JPH07153465A - Unsintered positive electrode plate for alkaline storage battery - Google Patents

Unsintered positive electrode plate for alkaline storage battery

Info

Publication number
JPH07153465A
JPH07153465A JP5300454A JP30045493A JPH07153465A JP H07153465 A JPH07153465 A JP H07153465A JP 5300454 A JP5300454 A JP 5300454A JP 30045493 A JP30045493 A JP 30045493A JP H07153465 A JPH07153465 A JP H07153465A
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
active material
coo
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5300454A
Other languages
Japanese (ja)
Other versions
JP3118357B2 (en
Inventor
Chieko Aoyama
知枝子 青山
Masayuki Terasaka
雅行 寺坂
Kenji Arisawa
謙二 有澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP05300454A priority Critical patent/JP3118357B2/en
Publication of JPH07153465A publication Critical patent/JPH07153465A/en
Application granted granted Critical
Publication of JP3118357B2 publication Critical patent/JP3118357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an unsintered positive electrode plate for an alkaline storage battery using nickel hydroxide as the main constituent of an active material and having a high and stable utilization factor of the active material by adding a specific compound to the active material. CONSTITUTION:In this unsintered positive electrode plate for an alkaline storage battery using nickel hydroxide as the main constituent of an active material, a compound expressed by CoOx (0<-x<1) of 10wt.% is added to the active material, for example. Cobalt oxide (CoO) is heat-treated in the hydrogen atmosphere to obtain this compound, for example.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】アルカリ蓄電池用水酸化ニッケル
正極板に関するものである。
TECHNICAL FIELD The present invention relates to a nickel hydroxide positive electrode plate for alkaline storage batteries.

【0002】[0002]

【従来の技術】従来、ニッケル/カドミウム蓄電池やニ
ッケル/水素蓄電池用のアルカリ蓄電池において、その
正極板にはニッケル粉末をパンチングメタル等に焼結さ
せた多孔体基板に活物質を保持させた焼結式ニッケル正
極板が用いられてきた。このような焼結式ニッケル正極
板では、以下のような問題を有していた。
2. Description of the Related Art Conventionally, in an alkaline storage battery for a nickel / cadmium storage battery or a nickel / hydrogen storage battery, a positive electrode plate is made by sintering nickel powder into a punching metal or the like, and a porous substrate is used to hold the active material. Formula nickel positive plates have been used. Such a sintered nickel positive electrode plate has the following problems.

【0003】先ず、多孔体基板は高多孔度とした場合、
強度が弱くなるため、多孔度90%以上を得ることは困
難である。従って、活物質の充填量を増加させるため
に、基板の多孔度を高くしようとしても限界がある。ま
た、焼結式正極板は、活物質を焼結基板に保持させるた
めに、煩雑な工程を必要とするという問題を有してい
る。
First, when the porous substrate has a high porosity,
Since the strength becomes weak, it is difficult to obtain a porosity of 90% or more. Therefore, there is a limit in increasing the porosity of the substrate in order to increase the filling amount of the active material. Further, the sintered positive electrode plate has a problem that a complicated process is required to hold the active material on the sintered substrate.

【0004】このような焼結式正極板の問題点を改良す
る正極板として、高エネルギー密度化を図ることがで
き、しかも作製の作業工程が簡単な正極板として、活物
質をスポンジ状ニッケルなどの活物質保持体に直接保持
させている非焼結式正極板が用いられている。上記非焼
結正極板では、高エネルギー密度化を図るために、従来
から活物質の利用率を向上させる様々な試みが行なわれ
ている。
As a positive electrode plate for improving the above problems of the sintered positive electrode plate, a positive electrode plate capable of achieving high energy density and having a simple manufacturing process is prepared. The non-sintered positive electrode plate directly held by the active material holder is used. In the non-sintered positive electrode plate, various attempts have been conventionally made to improve the utilization rate of the active material in order to increase the energy density.

【0005】その例として、活物質に対して添加物とし
て金属コバルト粉末が添加された正極板(特開昭59−
128766号公報)、活物質に対して金属コバルトと
コバルト化合物が添加された正極板(特開昭53−51
449号公報、特開平2−216763号公報)があ
る。これらの正極板では、活物質に添加されたコバルト
種が一旦電解液中に溶解し、水酸化ニッケル表面に一様
に分散して活物質−活物質間及び活物質−集電体間を連
結した形で析出し、その後の、初回充電によって析出物
はオキシ水酸化コバルトになり、オキシ水酸化コバルト
のネットワークが形成される。
As an example thereof, a positive electrode plate in which metallic cobalt powder is added as an additive to an active material (JP-A-59-59).
No. 128766), a positive electrode plate in which metallic cobalt and a cobalt compound are added to an active material (JP-A-53-51).
449 and Japanese Patent Laid-Open No. 2-216763). In these positive electrode plates, the cobalt species added to the active material are once dissolved in the electrolytic solution and uniformly dispersed on the nickel hydroxide surface to connect the active material-active material and the active material-current collector. In the form described above, the deposit turns into cobalt oxyhydroxide by the first charge, and a network of cobalt oxyhydroxide is formed.

【0006】このオキシ水酸化コバルトは導電性が高
く、形成されたネットワークにより活物質−活物質間及
び活物質−集電体間の導電性が向上し、結果として活物
質の利用率が向上する。上記した特開昭53−5144
9号公報、特開平2−216763号公報に記載された
コバルト化合物の中でも特に酸化コバルト(CoO)は
利用率向上の効果が高いことが知られている。
This cobalt oxyhydroxide has a high conductivity, and the formed network improves the conductivity between the active material and the active material and between the active material and the current collector, and as a result, the utilization rate of the active material is improved. . JP-A-53-5144 described above
Among the cobalt compounds described in Japanese Patent Laid-Open No. 9-216716 and Japanese Patent Laid-Open No. 216763/1990, cobalt oxide (CoO) is known to have a high effect of improving the utilization rate.

【0007】[0007]

【発明が解決しようとする課題】ところが、上記のよう
な正極板では、以下のような問題が生じる。先ず、添加
物として金属コバルトを添加する場合、金属コバルト
は、電解質中には溶解しにくいため、充分な導電性のネ
ットワークが形成されにくい。従って、活物質利用率の
向上効果が低いという問題があった。
However, the above-mentioned positive electrode plate has the following problems. First, when metallic cobalt is added as an additive, metallic cobalt is less likely to be dissolved in the electrolyte, so that a sufficiently conductive network is less likely to be formed. Therefore, there is a problem that the effect of improving the utilization rate of the active material is low.

【0008】一方、酸化コバルト(CoO)について
は、電解液中にも溶解しやすく、活物質−活物質間及び
活物質−集電体間に渡る均一なネットワークが形成し、
活物質の利用率の向上効果の高い添加物である。しかし
ながら、空気中で酸化されやすく、正極板の作製時や、
保存時に劣化し、添加剤としての効果が低下してしまう
という問題があった。
On the other hand, cobalt oxide (CoO) is easily dissolved in the electrolytic solution and forms a uniform network between the active material and the active material and between the active material and the current collector.
It is an additive with a high effect of improving the utilization rate of the active material. However, it is easily oxidized in the air, and when manufacturing the positive electrode plate,
There is a problem that it deteriorates during storage and the effect as an additive decreases.

【0009】本発明は上記問題点を解決するために行な
われたものであり、活物質の利用率が高く、しかも安定
した利用率が得られるアルカリ蓄電池用非焼結式正極板
を提供することを目的とする。
The present invention has been made to solve the above problems, and provides a non-sintered positive electrode plate for an alkaline storage battery, which has a high utilization rate of an active material and a stable utilization rate. With the goal.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、水酸化ニッケルを活物質の主成分とする
アルカリ蓄電池用非焼結正極板において、上記活物質に
対してCoOx (0<x<1)で示される化合物が添加
されていることを特徴とする。
In order to achieve the above object, the present invention provides a non-sintered positive electrode plate for an alkaline storage battery containing nickel hydroxide as a main component of an active material, wherein CoO x is added to the active material. The compound represented by (0 <x <1) is added.

【0011】[0011]

【作用】本発明の添加剤として用いた、CoOx (0<
x<1)は、コバルト酸化物ではなく、金属コバルト
と、コバルト酸化物いずれの性質も有した化合物であ
る。このCoOx (0<x<1)は、酸素に対する性質
としては、金属コバルト的な性質を有しており、酸素に
よる酸化を受けにくい。
The function of CoO x (0 <
x <1) is not cobalt oxide but a compound having both properties of metallic cobalt and cobalt oxide. This CoO x (0 <x <1) has a metallic cobalt-like property with respect to oxygen and is unlikely to be oxidized by oxygen.

【0012】これに加えて、従来の酸化コバルト(Co
O)と同様に、電解液中に溶解し易く、水酸化ニッケル
の表面を覆い、活物質−活物質間及び活物質−集電体の
導電性を高め、その結果として活物質の利用率を効果的
に向上させることができる。
In addition to this, conventional cobalt oxide (Co
Like O), it is easily dissolved in the electrolytic solution, covers the surface of nickel hydroxide, and enhances the conductivity between the active material and the active material and between the active material and the current collector. As a result, the utilization rate of the active material is increased. It can be effectively improved.

【0013】[0013]

【実施例】【Example】

(実施例1)先ず、活物質であるNi(OH)2 粉末9
0重量%と、活物質の利用率向上のための添加剤として
CoO0.7 粉末(粒径 1.5μm)10重量%とを混
合した。
(Example 1) First, Ni (OH) 2 powder 9 as an active material was used.
0% by weight and 10% by weight of CoO 0.7 powder (particle size: 1.5 μm) as an additive for improving the utilization rate of the active material were mixed.

【0014】次に、上記の活物質と、添加剤との混合粉
末に対して、結着剤であるHPC1重量%水溶液を50
重量%加え、混練してペーストを作製した。このペース
トをニッケルスポンジに保持させ、乾燥の後、圧延を行
い非焼結式正極板を作製した。この正極板に用いられた
添加剤CoO0.7 は以下のようにして作製した。 (CoO0.7 の作製法方)酸化コバルト(CoO)を水
素雰囲気中で加熱処理を行なうことにより、上記実施例
の添加剤CoO0.7 を作製した。
Next, to the mixed powder of the above-mentioned active material and the additive, 50% of a 1% by weight HPC aqueous solution as a binder is added.
% By weight and kneaded to prepare a paste. This paste was held on a nickel sponge, dried, and then rolled to produce a non-sintered positive electrode plate. The additive CoO 0.7 used in this positive electrode plate was prepared as follows. (Method for Producing CoO 0.7 ) By subjecting cobalt oxide (CoO) to heat treatment in a hydrogen atmosphere, the additive CoO 0.7 of the above-described example was produced.

【0015】このように作製した正極板を、以下(a)
正極板と称する。 (比較例1)添加剤として、CoO0.7 の代わりに、酸
化コバルト(CoO 粒径1.5μm)を用いた以外
は、上記実施例1と同様に正極板を作製した。このよう
に作製した正極板を、以下(x1 )正極板と称する。 (比較例2)添加剤として、CoO0.7 の代わりに、金
属コバルト(粒径1.5μm)を用いた以外は、上記実
施例1と同様に正極板を作製した。
The positive electrode plate produced in this manner is described below in (a).
It is called a positive electrode plate. (Comparative Example 1) A positive electrode plate was produced in the same manner as in Example 1 except that cobalt oxide (CoO 2 particle size of 1.5 μm) was used as an additive instead of CoO 0.7 . The positive electrode plate thus manufactured is hereinafter referred to as a (x 1 ) positive electrode plate. Comparative Example 2 A positive electrode plate was produced in the same manner as in Example 1 except that metallic cobalt (particle size: 1.5 μm) was used as the additive instead of CoO 0.7 .

【0016】このように作製した正極板を、以下
(x2 )正極板と称する。 (比較例3)添加剤として、CoO0.7 の代わりに、酸
化コバルト(CoO)と金属コバルトとを用い、その添
加量としては、活物質Ni(OH)2 90重量%に対し
て、酸化コバルト(CoO)を7重量%、金属コバルト
を3重量%を,用いた以外は上記実施例と同様に正極板
を作製した。
The positive electrode plate thus produced is hereinafter referred to as a (x 2 ) positive electrode plate. (Comparative Example 3) As an additive, cobalt oxide (CoO) and metallic cobalt were used instead of CoO 0.7 , and the amount of addition was 90% by weight of the active material Ni (OH) 2 and cobalt oxide ( A positive electrode plate was produced in the same manner as in the above-mentioned example except that 7% by weight of CoO) and 3% by weight of metallic cobalt were used.

【0017】このように作製した正極板を、以下
(x3 )正極板と称する。 (実験1)上記、(a)正極板、(x1 )正極板〜(x
3 )正極板を用いて、極板利用率について測定を行なっ
たのでその結果を表1に示す。この実験に先立ち、上記
正極板を用いた利用率測定用のセルを作製した。
The positive electrode plate thus manufactured is hereinafter referred to as (x 3 ) positive electrode plate. (Experiment 1) The above (a) positive electrode plate, (x 1 ) positive electrode plate to (x
3 ) The electrode plate utilization rate was measured using the positive electrode plate, and the results are shown in Table 1. Prior to this experiment, a cell for use rate measurement using the positive electrode plate was prepared.

【0018】各正極板と、焼結式カドミウム極と、セパ
レータを用いて極板群を作製し、水酸化カリウム30重
量%水溶液に浸漬し、測定用セルとした。このように作
製した各測定用セルを、以下(a)正極板を使用したも
のは(A)セル、(x1 )〜(x3 )正極板を用いたも
のは、それぞれ(X1 )〜(X3 )セルと順に称する。
An electrode group was prepared by using each positive electrode plate, a sintered cadmium electrode, and a separator, and the electrode plate group was immersed in a 30% by weight aqueous solution of potassium hydroxide to prepare a measuring cell. Each of the measurement cells prepared in this manner is as follows: (a) a cell using a positive electrode plate (A) cell, and (x 1 ) to (x 3 ) a positive electrode plate, respectively (X 1 ) to They are referred to as (X 3 ) cells in order.

【0019】実験条件としては、以下のような充放電条
件で測定を行った。 充電:0.1C(VS理論容量)×16h 放電:1/4C(VS理論容量)0Vまで放電 また、極板利用率は、下記に示す式(1)に基づいて算
出した。 極板利用率=(測定した放電容量/理論容量)×100・・・(1) 但し、表1には(X2 )セルの利用率の結果を100と
した場合の値が示されている。
As the experimental conditions, the measurement was carried out under the following charging / discharging conditions. Charge: 0.1 C (VS theoretical capacity) × 16 h Discharge: 1/4 C (VS theoretical capacity) Discharge to 0 V The electrode plate utilization rate was calculated based on the formula (1) shown below. Electrode plate utilization rate = (measured discharge capacity / theoretical capacity) × 100 (1) However, Table 1 shows the values when the utilization rate of the (X 2 ) cell is 100. .

【0020】[0020]

【表1】 [Table 1]

【0021】表1から明らかなように、添加剤としてC
oO0.7 を用いた場合の極板利用率は、酸化コバルト
(CoO)を用いた場合の極板利用率と同じであり、本
実施例に用いたCoO0.7 は、利用率の向上効果の高い
化合物であるといえる。 (実験2)次に、添加剤の保存性能について調べたので
その結果を表2に示す。
As is clear from Table 1, C is used as an additive.
electrode plates utilization when using oO 0.7 is the same as the electrode plate utilization in the case of using a cobalt oxide (CoO), CoO 0.7 was used in this example, a high effect of improving the utilization compound You can say that. (Experiment 2) Next, the storage performance of the additive was examined. The results are shown in Table 2.

【0022】実験条件としては、添加剤である、実施例
で用いたCoO0.7 、比較例で用いた酸化コバルト(C
oO)、金属コバルトをそれぞれ40度の雰囲気中で1
週間放置し、上記したのと同様に正極板を作製し、実験
1と同様にセル作製及び利用率の測定をおこなった。但
し、表2の結果は、実験1での(X2 )セルの利用率の
結果を100とした場合の値であり、比較のため実験1
の結果を保存前の利用率のデータとして再度あわせて記
載している。
As the experimental conditions, the additive, CoO 0.7 used in the examples, and the cobalt oxide (C used in the comparative examples,
oO) and metallic cobalt in an atmosphere of 40 degrees each
After leaving it for a week, a positive electrode plate was produced in the same manner as described above, and the cell production and the utilization rate were measured in the same manner as in Experiment 1. However, the results in Table 2 are values when the result of the utilization rate of the (X 2 ) cell in Experiment 1 is set to 100, and for comparison, Experiment 1
The results are re-listed as the data of utilization rate before storage.

【0023】[0023]

【表2】 [Table 2]

【0024】表2から明らかなように、添加剤としてC
oO0.7 を用いた(A)セルは保存後も保存前と変わら
ず高い利用率が得られ、安定した利用率を得ることがで
きることがわかる。 (X1 )セルについては、添加されている金属コバルト
の劣化が起こっていないようで、保存後も利用率の低下
は起こっていないが、利用率自体が低い。
As is apparent from Table 2, C is used as an additive.
It can be seen that the cell (A) using oO 0.7 has a high utilization rate even after storage, which is the same as that before storage, and a stable utilization rate can be obtained. Regarding the (X 1 ) cell, it seems that the metallic cobalt added is not deteriorated and the utilization factor does not decrease after storage, but the utilization factor itself is low.

【0025】(X2 )(X3 )セルについては、酸化さ
れやすい酸化コバルト(CoO)が添加剤として使用さ
れているので、保存中に酸化がおこり、保存後の利用率
の低下を招いたものと思われる。 上記の実験1、2の結果からCoO0.7 は、極板利用率
の向上効果が高く、保存性能も良好な優れた添加剤であ
ることが明らかになった。 (その他の事項)上記実施例で用いた添加剤は、CoO
0.7 であるが、CoOx (0<x<1)であれば、この
組成に限ることはない。
With respect to the (X 2 ) (X 3 ) cells, since cobalt oxide (CoO), which is easily oxidized, is used as an additive, oxidation occurs during storage, resulting in a decrease in utilization rate after storage. It seems to be. From the results of Experiments 1 and 2 described above, it was revealed that CoO 0.7 is an excellent additive having a high effect of improving the electrode plate utilization rate and a good storage performance. (Other matters) The additive used in the above examples is CoO.
Although it is 0.7 , it is not limited to this composition as long as it is CoO x (0 <x <1).

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
CoOx (0<x<1)は、酸化コバルト(CoO)と
同様に、極板利用率向上の効果が高く、しかも酸素と反
応しにくい化合物である。このような、化合物を添加物
として用いることによって、活物質の利用率が高く、し
かも安定した利用率の得られるアルカリ蓄電池用非焼結
式正極板を提供することができた。
As described above, according to the present invention,
Similar to cobalt oxide (CoO), CoO x (0 <x <1) is a compound that has a high effect of improving the utilization rate of the electrode plate and is hard to react with oxygen. By using such a compound as an additive, it was possible to provide a non-sintered positive electrode plate for an alkaline storage battery, which has a high utilization rate of the active material and a stable utilization rate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケルを活物質の主成分とする
アルカリ蓄電池用非焼結正極板において、上記活物質に
対してCoOx (0<x<1)で示される化合物が添加
されていることを特徴とするアルカリ蓄電池用非焼結正
極板。
1. In a non-sintered positive electrode plate for an alkaline storage battery containing nickel hydroxide as a main component of an active material, a compound represented by CoO x (0 <x <1) is added to the active material. A non-sintered positive electrode plate for an alkaline storage battery characterized by the above.
JP05300454A 1993-11-30 1993-11-30 Non-sintered positive electrode plate for alkaline storage batteries Expired - Fee Related JP3118357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05300454A JP3118357B2 (en) 1993-11-30 1993-11-30 Non-sintered positive electrode plate for alkaline storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05300454A JP3118357B2 (en) 1993-11-30 1993-11-30 Non-sintered positive electrode plate for alkaline storage batteries

Publications (2)

Publication Number Publication Date
JPH07153465A true JPH07153465A (en) 1995-06-16
JP3118357B2 JP3118357B2 (en) 2000-12-18

Family

ID=17884996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05300454A Expired - Fee Related JP3118357B2 (en) 1993-11-30 1993-11-30 Non-sintered positive electrode plate for alkaline storage batteries

Country Status (1)

Country Link
JP (1) JP3118357B2 (en)

Also Published As

Publication number Publication date
JP3118357B2 (en) 2000-12-18

Similar Documents

Publication Publication Date Title
JPH08148145A (en) Nickel electrode active material, nickel electrode and nickel-alkaline battery using the material, and manufacture thereof
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
JP4458725B2 (en) Alkaline storage battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
US6221529B1 (en) Positive electrode for lithium battery and lithium battery
JP3623320B2 (en) Nickel electrode active material and nickel electrode using the nickel electrode active material
JP2021086834A (en) Positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
JP2004124132A (en) Hydrogen occlusion alloy powder, hydrogen occlusion alloy electrode, and nickel-hydrogen storage battery using the same
JP3118357B2 (en) Non-sintered positive electrode plate for alkaline storage batteries
JPS6137733B2 (en)
JP3188000B2 (en) Non-sintered nickel positive electrode
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP2797554B2 (en) Nickel cadmium storage battery
JPH06260166A (en) Nickel electrode for alkaline storage battery
JP3075114B2 (en) Nickel positive electrode for alkaline storage batteries
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP2002042810A (en) Metallic cobalt coated cobalt compound powder for positive electrode of alkaline secondary battery
JP2001236959A (en) Non-sintered alkali cell positive electrode
JPH10172560A (en) Lithium battery and positive electrode for it
JP2754800B2 (en) Nickel cadmium storage battery
JP3702107B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP3631206B2 (en) Non-sintered nickel electrode for alkaline storage battery
JP3619703B2 (en) Method for producing nickel electrode for alkaline storage battery
JP2975129B2 (en) Electrodes for alkaline storage batteries
JP4357133B2 (en) Hydrogen storage alloy for electrode, hydrogen storage alloy electrode and alkaline storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees