetic core having a non-linear characteristic and a non-linear choke coil used in an output side smoothing circuit of a switching power supply.

【0002】[0002]

【従来の技術】スイッチング電源等の平滑回路に用いら
れているチョ−クコイルとしてはギャップを形成したフ
ェライト磁心、ギャップを形成した珪素鋼磁心、ギャッ
プを形成したFe基アモルファス磁心、ノ−ギャップのFe
基アモルファス磁心、Fe圧粉磁心やFe-Al-Si合金圧粉磁
心等を用いたチョ−クコイルが用いられる。しかし、フ
ェライト磁心を用いたチョ−クコイルは、磁心が飽和し
やすく、十分な効果を発揮するためには、ギャップを大
きくし巻線数を増加する、磁心の形状を大きくする等を
行う必要がある。巻線数を増加することは銅損の増加に
つながり、コイルが発熱し温度上昇が激しくなる問題が
生ずる。一方、チョ−クコイルの形状を大きくすると、
当然のことながら回路全体の小型化の面で不利となる。
2. Description of the Related Art As a choke coil used in a smoothing circuit such as a switching power supply, a ferrite core with a gap, a silicon steel core with a gap, a Fe-based amorphous core with a gap, and a no-gap Fe core are used.
A choke coil using a base amorphous magnetic core, an Fe powder magnetic core, an Fe-Al-Si alloy powder magnetic core, or the like is used. However, a choke coil using a ferrite core is likely to saturate, and in order to exert a sufficient effect, it is necessary to increase the gap, increase the number of windings, increase the shape of the magnetic core, and the like. is there. Increasing the number of windings leads to an increase in copper loss, which causes a problem that the coil heats up and the temperature rises sharply. On the other hand, if the choke coil is made larger,
As a matter of course, it is disadvantageous in terms of downsizing the entire circuit.

【0003】珪素鋼磁心を用いたチョ−クコイルは、高
周波における磁心損失が大きいため、温度上昇が激しく
スイッチング周波数をあまり上げられない問題がある。
ギャップを形成したFe基アモルファス磁心を用いたチョ
−クコイルでは、ギャップを形成するために磁心をカッ
トする際に磁心を樹脂モ−ルドする必要があるが、材料
の磁歪が大きいため磁心損失が著しく増加したり、磁歪
振動による騒音の問題がある。ノ−ギャップのFe基アモ
ルファス磁心を用いた場合は、磁歪振動による共振が生
ずるため周波数により動作が不安定になったり、周波数
帯によっては磁歪振動による騒音の問題がある。Fe圧粉
磁心は安価であるが、透磁率が100未満と低く、磁心損
失も大きい問題があり、チョ−クコイルもそれほど小型
化できない。Fe-Al-Si合金圧粉磁心を使用したチョ−ク
コイルもFe圧粉磁心を用いたものよりも特性的には優れ
ているものの小型化の面で同様の問題を有している。以
上のように、従来の平滑回路に用いられているチョ−ク
コイルはそれぞれ問題点を有していおり必ずしも十分な
特性とは言えない。
The choke coil using a silicon steel magnetic core has a large magnetic core loss at a high frequency, and therefore has a problem that the temperature rises sharply and the switching frequency cannot be raised so much.
In a choke coil using a Fe-based amorphous magnetic core with a gap, it is necessary to mold the magnetic core with resin when cutting the magnetic core to form the gap, but the magnetic loss of the material is large because the magnetostriction of the material is large. There is a problem of noise due to increase or magnetostriction vibration. When a no-gap Fe-based amorphous magnetic core is used, resonance occurs due to magnetostrictive vibration, which causes unstable operation depending on the frequency, and there is a problem of noise due to magnetostrictive vibration depending on the frequency band. The Fe dust core is inexpensive, but has a problem that the magnetic permeability is low at less than 100, the core loss is large, and the choke coil cannot be downsized so much. The choke coil using the Fe-Al-Si alloy dust core is also superior in characteristics to the one using the Fe dust core, but has the same problem in terms of downsizing. As described above, the choke coils used in the conventional smoothing circuit have their respective problems and cannot be said to have sufficient characteristics.

【0004】[0004]

【発明が解決しようとする課題】ところで、スイッチン
グ電源の出力側平滑回路では、臨界電流以下になると定
電圧を得ることが困難となるため、出力回路に並列に抵
抗を入れたり、低電流が重畳した状態で高いインダクタ
ンスを示す非線形チョ−クコイル(スインギングチョ−
クコイル)が使用される。また、アクティブフィルタに
用いられるチョ−クコイルも非線形特性を示すチョ−ク
の方が好ましい。このような特性をチョ−クコイルで得
る方法としては、くさび状ギャップを入れ、飽和が部分
的におきるようにする方法が知られている。しかし、こ
の方法では、コスト上昇の問題や精度よくギャップを調
整するのが困難となる問題がある。また、異なるギャッ
プのチョ−クコイルをシリ−ズにしたり、異なるギャッ
プのコアに同時に巻線を行いチョ−クコイルを作製する
方法がある。この他に、特開平1-169905に記載のギャッ
プを形成したナノ結晶合金磁心とギャップを有しない高
透磁率磁心を複合したものが知られている。しかし、ギ
ャップを形成した磁心あるいは圧粉磁心とアモルファス
合金等の高透磁率磁心を複合した非線形チョ−クコイル
では高透磁率磁心がギャップを形成したナノ結晶合金磁
心よりも磁化しやすいため高透磁率磁心の磁心損失の割
合が大きく、Fe基アモルファス合金磁心等を使用した場
合は温度上昇が大きくなる問題がある。Co基アモルファ
ス合金を高透磁率閉磁路磁心として使用した場合は、経
時変化が大きく周囲温度が高い環境で使用すると特性が
劣化する問題がある。
By the way, in the smoothing circuit on the output side of the switching power supply, it becomes difficult to obtain a constant voltage at a critical current or less. Therefore, a resistor is inserted in parallel to the output circuit or a low current is superimposed. Non-linear choke coil (swinging choke)
Is used. Further, the choke coil used in the active filter is preferably a choke which exhibits a non-linear characteristic. As a method of obtaining such a characteristic with a choke coil, a method is known in which a wedge-shaped gap is provided so that saturation occurs partially. However, this method has a problem of cost increase and a problem that it is difficult to accurately adjust the gap. There is also a method in which choke coils having different gaps are made into a series, or cores having different gaps are simultaneously wound to manufacture choke coils. In addition to this, there is known a composite of a nanocrystalline alloy magnetic core having a gap and a high-permeability magnetic core having no gap described in JP-A-1-169905. However, in a non-linear choke coil in which a gap-formed core or a dust core and a high-permeability core such as an amorphous alloy are combined, the high permeability core is more easily magnetized than the gap-formed nanocrystalline alloy core, and thus the high permeability is high. There is a problem that the ratio of the core loss of the magnetic core is large and the temperature rise becomes large when the Fe-based amorphous alloy magnetic core is used. When a Co-based amorphous alloy is used as a high-permeability closed magnetic circuit core, there is a problem that the characteristics deteriorate when used in an environment where the temperature change is large and the ambient temperature is high.

【0005】また、従来のフェライトを高透磁率閉磁路
磁心として使用したものは、フェライトの磁気特性の温
度変化が大きく、チョ−クコイルの温度特性が劣る問題
がある。
Further, the conventional ferrite using a high-permeability closed magnetic circuit core has a problem that the temperature characteristic of the choke coil is inferior because the magnetic characteristic of the ferrite changes greatly with temperature.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
めに鋭意検討の結果、本発明者らは、ナノ結晶高透磁率
閉磁路磁心とギャップを形成した磁心あるいは圧粉磁心
を一体化した磁心からなり少なくとも1つの導線を巻回
したチョ−クコイルが特に高インダクタンスを示す低直
流重畳側の領域が広く優れた非線形特性を示し、鉄損に
よる温度上昇も小さくなるためチョ−クコイルとして好
適であることを見い出し本発明に想到した。
As a result of intensive studies to solve the above problems, the present inventors have integrated a nanocrystal high magnetic permeability closed magnetic circuit core with a magnetic core having a gap or a dust core. A choke coil made of a magnetic core and wound with at least one conducting wire exhibits excellent non-linear characteristics in a wide range on the low DC superposition side where particularly high inductance is exhibited, and is suitable as a choke coil because the temperature rise due to iron loss is also small. The present invention has been found out, and the present invention has been devised.

【0007】本発明はギャップを有しないナノ結晶高透
磁率閉磁路磁心とナノ結晶合金磁心以外のギャップを形
成した磁心を一体化あるいはギャップを有しないナノ結
晶高透磁率閉磁路磁心と圧粉磁心を一体化した非線形特
性を示すチョ−クコイル用磁心である。本発明チョ−ク
コイル用磁心の構造の例を図1(a)(b)(c)(d)(e)に、導
線を巻き測定した直流重畳特性の模式図を図2に示す。
もうひとつの本発明は前記磁心に少なくとも1つの導線
を巻回した非線形チョ−クコイルである。このチョ−ク
コイルは図2に示すような重畳電流に対してインダクタ
ンスが2段に変化する非線形特性を有し、電流が小さい
領域で高いインダクタンスが得られるため、小型で広い
出力範囲にわたり安定な特性を実現できる。磁心の特性
で考えると、これは増分比透磁率μ△と直流重畳磁界H
DCの関係として表現される。インダクタンスLは巻数と
有効断面積一定であれば増分比透磁率μ△に比例し、直
流重畳電流IDCと直流重畳磁界HDCは比例関係にある。本
発明に係わるナノ結晶合金は、たとえば特公平4-4393や
特開平1ー242755に記載の合金を挙げることができる。こ
れらの合金は組織の少なくとも50%が粒径100nm以下の微
細な粒径の合金からなる。好ましい結晶粒径は50nm以
下、特に好ましくは30nm以下である。残部は主にアモル
ファス相からなるが実質的に100%結晶であっても良
い。磁心に使われるナノ結晶合金は単ロ−ル法等の超急
冷法により作製したリボン状の板厚が1μmから40μm程
度のものを用いるが、損失を特に下げる必要がある場合
には1μmから25μm程度の板厚のものが望ましい。より
好ましくは1μmから15μmの板厚のものが望ましい。
According to the present invention, a nanocrystalline high magnetic permeability closed magnetic circuit core having no gap and a magnetic core having a gap other than a nanocrystalline alloy magnetic core are integrated or a nanocrystalline high magnetic permeability closed magnetic circuit core and a dust core having no gap are integrated. Is a choke coil magnetic core showing a non-linear characteristic. An example of the structure of the choke coil magnetic core of the present invention is shown in FIGS. 1 (a), (b), (c), (d), and (e), and FIG.
Another aspect of the present invention is a non-linear choke coil in which at least one conductive wire is wound around the magnetic core. This choke coil has a non-linear characteristic in which the inductance changes in two steps with respect to the superimposed current as shown in FIG. 2, and high inductance can be obtained in a region where the current is small. Therefore, the choke coil is small and has stable characteristics over a wide output range. Can be realized. Considering the characteristics of the magnetic core, this is due to the incremental relative permeability μ △ and the DC superimposed magnetic field H
Expressed as a DC relationship. If the number of turns and the effective area are constant, the inductance L is proportional to the incremental relative permeability μΔ, and the DC superimposed current I DC and the DC superimposed magnetic field H DC are proportional. Examples of the nanocrystalline alloy according to the present invention include alloys described in Japanese Patent Publication No. 4393/1992 and Japanese Patent Laid-Open No. 242755/1992. At least 50% of the structures of these alloys are alloys having a fine grain size of 100 nm or less. The preferred crystal grain size is 50 nm or less, particularly preferably 30 nm or less. The balance mainly consists of an amorphous phase, but may be substantially 100% crystal. The nanocrystalline alloy used for the magnetic core has a ribbon thickness of about 1 μm to 40 μm made by the ultra-quenching method such as the single roll method, but 1 μm to 25 μm if the loss needs to be particularly reduced. It is desirable that the plate thickness is about the same. It is more preferable that the plate thickness is 1 μm to 15 μm.

【0008】本発明に係わるナノ結晶合金は特にFeを主
体とする合金であって、Cu,Auから選ばれる少なくとも1
種の元素の含有量が0.1at%以上3at%以下、Ti,Zr,Hf,V,N
b,Ta,Mo,Wから選ばれる少なくとも一種の元素の含有量
が1at%以上5at%以下、Siの含有量が10at%以上17at%以
下、B含有量が4at%以上10at%以下の組成の場合特に温度
上昇を低く抑えることができる。また、ナノ結晶合金が
Feを主体とする合金であって、Cu,Auから選ばれる少な
くとも1種の元素の含有量が0at%以上3at%以下、Ti,Zr,H
f,V,Nb,Ta,Mo,Wから選ばれる少なくとも一種の元素の含
有量が2at%以上10at%以下、Siの含有量が0at%以上10at%
以下、B含有量が2at%以上10at%以下の組成の合金の場合
は入力電流が小さい場合に高インダクタンスを示す領域
を拡大できるためチョ−クコイルとして特に優れた特性
を示す。本発明に係わる磁心材料の磁歪はほぼ零か正の
材料が適している。磁歪が零の場合は磁心損失が低く温
度上昇が最も低いが、正の場合はインダクタンスの重畳
電流に対する減少の仕方がゆるやかとなる。
The nanocrystalline alloy according to the present invention is an alloy mainly composed of Fe and at least 1 selected from Cu and Au.
Content of seed elements is 0.1 at% or more and 3 at% or less, Ti, Zr, Hf, V, N
b, Ta, Mo, the content of at least one element selected from W is 1 at% or more and 5 at% or less, the Si content is 10 at% or more and 17 at% or less, the B content is 4 at% or more and 10 at% or less of the composition In particular, the temperature rise can be suppressed to a low level. In addition, nanocrystalline alloy
Fe-based alloy, the content of at least one element selected from Cu, Au 0at% or more 3at% or less, Ti, Zr, H
The content of at least one element selected from f, V, Nb, Ta, Mo, W is 2 at% or more and 10 at% or less, and the Si content is 0 at% or more and 10 at%
In the following, in the case of an alloy having a composition of B content of 2 at% or more and 10 at% or less, the region showing high inductance can be expanded when the input current is small, so that it exhibits particularly excellent characteristics as a choke coil. A material having a magnetostriction of substantially zero or positive is suitable for the magnetic core material according to the present invention. When the magnetostriction is zero, the core loss is low and the temperature rise is the lowest, but when the magnetostriction is positive, the method of decreasing the inductance with respect to the superimposed current becomes gentle.

【0009】本発明チョ−クコイル用磁心を構成するナ
ノ結晶合金閉磁路磁心と組み合わせる磁心としては、ギ
ャップを形成したFe基アモルファス磁心、ギャップを形
成したナノ結晶合金磁心、ギャップを形成したフェライ
ト磁心、Fe-Al-Si圧粉磁心、Moパ−マロイ圧粉磁心、Fe
圧粉磁心、Fe-Si圧粉磁心、ナノ結晶圧粉磁心等があ
る。また、構成される磁心どうしは一体化するため通常
樹脂やセラミック製のコアケ−スに入れたり、周囲を樹
脂コ−ティングされが、巻線するためボビンを使用する
場合は必ずしも磁心をケ−スに挿入したり樹脂コ−ティ
ングする必要はない。また、組み合わせる磁心どうしは
通常は動かないように接着あるいはケ−スやバンド等で
お互いに動かないように固定されているが完全に接着さ
れている必要はない。また、各磁心は必要に応じて樹脂
含浸される場合がある。
As the magnetic core to be combined with the nanocrystalline alloy closed magnetic circuit magnetic core constituting the magnetic core for choke coil of the present invention, a Fe-based amorphous magnetic core with a gap, a nanocrystalline alloy magnetic core with a gap, a ferrite magnetic core with a gap, Fe-Al-Si dust core, Mo permalloy dust core, Fe
There are dust cores, Fe-Si dust cores, nanocrystal dust cores, and the like. In addition, since the magnetic cores that are configured are integrated, they are usually put in a resin or ceramic core case, or the surroundings are resin coated, but when using a bobbin for winding, the magnetic core is not necessarily the case. There is no need to insert it in or resin coat it. Further, the magnetic cores to be combined are usually bonded so that they do not move, or fixed so that they do not move with each other by a case or band, but they need not be completely bonded. Further, each magnetic core may be impregnated with resin as needed.

【0010】[0010]

【実施例】以下本発明を実施例にしたがって説明するが
本発明はこれらに限定されるものではない。 (実施例1)原子%でCuが1%、Nbが2.5%、Siが15.5%、B
が6.5%、残部実質的にFeである合金溶湯を急冷し、幅1
2.5mm、厚さ10μmのアモルファス合金薄帯を作製した。
次にこの合金薄帯を外径33mm、内径20mmに巻回し、トロ
イダル磁心を作製した。この磁心をアルゴン雰囲気中55
0゜Cで1時間熱処理した。熱処理後の合金はX線回折およ
び透過電子顕微鏡による組織観察の結果、組織の50%以
上が微細なbccFe相からなるナノ結晶合金であることが
確認された。また磁歪を測定したところ1×10-6未満で
あり非常に低磁歪であることが確認された。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. (Example 1) Cu: 1%, Nb: 2.5%, Si: 15.5%, B in atomic%
Is cooled to 6.5% and the balance is substantially Fe.
An amorphous alloy ribbon having a thickness of 2.5 mm and a thickness of 10 μm was produced.
Next, this alloy ribbon was wound around an outer diameter of 33 mm and an inner diameter of 20 mm to produce a toroidal magnetic core. This magnetic core in an argon atmosphere 55
Heat treatment was performed at 0 ° C for 1 hour. As a result of microstructure observation by X-ray diffraction and a transmission electron microscope, it was confirmed that 50% or more of the microstructure of the heat-treated alloy was a nanocrystalline alloy composed of a fine bccFe phase. Moreover, the magnetostriction was measured, and it was confirmed to be very low magnetostriction, which was less than 1 × 10 −6 .

【0011】次にこの磁心とギャップを形成したFe基ア
モルファス磁心、Moパ−マロイ圧粉磁心を組み合わせ図
1(a)(b)に示す構造に重ねて接着し、フェノ−ル樹脂製
のケ−スに入れ、50タ−ンの巻線を施し本発明のチョ−
クコイルを作製した。10kHzにおける直流重畳特性を図
3に示す。比較のためにMoパーマロイ圧粉磁心からなる
チョ−クコイル、フェライトとギャップを形成したFe基
アモルファス磁心を一体化した場合の直流重畳特性も示
す。本発明チョ−クコイルは非線形特性を示しておりス
イッチング電源の2次側平滑チョ−クに好適である。更
に、フェライトを高透磁率磁心として使用した同タイプ
のチョ−クコイルよりも特に低電流側のインダクタンス
の改善が著しい。
Next, this magnetic core, a Fe-based amorphous magnetic core having a gap, and a Mo permalloy powder magnetic core are combined and laminated and adhered to the structure shown in FIGS. 1 (a) and 1 (b). -The coil of the present invention is put in a coil and wound with 50 turns.
A coil coil was made. Figure 3 shows the DC superposition characteristics at 10kHz. For comparison, DC superposition characteristics are also shown when a choke coil made of Mo permalloy powder magnetic core, a ferrite and a Fe-based amorphous magnetic core with a gap are integrated. The choke coil of the present invention exhibits non-linear characteristics and is suitable for the secondary smooth choke of the switching power supply. Further, the inductance is remarkably improved particularly on the low current side as compared with the choke coil of the same type using ferrite as a high magnetic permeability core.

【0012】次に実際にスイッチング電源の平滑回路に
組み込み温度上昇を測定した。本発明チョ−クコイルが
32゜Cから38゜Cであるのに対して高透磁率磁心としてフェ
ライト磁心を使用した非線形チョ−クコイルは43゜Cであ
り本発明チョ−クコイルの方が温度上昇が小さい。
Next, the temperature rise was actually measured by incorporating it into the smoothing circuit of the switching power supply. The choke coil of the present invention
In contrast to 32 ° C. to 38 ° C., the nonlinear choke coil using a ferrite core as the high magnetic permeability core has a temperature of 43 ° C., and the choke coil of the present invention has a smaller temperature rise.

【0013】(実施例2)表1に示す組成のナノ結晶合
金磁心を実施例1と同様の方法で作製し、他の材質の磁
心と複合し、図1(a)(b)(c)に示す構造の磁心を作製し
ホルマル線を巻回した。直流重畳特性を測定した。 ど
のチョ−クコイルも非線形な直流重畳特性を示してい
た。次に実際にスイッチング電源の平滑回路に組み込み
温度上昇△Tを測定した。得られた結果を表1に示す。
温度上昇△Tは本発明チョ−クコイルの方が従来の非線
形チョ−クコイルよりも小さく優れている。
(Example 2) Nanocrystalline alloy magnetic cores having the compositions shown in Table 1 were prepared in the same manner as in Example 1 and were compounded with magnetic cores made of other materials, as shown in FIGS. 1 (a) (b) (c). A magnetic core having the structure shown in was prepared and wound with a formal wire. The DC superposition characteristics were measured. All choke coils showed a non-linear DC superposition characteristic. Next, the temperature rise ΔT was actually measured by incorporating it in the smoothing circuit of the switching power supply. The results obtained are shown in Table 1.
The temperature rise ΔT is smaller and superior in the choke coil of the present invention than in the conventional non-linear choke coil.

【0014】[0014]

【表1】 [Table 1]

【0015】(実施例3)表2に示す組成のナノ結晶合
金磁心を実施例1と同様の方法で作製し、他の材質の磁
心と複合し、図1(a)(b)(c)に示す構造の磁心を作製し
ホルマル線を巻回し、25゜Cおよび120゜Cの直流重畳特性
を測定した。25゜C、周波数10kHz,重畳磁界4A/mにおける
増分比透磁率をμ△1(25)、120゜C、周波数10kHz,重畳磁
界4A/mにおける増分比透磁率をμ△1(120)と表し、温度
係数をα=(μ△1(25)-μ△1(120))×100/μ△1(25)と
定義した。得られた結果を表2に示す。どのチョ−クコ
イルも非線形な直流重畳特性を示した。温度係数αは本
発明チョ−クコイルの方が従来の非線形チョ−クコイル
よりも小さく優れている。
(Example 3) Nanocrystalline alloy magnetic cores having the compositions shown in Table 2 were prepared in the same manner as in Example 1 and were compounded with magnetic cores of other materials. A magnetic core having the structure shown in Fig. 3 was prepared, and a formal wire was wound around it, and the DC superposition characteristics at 25 ° C and 120 ° C were measured. Incremental relative permeability at 25 ° C, frequency 10kHz, superimposed magnetic field 4A / m is μ △ 1 (25), 120 ° C, incremental relative permeability at frequency 10kHz, superimposed magnetic field 4A / m is μ △ 1 (120). The temperature coefficient was defined as α = (μΔ 1 (25) -μΔ 1 (120)) × 100 / μΔ 1 (25). The obtained results are shown in Table 2. All choke coils showed non-linear DC superposition characteristics. The temperature coefficient α of the choke coil of the present invention is smaller and superior than that of the conventional non-linear choke coil.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【発明の効果】本発明によれば、電流が小さい場合に高
いインダクタンスを示し、温度上昇が小さく、温度安定
性にも優れたチョ−クコイル用磁心ならびに非線形チョ
−クコイルを実現できるためその効果は著しいものがあ
る。
According to the present invention, a magnetic core for a choke coil and a non-linear choke coil exhibiting a high inductance when the current is small, a small temperature rise and an excellent temperature stability can be realized. There is something remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるチョ−クコイル用磁心の構造の
例を示した図
FIG. 1 is a diagram showing an example of the structure of a choke coil core according to the present invention.

【図2】非線形チョ−クコイルの直流重畳特性の一例を
模式的に示した図
FIG. 2 is a diagram schematically showing an example of DC superposition characteristics of a nonlinear choke coil.

【図3】本発明チョ−クコイル用磁心の直流重畳特性の
例を示した図である。
FIG. 3 is a diagram showing an example of a DC superimposition characteristic of the choke coil magnetic core of the present invention.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 3/04 17/06 G 8123−5E Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01F 3/04 17/06 G 8123-5E

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ナノ結晶高透磁率閉磁路磁心とナノ結晶
合金磁心以外のギャップを形成した磁心または圧粉磁心
を一体化したことを特徴とするチョ−クコイル用磁心。
1. A core for a choke coil, characterized in that a nano-crystal high magnetic permeability closed magnetic circuit core and a magnetic core having a gap other than a nano-crystal alloy magnetic core or a powder magnetic core are integrated.
【請求項2】 ナノ結晶合金がFeを主体とする合金であ
って、Cu,Auから選ばれる少なくとも1種の元素の含有量
が0.1at%以上3at%以下、Ti,Zr,Hf,V,Nb,Ta,Mo,Wから選
ばれる少なくとも一種の元素の含有量が1at%以上7at%以
下、Siの含有量が10at%以上17at%以下、B含有量が4at%
以上10at%以下の組成であることを特徴とする請求項1
に記載のチョ−クコイル用磁心。
2. The nanocrystalline alloy is an alloy mainly composed of Fe, wherein the content of at least one element selected from Cu and Au is 0.1 at% or more and 3 at% or less, Ti, Zr, Hf, V, Content of at least one element selected from Nb, Ta, Mo, W is 1 at% or more and 7 at% or less, Si content is 10 at% or more and 17 at% or less, B content is 4 at%
The composition is not less than 10 at% and not more than 10.
A magnetic core for a choke coil according to 1.
【請求項3】 ナノ結晶合金がFeを主体とする合金であ
って、Cu,Auから選ばれる少なくとも1種の元素の含有量
が0at%以上3at%以下、Ti,Zr,Hf,V,Nb,Ta,Mo,Wから選ば
れる少なくとも一種の元素の含有量が2at%以上10at%以
下、Siの含有量が0at%以上10at%以下、B含有量が2at%以
上10at%以下の組成であることを特徴とする請求項1に
記載のチョ−クコイル用磁心。
3. The nanocrystalline alloy is an alloy mainly composed of Fe, wherein the content of at least one element selected from Cu and Au is 0 at% or more and 3 at% or less, Ti, Zr, Hf, V, Nb. , Ta, Mo, W content of at least one element is 2 at% or more and 10 at% or less, Si content is 0 at% or more and 10 at% or less, B content is 2 at% or more and 10 at% or less The magnetic core for a choke coil according to claim 1, wherein
【請求項4】 請求項1乃至請求項3に記載の磁心に少
なくとも1つの導線を巻回したことを特徴とする非線形
チョ−クコイル。
4. A non-linear choke coil characterized in that at least one conductor is wound around the magnetic core according to any one of claims 1 to 3.
JP29695193A 1993-11-26 1993-11-26 Core for choke coil and nonlinear choke coil Pending JPH07153613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29695193A JPH07153613A (en) 1993-11-26 1993-11-26 Core for choke coil and nonlinear choke coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29695193A JPH07153613A (en) 1993-11-26 1993-11-26 Core for choke coil and nonlinear choke coil

Publications (1)

Publication Number Publication Date
JPH07153613A true JPH07153613A (en) 1995-06-16

Family

ID=17840301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29695193A Pending JPH07153613A (en) 1993-11-26 1993-11-26 Core for choke coil and nonlinear choke coil

Country Status (1)

Country Link
JP (1) JPH07153613A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079379A1 (en) 2002-03-19 2003-09-25 Daifuku Co., Ltd. Composite core nonlinear reactor and induction power receiving circuit
JP2007300364A (en) * 2006-04-28 2007-11-15 Toyo Networks & System Integration Co Ltd Power line communication system
CN106486261A (en) * 2015-09-01 2017-03-08 乐金电子研发中心(上海)有限公司 Integrated EMI inductance and the device of low frequency filtering inductance
KR20170087943A (en) * 2014-11-25 2017-07-31 아뻬랑 Basic module for magnetic core of an electrical transformer, magnetic core comprising said basic module, method for manufacturing said magnetic core, and transformer comprising said magnetic core
RU2651806C2 (en) * 2016-04-07 2018-04-27 Общество с ограниченной ответственностью "Александер Электрик источники электропитания" Throttling filter of radio interference
JP2020503676A (en) * 2017-01-03 2020-01-30 エルジー イノテック カンパニー リミテッド Inductor and EMI filter including the same
EP3745431A1 (en) * 2019-05-02 2020-12-02 Thales Device for inductive filtering and electric architecture implementing the filtering device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079379A1 (en) 2002-03-19 2003-09-25 Daifuku Co., Ltd. Composite core nonlinear reactor and induction power receiving circuit
EP1486994A1 (en) * 2002-03-19 2004-12-15 Daifuku Co., Ltd. Composite core nonlinear reactor and induction power receiving circuit
US7265648B2 (en) 2002-03-19 2007-09-04 Daifuku Co., Ltd. Composite core nonlinear reactor and induction power receiving circuit
EP1486994A4 (en) * 2002-03-19 2008-05-21 Daifuku Kk Composite core nonlinear reactor and induction power receiving circuit
JP2007300364A (en) * 2006-04-28 2007-11-15 Toyo Networks & System Integration Co Ltd Power line communication system
JP4706044B2 (en) * 2006-04-28 2011-06-22 ネッツエスアイ東洋株式会社 Power line communication system
JP2018502446A (en) * 2014-11-25 2018-01-25 アペラン Basic module for magnetic core of transformer, magnetic core including the basic module, method for manufacturing the magnetic core, and transformer including the magnetic core
KR20170087943A (en) * 2014-11-25 2017-07-31 아뻬랑 Basic module for magnetic core of an electrical transformer, magnetic core comprising said basic module, method for manufacturing said magnetic core, and transformer comprising said magnetic core
CN107735843A (en) * 2014-11-25 2018-02-23 艾普伦 For the magnetic core of the infrastructure component of power transformer magnetic core, including the infrastructure component, the method for the magnetic core and the transformer including the magnetic core are manufactured
US10515756B2 (en) 2014-11-25 2019-12-24 Aperam Basic module for magnetic core of an electrical transformer, magnetic core comprising said basic module, method for manufacturing said magnetic core, and transformer comprising said magnetic core
CN107735843B (en) * 2014-11-25 2021-01-05 艾普伦 Base assembly for a magnetic core of a power transformer, magnetic core comprising such a base assembly, method for manufacturing such a magnetic core and transformer comprising such a magnetic core
CN106486261A (en) * 2015-09-01 2017-03-08 乐金电子研发中心(上海)有限公司 Integrated EMI inductance and the device of low frequency filtering inductance
RU2651806C2 (en) * 2016-04-07 2018-04-27 Общество с ограниченной ответственностью "Александер Электрик источники электропитания" Throttling filter of radio interference
JP2020503676A (en) * 2017-01-03 2020-01-30 エルジー イノテック カンパニー リミテッド Inductor and EMI filter including the same
US11289252B2 (en) 2017-01-03 2022-03-29 Lg Innotek Co., Ltd. Inductor and EMI filter including the same
US11955262B2 (en) 2017-01-03 2024-04-09 Lg Innotek Co., Ltd. Inductor and EMI filter including the same
EP3745431A1 (en) * 2019-05-02 2020-12-02 Thales Device for inductive filtering and electric architecture implementing the filtering device
US11715589B2 (en) 2019-05-02 2023-08-01 Thales Inductive filtering device and electrical architecture implementing the inductive filtering device

Similar Documents

Publication Publication Date Title
JP3233313B2 (en) Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
US5635828A (en) Active filter circuit and power supply apparatus including same
TWI689599B (en) Soft magnetic alloys and magnetic components
JP2894561B2 (en) Soft magnetic alloy
JPH07153613A (en) Core for choke coil and nonlinear choke coil
JPH05335154A (en) Magnetic core and manufacture thereof
JP3856245B2 (en) Method for producing high permeability nanocrystalline alloy
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JPH08153614A (en) Magnetic core
JPH11176653A (en) Magnetic core and magnetic parts using magnetic core
JP3287481B2 (en) Magnetic core made of ultra-microcrystalline alloy excellent in direct current superposition characteristics, method of manufacturing the same, and choke coil and transformer using the same
JP3228427B2 (en) Ultra-microcrystalline soft magnetic alloy
JP3533237B2 (en) Saturable core and magnetic amplifier using the same
WO1999003116A1 (en) Coil
CN111640550B (en) Alloy and method for producing a magnetic core
JPH0754108A (en) Magnetic alloy having iso-permeability, production thereof and magnetic core using the same
JPH0794314A (en) Pulse transformer magnetic core and pulse transformer
JPH0834160B2 (en) Swing choke coil
JP2637184B2 (en) Core for oscillation transformer
JP2835127B2 (en) Magnetic core and manufacturing method thereof
JP2561573B2 (en) Amorphous ribbon saturable core
JP2000252111A (en) High-frequency saturable magnetic core and device using the same
JP3121641B2 (en) Switching power supply
JPH07106115A (en) Laminated magnetic core
JPH0799121A (en) Core for choke coil