JPH0715105B2 - Fuel additive manufacturing method - Google Patents

Fuel additive manufacturing method

Info

Publication number
JPH0715105B2
JPH0715105B2 JP2251287A JP2251287A JPH0715105B2 JP H0715105 B2 JPH0715105 B2 JP H0715105B2 JP 2251287 A JP2251287 A JP 2251287A JP 2251287 A JP2251287 A JP 2251287A JP H0715105 B2 JPH0715105 B2 JP H0715105B2
Authority
JP
Japan
Prior art keywords
water
oil
aluminum
solution
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2251287A
Other languages
Japanese (ja)
Other versions
JPS63191895A (en
Inventor
光雄 小野沢
滋 中井
高昌 石岡
Original Assignee
タイホ−工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タイホ−工業株式会社 filed Critical タイホ−工業株式会社
Priority to JP2251287A priority Critical patent/JPH0715105B2/en
Publication of JPS63191895A publication Critical patent/JPS63191895A/en
Publication of JPH0715105B2 publication Critical patent/JPH0715105B2/en
Priority to US10/080,528 priority patent/US6799470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はアルミニウムを主成分とする燃料添加剤の製
造方法に関するもので、更に詳しくは原油、石油ピッ
チ、灯油、軽油、ガソリン、再生油等の燃料油中への混
合性が良好で、しかもアルミニウムを高含有量としても
低粘度に維持できるような燃料添加剤の製造法に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a fuel additive containing aluminum as a main component, and more specifically, crude oil, petroleum pitch, kerosene, light oil, gasoline, regenerated oil, etc. The present invention relates to a method for producing a fuel additive which has good miscibility in fuel oil and which can maintain a low viscosity even when the content of aluminum is high.

(従来の技術) 従来、燃料油添加剤は使用目的に応じて硫黄酸化物、窒
素酸化物等の有害成分の発生抑制、スラッジ分散剤、腐
食防止剤、燃料灰類の堆積付着防止剤、燃焼促進剤、煤
煙防止剤、着火促進剤、セタン価向上剤、凝固点降下剤
等が知られている。
(Conventional technology) Conventionally, fuel oil additives have been used to suppress the generation of harmful components such as sulfur oxides and nitrogen oxides, sludge dispersants, corrosion inhibitors, fuel ash deposit adhesion inhibitors, and combustion. Accelerators, smoke suppressants, ignition accelerators, cetane number improvers, freezing point depressants and the like are known.

これ等の燃料添加剤の多くは無機金属、金属酸化物、金
属水酸化物、炭酸塩等の無機物の微粉末を界面活性剤を
主成分とする分散剤と共に溶剤や水に混合してスラリー
状としたものであるが、このようなスラリー状であると
場合によっては燃料添加剤の保存時に成分中の無機物が
沈殿したり、或いは分離したりして燃料油に添加した
時、配管部分やバーナー部分で沈殿して閉塞させたり、
バーナーノズル部分を摩耗することがある。また分散性
が悪く、しかも粒径が大きい場合、燃焼火炎中、排ガス
中、その他に存在する有害物質との接触効果が不充分
で、添加剤としての充分な効果が期待できない。
Most of these fuel additives are mixed with fine powders of inorganic materials such as inorganic metals, metal oxides, metal hydroxides, and carbonates in a solvent or water together with a dispersant containing a surfactant as a main component to form a slurry. However, if such a slurry is added to the fuel oil by precipitating or separating inorganic substances in the components during storage of the fuel additive, it may become a pipe part or burner. Part of it may settle and block,
The burner nozzle may wear. Further, when the dispersibility is poor and the particle size is large, the effect of contacting with harmful substances present in combustion flame, exhaust gas, and the like is insufficient, and a sufficient effect as an additive cannot be expected.

また、従来から油溶性の金属化合物を石油系溶剤等に溶
解した燃料油添加剤も知られている。この燃料油添加剤
は燃料油と均一に混合溶解し、それ故安定性も良好であ
るが、油溶性金属化合物中に有効成分である金属成分の
含有量が少ないという欠点がある。
Further, conventionally, a fuel oil additive in which an oil-soluble metal compound is dissolved in a petroleum solvent or the like is also known. This fuel oil additive is uniformly mixed and dissolved with the fuel oil, and therefore has good stability, but has a drawback that the content of the metal component as an active ingredient in the oil-soluble metal compound is small.

更に、油溶性アルミニウム化合物は増粘ゲル化性があ
り、このため燃料添加剤として取扱易くするためには可
成り、希釈しなければならず、したがって得られた燃料
添加剤はAl成分の含有量の少ないものになり、実際にAl
として0.1〜0.5%程度含有したものしか得られない。
Furthermore, the oil-soluble aluminum compound has a thickening gelation property, and therefore it must be diluted in order to make it easy to handle as a fuel additive, and thus the obtained fuel additive has a content of Al component. Is actually less
As a result, only those containing about 0.1 to 0.5% can be obtained.

一方、特開昭61−152794A号公報には油溶性粉体組成物
を有効成分とする燃料添加剤に関する発明が開示されて
いる。これはマグネシウム、カルシウム、バリウム等の
アルカリ土類化合物水溶液にNaOH、KOH、NH4OH、Ca(O
H)等のアルカリ剤を加えて液のpHを9〜11に上昇さ
せ、生成したアルカリ土類金属水酸化物の表面にナフテ
ン酸、トール油脂肪酸、石油スルフオン酸、アルキルリ
ン酸エステル、オレイン酸、ラウリン酸等を吸着させて
油溶性の凝集物を製造し、更にこれを脱塩のため水洗
し、脱水乾燥して得た粉体組成物を燃料添加剤の有効成
分とするもので、この方法で得られた粉体組成物は油類
中への分散性が良好であり、Al成分の含有量も3%程度
に上昇させることができる。
On the other hand, JP-A-61-152794A discloses an invention relating to a fuel additive containing an oil-soluble powder composition as an active ingredient. This is a solution of alkaline earth compounds such as magnesium, calcium and barium in NaOH, KOH, NH 4 OH, Ca (O
H) The pH of the liquid is increased to 9 to 11 by adding an alkaline agent such as 2 and naphthenic acid, tall oil fatty acid, petroleum sulfonic acid, alkyl phosphate, olein are formed on the surface of the produced alkaline earth metal hydroxide. An acid, lauric acid or the like is adsorbed to produce an oil-soluble aggregate, which is further washed with water for desalting, and dehydrated and dried to obtain a powder composition, which is used as an active ingredient of a fuel additive. The powder composition obtained by this method has good dispersibility in oils, and the content of the Al component can be increased to about 3%.

(発明が解決しようとする問題点) しかし、上述の方法でアルミニウム含有の燃料添加剤を
製造する場合、アルミニウム化合物水溶液のpHが9〜11
と可成りアルカリ側にあるため、アルミニウム化合物の
多くはアルミン酸として溶解し、粒径の小さなAl(OH)
粒子のものしか得られず、粒径の小さなAl(OH)
子の周囲にナフテン酸等が吸着して油溶性の粉体組成物
を形成することになるが、このように粒径の小さなAl
(OH3)粒子を主体とした組成物を油類中に分散した場
合には燃料添加剤の粘度が高くなってしまい、したがっ
て燃料添加剤中のAl成分の含有量は3%程度が限度であ
る。
(Problems to be Solved by the Invention) However, when the aluminum-containing fuel additive is produced by the above-mentioned method, the pH of the aluminum compound aqueous solution is 9 to 11
Since most of the aluminum compounds are dissolved as aluminate because it is on the alkaline side, Al (OH) with a small particle size
Only 3 particles can be obtained, and naphthenic acid and the like are adsorbed around the small particles of Al (OH) 3 to form an oil-soluble powder composition. Small Al
When a composition composed mainly of (OH 3 ) particles is dispersed in oils, the viscosity of the fuel additive becomes high, so the content of Al component in the fuel additive is limited to about 3%. is there.

また、アルミニウム化合物の多くはアルミン酸となるた
め、吸着不充分な粒子が多く存在するようになる。この
ため、油溶性の凝集物の水洗工程でそれらの粒子が流出
して洗浄廃水を白濁させたり、或いは水洗、脱水乾燥後
の粉体組成物収量を低下させてしまう。
In addition, since most of the aluminum compounds are aluminate, many particles that are insufficiently adsorbed are present. Therefore, in the step of washing the oil-soluble aggregate with water, those particles flow out to make the washing wastewater cloudy, or the yield of the powder composition after washing and dehydration drying is reduced.

更に、吸着不充分な粒子が粉体組成物中に含まれると、
この粉体組成物を油類中に分散させた場合、Al成分がこ
の低濃度であってもプリン状に固化して流動性を失って
しまう場合がある。
Furthermore, if particles having insufficient adsorption are contained in the powder composition,
When this powder composition is dispersed in oils, the Al component may be solidified in the form of pudding and lose its fluidity even at this low concentration.

この発明は上記実情に鑑み、Al成分の含有量を例えば7
〜10%程度の高含有量としても低粘度に維持でき、しか
もプリン状に固化しないような燃料添加剤の製造方法を
開発することを目的とするものである。
In view of the above situation, the present invention sets the content of the Al component to, for example, 7
It is an object of the present invention to develop a method for producing a fuel additive that can maintain a low viscosity even when the content is as high as about 10% and does not solidify into a pudding.

(問題点を解決するための手段) 以上の問題点を解決するために、鋭意研究の結果、Al
(OH)はヒドロゾルとよばれる程の超微粒子であるか
ら上述のようにAl成分を高含有量としても低粘度に維持
でき、しかもプリン状に固化しないような燃料添加剤の
製造するには、Al(OH)の粒径を数十〜数百Åに成長
させ、更にその粒子の1個1個に完全にナフテン酸等を
吸着させる必要があることを見出したものである。
(Means for Solving Problems) In order to solve the above problems, as a result of earnest research, Al
Since (OH) 3 is ultrafine particles called hydrosol, it is possible to maintain a low viscosity even with a high content of Al component as described above, and to produce a fuel additive that does not solidify into a purine form. , Al (OH) 3 has a particle size of several tens to several hundreds of Å, and it is necessary to completely adsorb naphthenic acid and the like to each of the particles.

そこで、この発明ではアルミニウムの水溶性塩の水溶液
にアンモニア水を加えて液のpHを6〜9にして生成した
アルミニウムの水酸化物の水懸濁液を充分に加熱した後
にナフテン酸、トール油脂肪酸、石油スルホン酸、不飽
和脂肪酸、飽和脂肪酸の1種又は2種以上からなる吸着
物質と油性の無極性溶剤と水及びアンモニアからなるO/
wエマルジョンを添加して上記懸濁液中の粒子を凝集さ
せ、該凝集物を濾過、洗浄、乾燥して油類中に分散させ
る燃料添加剤の製造法を提案するものである。
Therefore, in the present invention, ammonia water is added to an aqueous solution of a water-soluble salt of aluminum to adjust the pH of the solution to 6 to 9 and the resulting aqueous suspension of aluminum hydroxide is sufficiently heated before naphthenic acid or tall oil is added. O / consisting of an adsorbing substance consisting of one or more of fatty acids, petroleum sulfonic acids, unsaturated fatty acids and saturated fatty acids, an oily non-polar solvent, water and ammonia
w An emulsion is added to agglomerate the particles in the suspension, and the agglomerate is filtered, washed, dried, and dispersed in oil to prepare a method for producing a fuel additive.

この発明について詳しく説明すると、ここで使用するア
ルミニウムの水溶性塩としては特に塩化物が良好である
が、その他に硫酸塩、硝酸塩、酢酸塩のようなアルミニ
ウムの水溶性塩を使用することができる。
The present invention will be described in detail. As the water-soluble salt of aluminum used here, chloride is particularly preferable, but in addition, water-soluble salts of aluminum such as sulfate, nitrate and acetate can be used. .

このようなアルミニウムの水溶性塩の水溶液にNH4OHを
加え、液のpHを6〜9に上昇させると水酸化アルミニウ
ムが生成する。この液温を80〜95℃程度に上昇させて充
分に加熱した後、吸着物質と油性の無極性溶剤と水及び
アンモニア水からなるo/wエマルジョンを添加して懸濁
液中の粒子を凝集せしめる。
NH 4 OH is added to such an aqueous solution of a water-soluble salt of aluminum to raise the pH of the solution to 6 to 9 to produce aluminum hydroxide. After raising the temperature of this liquid to about 80 to 95 ° C and heating it sufficiently, add an o / w emulsion consisting of an adsorbent, an oily non-polar solvent, water and ammonia water to agglomerate the particles in suspension. Excuse me.

ここで油性の無極性溶剤としてはケロシン、ノルマルパ
ラフィン、流動パラフィン、スピンドル油等の一般的な
石油系溶剤を使用することができ、更に上記吸着物質と
無極性溶剤との割合は1:0.3〜1:2の範囲が好ましい。
As the oily non-polar solvent, kerosene, normal paraffin, liquid paraffin, spindle oil, or other general petroleum solvent can be used, and the ratio of the adsorbent and the non-polar solvent is 1: 0.3 to A range of 1: 2 is preferred.

また吸着物質の量はAl粒子の回りに単分子吸着層を形成
するに必要な量以上加えることが好ましい。
Further, the amount of the adsorbed substance is preferably added in an amount not less than the amount required to form a monomolecular adsorption layer around the Al particles.

更に吸着物質と油性の無極性溶剤と水及びアンモニア水
からなるo/wエマルジョンはpHが7〜9で均一なエマル
ジョンであることが好ましい。
Further, the o / w emulsion composed of the adsorbed substance, the oily non-polar solvent, water and ammonia water is preferably a uniform emulsion having a pH of 7-9.

以上のように生成した油溶性の凝集物を濾過し、脱塩等
の目的で水洗し、更に脱水乾燥することにより油溶性の
アルミニウム粉末を得る。
The oil-soluble aggregate produced as described above is filtered, washed with water for the purpose of desalting, and then dehydrated and dried to obtain an oil-soluble aluminum powder.

この乾燥条件は例えば含水粉末(水分30%前後含有)を
φ10mm又は5〜10mm×30mm程度にペレット化し、1〜5m
/secの熱風のもと約100℃で約1時間で乾燥させる。
The drying conditions are, for example, 1 to 5 m of water-containing powder (water content around 30%) pelletized into φ10 mm or 5 to 10 mm x 30 mm.
Dry for 1 hour at about 100 ℃ under hot air of / sec.

この様にして得られた油溶性凝集物の粉末をケロシン、
スピンドル油、流動パラフィン、軽油、重油等の石油系
溶剤、ヒマシ油、オリーブ油等の植物油、オレイン酸、
リノール酸等の高級脂肪酸、オレイン酸エチルのような
高級脂肪酸エステル、スクワレン、スクワラン等の動物
油、メチルナフタレン、アルキルベンゼン等の芳香族系
溶剤等の油類中に加えると均一に分散して高濃度で低濃
度のコロイド状燃料添加剤が製造される。
The powder of the oil-soluble aggregate obtained in this manner was treated with kerosene,
Petroleum solvent such as spindle oil, liquid paraffin, light oil, heavy oil, vegetable oil such as castor oil and olive oil, oleic acid,
Higher fatty acids such as linoleic acid, higher fatty acid esters such as ethyl oleate, animal oils such as squalene and squalane, oils such as aromatic solvents such as methylnaphthalene and alkylbenzene, and evenly dispersed at high concentration. A low concentration of colloidal fuel additive is produced.

以上のようにして生成した油溶性凝集物は水酸化アルミ
ニウムの粒子の全ての表面がナフテン酸、トール油脂肪
酸、石油スルホン酸、不飽和脂肪酸、飽和脂肪酸の1種
又は2種以上で完全に吸着被覆されているため、上記油
類中に混合しても溶解したのと同じ状態で均一に分散し
てコロイド状溶液となる。
The oil-soluble aggregate produced as described above is completely adsorbed by one or more of naphthenic acid, tall oil fatty acid, petroleum sulfonic acid, unsaturated fatty acid, and saturated fatty acid on all surfaces of aluminum hydroxide particles. Since it is coated, even if it is mixed in the above-mentioned oils, it is uniformly dispersed in the same state as it was dissolved to form a colloidal solution.

(発明の効果) 以上のように、この発明ではアルミニウムの水溶性塩の
水溶液にアンモニア水を加えて液のpHを6〜9にしてア
ルミニウムの水酸化物の水懸濁液を生成し、該アルミニ
ウムの水酸化物の水懸濁液を充分加熱した後に吸着物質
と油性の無極性溶剤と水及びアンモニアからなるO/wエ
マルジョンを添加するが、アンモニア水を使用して液の
pHを6〜9の中性付近にしているため、前期特開昭61−
15274号公報に開示された方法のようにアルミン酸の生
成がなく、アルミニウムの水酸化物のみが生成する。更
に、加熱に伴なって過剰のアンモニアは徐々に蒸発し、
液のpHが中性付近に保たれるとともに、アンモニウム塩
の共存作用により生成したAl(OH)粒子の成長が促進
される。
(Effect of the invention) As described above, in the present invention, ammonia water is added to an aqueous solution of a water-soluble salt of aluminum to adjust the pH of the solution to 6 to 9 to produce an aqueous suspension of aluminum hydroxide. After sufficiently heating the water suspension of aluminum hydroxide, add an adsorbent, an oily non-polar solvent, and an O / w emulsion consisting of water and ammonia.
Since the pH is set to around 6 to 9 neutral,
Unlike the method disclosed in Japanese Patent No. 15274, there is no formation of aluminate, and only aluminum hydroxide is formed. Furthermore, excess ammonia gradually evaporates with heating,
The pH of the liquid is kept near neutral, and the growth of Al (OH) 3 particles produced by the coexisting action of ammonium salts is promoted.

一方、成長したAl(OH)粒子の水懸濁液に、上述のよ
うに吸着物質と無極性溶剤及びアンモニア水からなるo/
wエマルジョンを添加すると、エマルジョンは水懸濁液
の中に非常に均一に分散してやがて全てのAl(OH)
子の表面に吸着物質が化学的に吸着して活性な単分子吸
着層を形成し、その回りに無極性溶剤と残りの吸着物質
が物理的に吸着して二分子吸着層を形成する。そして、
Al(OH)粒子は無極性溶剤を加えたことで、その表面
がより親油性になり、やがて約1〜2mm径にも成長した
大きな油溶性の凝集物が得られる。その結果、凝集物の
濾過及び洗浄の工程が非常に容易になる。
On the other hand, in the water suspension of grown Al (OH) 3 particles, as described above, the adsorbent, the non-polar solvent and the ammonia water are used.
w When an emulsion is added, the emulsion disperses very uniformly in the water suspension, and eventually the adsorbent substance is chemically adsorbed on the surface of all Al (OH) 3 particles to form an active monomolecular adsorption layer. The non-polar solvent and the remaining adsorbent are physically adsorbed around the adsorbent to form a bimolecular adsorption layer. And
By adding a non-polar solvent to the Al (OH) 3 particles, the surface becomes more lipophilic, and eventually large oil-soluble aggregates having a diameter of about 1 to 2 mm are obtained. As a result, the steps of filtering and washing the aggregates are greatly facilitated.

また、この発明ではアルミニウム水溶性塩の殆どがAl
(OH)粒子となり、その表面に確実に吸着物質が吸着
される。即ち、特開昭61−152794号公報に開示された方
法のようにアルミン酸の生成によりアルミニウム粒子の
回りに吸着不充分な粒子が多く存在することはない。こ
のため、脱塩のための水洗工程でも吸着不充分な粒子の
流出がなく、凝集体の収率を高めることができるととも
に、洗浄排水は白い濁りがなく、無色透明になる。
Further, in the present invention, most of aluminum water-soluble salts are Al
It becomes (OH) 3 particles, and the adsorbent is surely adsorbed on the surface. That is, unlike the method disclosed in Japanese Patent Application Laid-Open No. 61-152794, a large amount of insufficiently adsorbed particles exist around aluminum particles due to the formation of aluminate. Therefore, particles are not adsorbed insufficiently even in the washing step for desalting, the yield of aggregates can be increased, and the washing waste water becomes colorless and transparent without white turbidity.

更に、凝集物の吸着物質からなる単分子吸着層が主に無
極性溶剤で構成される二分子吸着層で被覆され、直接空
気と接触することが妨げられているため、乾燥時の発火
現象がなくなり、したがって高温乾燥が可能になる。
Furthermore, since the monomolecular adsorption layer composed of the adsorbed substance of the agglomerates is covered with the bimolecular adsorption layer mainly composed of a non-polar solvent, which prevents direct contact with the air, the ignition phenomenon during drying occurs. High temperature drying is possible.

一方、乾燥によって得られた凝集物粉体はその表面を主
に無極性溶剤で構成される二分子吸着層で被覆されてい
るため、油類中に加えて燃料添加剤を製造する場合、極
めて容易に分散することができ、分散工程に要する時間
が短縮でき、更に低コストで燃料添加剤を製造すること
ができる。
On the other hand, since the agglomerate powder obtained by drying is coated with a bimolecular adsorption layer mainly composed of a non-polar solvent on the surface, it is extremely difficult to produce a fuel additive in addition to oils. It can be easily dispersed, the time required for the dispersion step can be shortened, and the fuel additive can be manufactured at low cost.

また、この発明ではアルミニウム水溶性塩の殆どがAl
(OH)粒子となり、熟成されるため、Al(OH)粒子
の粒径は前述の特開昭61−152794号公報に開示されたも
のに比べて極めて大きなものとなる。このため、燃料添
加剤中のアルミニウム含有量を高めても、燃料添加剤の
粘度上昇を抑制することができる。
Further, in the present invention, most of aluminum water-soluble salts are Al
Since it becomes (OH) 3 particles and is aged, the particle size of Al (OH) 3 particles becomes extremely large as compared with the particle size disclosed in the above-mentioned JP-A-61-152794. Therefore, even if the aluminum content in the fuel additive is increased, the increase in viscosity of the fuel additive can be suppressed.

更に、この発明によって得られた凝集物粉体中には吸着
不充分な粒子が含まれていないため、油類中に混合分散
させた時も、プリン状に固化する現象を防止できる。
Further, since the aggregate powder obtained by the present invention does not contain particles that are not sufficiently adsorbed, it is possible to prevent the phenomenon of solidification into a pudding even when mixed and dispersed in oils.

(実施例) 以下、この発明の実施例を示す。(Example) Hereinafter, the Example of this invention is shown.

製造例1 A液……10%Al2(SO4水溶液 300部 B液……NH4OH水溶液 50部 C液……ナフテン酸15部、イソパラフィン15部、水50
部、NH4OH水溶液10部からなるo/w型エマルジョン A液にB液を添加しpHを7.5に上昇させてAl(OH)
微粒子が生成した後液温を80℃に上昇させる(晶出・熟
成工程)。微粒子が適当な粒径に成長したらC液を加え
充分加熱撹拌を行なうと、徐々に微粒子表面にナフテン
酸が吸着し、更にその外側にイソパラフィンが取り囲
み、やがてアルミニウム含有の油溶性粉体が凝集し液が
透明になってくる(吸着工程)。
Production Example 1 Solution A: 10% Al 2 (SO 4 ) 3 aqueous solution 300 parts Solution B: NH 4 OH aqueous solution 50 parts Solution C: naphthenic acid 15 parts, isoparaffin 15 parts, water 50
Part, and o / w type emulsion consisting of 10 parts of NH 4 OH aqueous solution, add solution B and raise pH to 7.5 to generate fine particles of Al (OH) 3 and then raise liquid temperature to 80 ℃ ( Crystallization and aging process). When the fine particles have grown to an appropriate particle size, C liquid is added and sufficiently heated and stirred, and naphthenic acid is gradually adsorbed on the surface of the fine particles, isoparaffin is surrounded further, and eventually the oil-soluble powder containing aluminum aggregates. The liquid becomes transparent (adsorption process).

次いで濾過水洗を行ない含有されている無機塩の除去を
行う(濾過水洗工程)。濾過水洗後の粉体は水分50%含
まれているが、これをφ10mmの球状ペレットにして200
メッシュの金網上に広げ風速約3m/sec、110℃で40分間
熱風乾燥を行い含水率を2.1%に下げる(乾燥工程)。
Next, filtration and washing are performed to remove the contained inorganic salt (filtration and washing step). The powder after filtration and water washing contains 50% of water, but this is made into a spherical pellet of φ10 mm, and 200
Spread on a mesh wire mesh and dry with hot air at 110 ° C for 40 minutes at a wind speed of 3 m / sec to reduce the water content to 2.1% (drying process).

乾燥後の粉体をA重油とアルキルベンゼの同重量混合物
に混合させディスパーで撹拌を行ない、分散液を得る
(分散工程)。
The dried powder is mixed with an equal weight mixture of heavy oil A and alkylbenze and stirred with a disper to obtain a dispersion (dispersion step).

製造例2 A液……10%AlCl3水溶液 200部 B液……NH4OH水溶液 40部 C液……石油スルフォン酸10部、ケロシン15部、水40
部、NH4OH水溶液10部からなるo/w型エマルジョン A液にB液を添加しpHを8.5に上昇させてAl(OH)
微粒子が生成した後液温を80℃に上昇させ(晶出・熟成
反応工程)、C液を加え80〜85℃で、充分加熱撹拌を行
うとアルミニウム含有の油溶性粉体が凝集し液が透明に
なってくる(吸着反応工程)。
Production Example 2 Solution A: 10% AlCl 3 aqueous solution 200 parts Solution B: NH 4 OH aqueous solution 40 parts Solution C: Petroleum sulfonic acid 10 parts, kerosene 15 parts, water 40
Part, and o / w type emulsion consisting of 10 parts of NH 4 OH aqueous solution, add solution B and raise pH to 8.5 to generate fine particles of Al (OH) 3 and then raise liquid temperature to 80 ℃ ( Crystallization / aging reaction step), and when solution C is added and sufficiently heated and stirred at 80 to 85 ° C, the aluminum-containing oil-soluble powder aggregates and the solution becomes transparent (adsorption reaction step).

次いで濾過水洗を行ない、含有されている無機塩の除去
を行う(濾過水洗工程)。濾過水洗後の粉体は水分55%
含まれているがこれをφ10mmの球状ペレットにして200
メッシュ金網上に広げ風速1m/sec105℃で1時間熱風乾
燥を行い、含水率2%の粉体を得る(乾燥工程)。
Next, filtration and washing are performed to remove the contained inorganic salt (filtration and washing step). 55% water content after washing with water
It is included, but this is made into a spherical pellet of φ10 mm and 200
The powder is spread on a mesh wire net and dried with hot air at a wind speed of 1 m / sec at 105 ° C for 1 hour to obtain a powder having a water content of 2% (drying step).

乾燥後の粉体をアルキルベンゼンに混合させ、ディスパ
ーで撹拌を行ない分散液を得る(分散工程)。
The dried powder is mixed with alkylbenzene and stirred with a disper to obtain a dispersion (dispersion step).

次に、比較製造例として特開昭61−152794号公報に開示
されたものを下記に示す。
Next, as a comparative production example, the one disclosed in JP-A-61-152794 is shown below.

比較製造例1 A液……10%AlCl3水溶液 620部 B液……20%NaOH水溶液 375部 C液……ナフテン酸10部、イソパラフイン13部の混合溶
解液 A液にB液を添加しpHを10に上昇させ、Al(OH)の微
粒子が生成した後、液温を80℃に上昇させ、C液を加え
る。80〜85℃で充分加熱撹拌を行うとアルミニウム含有
の油溶性粉体が凝集し液が透明になってくる。
Comparative Production Example 1 Solution A: 10% AlCl 3 aqueous solution 620 parts Solution B: 20% NaOH aqueous solution 375 parts Solution C: mixed solution of 10 parts naphthenic acid and 13 parts isoparaffin Add solution B to solution A After raising the pH to 10 and forming fine particles of Al (OH) 3 , the liquid temperature is raised to 80 ° C. and the liquid C is added. When heated and stirred sufficiently at 80 to 85 ° C, the aluminum-containing oil-soluble powder aggregates and the liquid becomes transparent.

次いで濾過水洗を行い含有させている無機塩の除去を行
う。濾液水洗後の粉体は水分50%含まれているが、これ
をφ10mmの球状ペレットにして200メツシュの金網上に
広げ風速約3m/sec95℃で40分間熱風乾燥を行い含水率を
2.1%に下げる。乾燥後の粉体をA重油とアルキルベン
ゼンの同重量混合物に混合させディスパーで撹拌を行な
い、分散液を得る。
Then, filtration and washing are performed to remove the contained inorganic salt. After washing the filtrate with water, the powder contains 50% water, but this is made into a spherical pellet with a diameter of 10 mm, spread on a 200 mesh wire mesh, and dried with hot air for 40 minutes at a wind speed of about 3 m / sec 95 ° C to reduce the water content.
Lower to 2.1%. The dried powder is mixed with an equal weight mixture of heavy oil A and alkylbenzene and stirred with a disper to obtain a dispersion liquid.

比較製造例2 A液にB液を添加しpHを10に上昇させ、Al(OH)の微
粒子が生成した後、液温を80℃に上昇させ、C液を加
え、80〜85℃で充分加熱撹拌を行なうとアルミニウム含
有の油溶性粉体が凝集し、液が透明になってくる。
Comparative Production Example 2 After adding solution B to solution A to raise pH to 10 and producing fine particles of Al (OH) 3 , raise the solution temperature to 80 ° C, add solution C, and heat and stir at 80-85 ° C. When it is carried out, the oil-soluble powder containing aluminum aggregates and the liquid becomes transparent.

次いで濾過水洗を行ない粉体中に含有されている無機塩
の除去を行う。濾過水洗後の粒体は水分50%含有されて
いることがこれを5mm×10mm×30mmの直方体ペレットに
して300メッシュの金網上に広げ風速5m/sec95℃で30分
間熱風乾燥を行い、含水率3%の粉体を得る。乾燥後の
粉体をディスパーでアルキルベンゼンに分散させ分散液
を得る。
Then, filtration and washing are carried out to remove the inorganic salt contained in the powder. After filtering and washing, the granules contain 50% of water, and this is made into rectangular parallelepiped pellets of 5 mm × 10 mm × 30 mm, spread on a 300 mesh wire mesh, and dried with hot air at a wind speed of 5 m / sec 95 ° C for 30 minutes to obtain a water content. 3% powder is obtained. The dried powder is dispersed in alkylbenzene with a disper to obtain a dispersion liquid.

添付図面は、以上のようにして得られた製造例1、2の
分散液と比較製造例1、2の分散液のアルミニウム濃度
と粘度を関係を示すものであるが、これより明らかなよ
うに比較製造例1、2ではアルミニウム濃度を3%程度
にしても、粘度が上昇していまうため、これ以上にアル
ミニウム濃度を高めることができないが、製造例1、2
ではアルミニウム濃度を11〜12%程度にしても低粘度に
維持できた。
The accompanying drawings show the relationship between the aluminum concentration and the viscosity of the dispersions of Production Examples 1 and 2 and the dispersions of Comparative Production Examples 1 and 2 obtained as described above. In Comparative Production Examples 1 and 2, even if the aluminum concentration was set to about 3%, the viscosity still increased, so that the aluminum concentration could not be further increased.
The viscosity could be kept low even if the aluminum concentration was about 11-12%.

【図面の簡単な説明】[Brief description of drawings]

図面は、製造例1、2の分散液と比較製造例1、2の分
散液のアルミニウム濃度と粘度を関係を示す図である。
The drawing shows the relationship between the aluminum concentration and the viscosity of the dispersions of Production Examples 1 and 2 and the dispersions of Comparative Production Examples 1 and 2.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アルミニウムの水溶性塩の水溶液にアンモ
ニア水を加えて液のpHを6〜9にして生成したアルミニ
ウムの水酸化物の水懸濁液を充分加熱した後にナフテン
酸、トール油脂肪酸、石油スルホン酸、不飽和脂肪酸、
飽和脂肪酸の1種又は2種以上からなる吸着物質と油性
の無極性溶剤と水及びアンモニアからなるO/wエマルジ
ョンを添加して上記懸濁液中の粒子を凝集させ、該凝集
物を濾過、洗浄、乾燥して油類の中に分散させることを
特徴とする燃料添加剤の製造法。
1. A naphthenic acid, tall oil fatty acid after sufficiently heating an aqueous suspension of aluminum hydroxide produced by adding ammonia water to an aqueous solution of a water-soluble salt of aluminum to adjust the pH of the solution to 6-9. , Petroleum sulfonic acid, unsaturated fatty acid,
An adsorbent consisting of one or more saturated fatty acids, an oily non-polar solvent, and an O / w emulsion consisting of water and ammonia are added to agglomerate the particles in the suspension, and the agglomerate is filtered, A method for producing a fuel additive, which comprises washing, drying and dispersing in oils.
【請求項2】油性の無極性溶剤としてケロシン、ノルマ
ルパラフィン、イソパラフィン、流動パラフィン、スピ
ンドル油の1種又は2種以上を使用し、吸着物質と上記
溶剤の割合を1:0.3〜1:2の範囲にして水懸濁液中に添加
する特許請求の範囲第1項記載の製造方法。
2. One or more kinds of kerosene, normal paraffin, isoparaffin, liquid paraffin and spindle oil are used as an oily non-polar solvent, and the ratio of the adsorbent to the solvent is 1: 0.3 to 1: 2. The manufacturing method according to claim 1, wherein the amount is adjusted to a range and added to the water suspension.
JP2251287A 1987-02-04 1987-02-04 Fuel additive manufacturing method Expired - Fee Related JPH0715105B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2251287A JPH0715105B2 (en) 1987-02-04 1987-02-04 Fuel additive manufacturing method
US10/080,528 US6799470B2 (en) 1987-02-04 2002-02-22 Lateral force-measuring device for a wheel, lateral force-measuring method, and vehicle-inspecting system having the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2251287A JPH0715105B2 (en) 1987-02-04 1987-02-04 Fuel additive manufacturing method

Publications (2)

Publication Number Publication Date
JPS63191895A JPS63191895A (en) 1988-08-09
JPH0715105B2 true JPH0715105B2 (en) 1995-02-22

Family

ID=12084814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2251287A Expired - Fee Related JPH0715105B2 (en) 1987-02-04 1987-02-04 Fuel additive manufacturing method

Country Status (1)

Country Link
JP (1) JPH0715105B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015124990A (en) * 2013-12-27 2015-07-06 川崎重工業株式会社 Petroleum pitch fuel burner and method of using petroleum pitch fuel burner
JP2018109513A (en) * 2018-03-01 2018-07-12 川崎重工業株式会社 Petroleum pitch fuel burner and method of using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015124990A (en) * 2013-12-27 2015-07-06 川崎重工業株式会社 Petroleum pitch fuel burner and method of using petroleum pitch fuel burner
JP2018109513A (en) * 2018-03-01 2018-07-12 川崎重工業株式会社 Petroleum pitch fuel burner and method of using the same

Also Published As

Publication number Publication date
JPS63191895A (en) 1988-08-09

Similar Documents

Publication Publication Date Title
AU2002341189B2 (en) Cerium oxide nanoparticles
KR100946214B1 (en) A process for making rare earth metal oxide-coated microporous materials
JP5416083B2 (en) Supplying iron to a diesel engine exhaust gas particle trap
KR100396365B1 (en) Organic sols containing one or more oxygenated rare earth compounds, method for synthesizing the sol, and use of the sol for catalysis
AU2002341189A1 (en) Cerium oxide nanoparticles
JP5653210B2 (en) Method for producing iron oxide colloid
MXPA04005943A (en) Organic colloidal dispersion of iron particles, method for preparing same and use thereof as fuel additive for internal combustion engines.
JP2003506529A (en) Organic colloidal dispersions of essentially monocrystalline particles of at least one compound based on at least one rare earth element, a process for their preparation and their use
JP2002537308A (en) Organic sols and solid compounds based on cerium oxide and amphiphilic compounds and methods for their production
WO2009090760A1 (en) Fuel additives
KR100686206B1 (en) Preparation method of colloidal iron oxide nanoparticles dispersed in oil with high dispersity and high stability
JPH0715105B2 (en) Fuel additive manufacturing method
JP2986731B2 (en) Calcium desulfurizing agent and method for desulfurizing coal combustion gas using the same
JPH0470357B2 (en)
KR100768536B1 (en) High concentration nanoparticle size magnesium fuel additive for fossil fuel burning apparatus
JPS62167393A (en) Fuel additive
JP2833749B2 (en) Method for producing antimony pentoxide sol using hydrophobic organic solvent as dispersion medium
JPH0560516B2 (en)
KR20010030585A (en) Composition based on an organic sol of tetravalent metal oxide and an organic alkaline-earth compound
KR930011927B1 (en) Fuel additives
CN1786084A (en) Surface modification method in preparing hydroxide chlorinated paraffin wax synergistic fire retardant
JPS61152794A (en) Fuel additive
US4249911A (en) Combustible fuel composition
JP2828262B2 (en) Calcium carbonate dispersion
JP6376532B2 (en) Method for producing exhaust gas purification catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees