JP6376532B2 - Method for producing exhaust gas purification catalyst - Google Patents

Method for producing exhaust gas purification catalyst Download PDF

Info

Publication number
JP6376532B2
JP6376532B2 JP2014180071A JP2014180071A JP6376532B2 JP 6376532 B2 JP6376532 B2 JP 6376532B2 JP 2014180071 A JP2014180071 A JP 2014180071A JP 2014180071 A JP2014180071 A JP 2014180071A JP 6376532 B2 JP6376532 B2 JP 6376532B2
Authority
JP
Japan
Prior art keywords
fine particles
tin
exhaust gas
particles
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014180071A
Other languages
Japanese (ja)
Other versions
JP2016052637A (en
Inventor
正人 大澤
正人 大澤
林 義明
義明 林
林 茂雄
茂雄 林
夏樹 橋本
夏樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2014180071A priority Critical patent/JP6376532B2/en
Publication of JP2016052637A publication Critical patent/JP2016052637A/en
Application granted granted Critical
Publication of JP6376532B2 publication Critical patent/JP6376532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、排ガス中に含まれる煤を主成分とする炭素系の粒子状物質(PM)を浄化する排ガス浄化用触媒の製造方法に関する。 The present invention relates to a method for producing a catalyst for purifying exhaust gas medium to clean carbon-based particulate matter composed mainly of soot contained in exhaust gases (PM).

ディーゼルエンジンからの排ガスには、煤を主成分とする炭素系の粒子状物質(以下「PM」という)が含まれており、このPMは大気中に放出されると容易に飛散して人体に悪影響を及ぼす。このため、ディーゼル車にはPMを捕集するフィルター(DPF:Diesel Particulate Filter)が搭載され、大気中に放出される前にPMを捕集しているが、PMの捕集量が増加するとフィルターの目詰まりが生じる。この目詰まりの解消法として、電気ヒータやバーナや排気系に燃料を噴射して燃焼させ、その燃焼熱を利用してフィルターを昇温し、捕集したPMを燃焼させる方法が用いられているが、燃費の悪化や装置構造の複雑化を招来するという問題があった。   The exhaust gas from a diesel engine contains carbon-based particulate matter (hereinafter referred to as “PM”) containing soot as a main component, and this PM is easily scattered when released into the atmosphere. Adversely affect. For this reason, diesel vehicles are equipped with a filter (DPF: Diesel Particulate Filter) that collects PM before PM is released into the atmosphere, but when the amount of collected PM increases, the filter Clogging occurs. As a method for eliminating this clogging, a method is used in which fuel is injected into an electric heater, burner, or exhaust system and burned, the temperature of the filter is raised using the combustion heat, and the collected PM is burned. However, there has been a problem that the fuel consumption is deteriorated and the structure of the apparatus is complicated.

このため、フィルターに排ガス浄化用触媒を配置し、300℃程度の低温でPMを燃焼してDPFを再生する方法が、例えば非特許文献1で知られている。この排ガス浄化用触媒は、酸化セリウムで構成される担体粒子に銀粒子を担持させることによって作製される。   For this reason, for example, Non-Patent Document 1 discloses a method in which an exhaust gas purifying catalyst is disposed on a filter and PM is burned at a low temperature of about 300 ° C. to regenerate DPF. This exhaust gas purifying catalyst is produced by supporting silver particles on carrier particles made of cerium oxide.

しかしながら、フィルターは、ディーゼル車に搭載して使用されるときに1000℃程度まで昇温することがあり、上記従来例の排ガス浄化用触媒は、1000℃程度に加熱されたとき(1000℃程度の熱履歴を受けたとき)に失活するという問題があった。   However, the filter may be heated to about 1000 ° C. when used in a diesel vehicle, and the exhaust gas purifying catalyst of the conventional example is heated to about 1000 ° C. (about 1000 ° C. There was a problem of deactivation when receiving a thermal history.

K.Shimizu、外5名、「Carbon oxidation with Ag/ceria prepared by self−dispersion of Ag powder into nano−particles」、Catalysis Today 175、2011年、p.93−99K. Shimizu, 5 others, "Carbon oxidation with Ag / ceria prepared by self-dispersion of Ag powder into nano-particles", Catalyst Today 175, 2017. 93-99

本発明は、以上の点に鑑み、低温でPMを燃焼させることができ、しかも、1000℃程度に加熱されても失活しない排ガス浄化用触媒の製造方法を提供することをその課題とするものである。 In view of the above points, it is possible to burn PM at a low temperature, moreover, to provide a method for producing a catalyst for purifying exhaust gas medium not inactivated even when heated to about 1000 ° C. and Problems Is.

上記課題を解決するために、酸化スズと酸化セリウムとで構成される担体粒子を作製し、作製した担体粒子に金属微粒子を担持させて排ガス浄化用触媒を得る本発明の排ガス浄化用触媒の製造方法は、担体粒子が、スズ微粒子及び酸化スズ微粒子の少なくとも一方を含む前駆体液に酸化セリウムの粉末と炭素微粒子とを混合してスラリーを調製し、調製したスラリーを乾燥し、乾燥したものを焼成して炭素微粒子を除去することにより作製されることを特徴とする。なお、酸化セリウムの粉末には、顆粒状のものが含まれるものとする。   In order to solve the above-mentioned problem, production of an exhaust gas purification catalyst according to the present invention, in which carrier particles composed of tin oxide and cerium oxide are produced, and metal fine particles are supported on the produced carrier particles to obtain an exhaust gas purification catalyst. The method comprises preparing a slurry by mixing cerium oxide powder and carbon fine particles in a precursor liquid containing at least one of tin fine particles and tin oxide fine particles, drying the prepared slurry, and firing the dried one Then, it is produced by removing carbon fine particles. The cerium oxide powder includes granules.

本発明によれば、スズ微粒子を含む前駆体液を用いる場合を例に説明すると、酸化スズ担体粒子を作製する際、前駆体液に酸化セリウム粉末と鋳型としての炭素微粒子とを混合するため、この混合により調整されたスラリーを乾燥すると、スズ微粒子や酸化セリウムの間に炭素微粒子が介在するものが得られる。そして、この乾燥により得られたものを焼成すると、スズ微粒子が酸化されて酸化スズとなり、酸化スズと酸化セリウムとで構成される担体粒子が得られると共に、炭素微粒子が燃焼して除去され、この炭素微粒子が除去された部分が空孔となる。このため、焼成後に得られた担体粒子は、多孔質で広い表面積を有するものとなり、しかも、金属微粒子を担持させるための有効なサイトである酸素欠損を有するものとなる。この担体粒子にAg等の金属微粒子を担持すれば、従来例よりも多量の金属微粒子が分散した状態で担持される。このようにして作製された排ガス浄化用触媒は、低温でPMを燃焼させることができ、1000℃程度に加熱されても失活しないことが確認された。   According to the present invention, a case where a precursor liquid containing tin fine particles is used as an example will be described. When preparing tin oxide carrier particles, cerium oxide powder and carbon fine particles as a template are mixed in the precursor liquid. When the slurry adjusted by the above is dried, a carbon fine particle intervened between tin fine particles and cerium oxide is obtained. When the product obtained by this drying is fired, the tin fine particles are oxidized to become tin oxide, and carrier particles composed of tin oxide and cerium oxide are obtained, and the carbon fine particles are burned and removed. The part from which the carbon fine particles are removed becomes a void. For this reason, the carrier particles obtained after firing are porous and have a large surface area, and also have oxygen vacancies which are effective sites for supporting the metal fine particles. If metal fine particles such as Ag are supported on the carrier particles, a larger amount of metal fine particles are supported than in the conventional example. It was confirmed that the exhaust gas-purifying catalyst thus produced can burn PM at a low temperature and does not deactivate even when heated to about 1000 ° C.

本発明において、前記スラリー中に含まれる炭素微粒子の重量をスズの重量の30%以上に設定することが好ましい。炭素微粒子の重量がこれより少ないと、酸化スズ担体粒子が多孔質で酸素欠損を有するものとならない場合がある。   In the present invention, it is preferable to set the weight of the carbon fine particles contained in the slurry to 30% or more of the weight of tin. If the weight of the carbon fine particles is less than this, the tin oxide carrier particles may not be porous and have oxygen vacancies.

本発明において、前記前駆体液として、金属スズ微粒子を溶媒に分散させた金属スズ微粒子分散液を用いることが好ましい。   In the present invention, it is preferable to use a metal tin fine particle dispersion in which metal tin fine particles are dispersed in a solvent as the precursor liquid.

本発明の実施形態の排ガス浄化用触媒の製造方法を説明する模式図。The schematic diagram explaining the manufacturing method of the catalyst for exhaust gas purification of embodiment of this invention. 本発明の実施例1で得た排ガス浄化用触媒の性能を示すグラフ。The graph which shows the performance of the catalyst for exhaust gas purification obtained in Example 1 of this invention. 本発明の実施例2で得た排ガス浄化用触媒の性能を示すグラフ。The graph which shows the performance of the catalyst for exhaust gas purification obtained in Example 2 of this invention. 本発明の比較例1で得た排ガス浄化用触媒の性能を示すグラフ。The graph which shows the performance of the catalyst for exhaust gas purification obtained in the comparative example 1 of this invention. 本発明の比較例2で得た排ガス浄化用触媒の性能を示すグラフ。The graph which shows the performance of the catalyst for exhaust gas purification obtained in the comparative example 2 of this invention. 担体粒子の酸化スズ含有率と発熱ピーク温度Tpkとの関係を示すグラフ。The graph which shows the relationship between the tin oxide content rate of a carrier particle, and exothermic peak temperature Tpk . 担体粒子の酸化スズ含有率と温度T50との関係を示すグラフ。Graph showing the relationship between the tin oxide content and the temperature T 50 of the support particles.

以下、図面を参照して、本発明の実施形態の排ガス浄化用触媒及びその製造方法について説明する。先ず、図1を参照して、スズ微粒子又は酸化スズ微粒子を含む前駆体液に炭素微粒子を混合し、酸化セリウム粉末を更に混合して攪拌してスラリーを調整する。   Hereinafter, an exhaust gas purifying catalyst and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the drawings. First, referring to FIG. 1, carbon fine particles are mixed in a precursor liquid containing tin fine particles or tin oxide fine particles, cerium oxide powder is further mixed and stirred to prepare a slurry.

前駆体液としては、分散剤で被覆されたスズ微粒子や酸化スズ微粒子を溶媒に分散させてなる金属スズ微粒子分散液や酸化スズ微粒子分散液(コロイド溶液)を用いることができる。ここで、スラリー中に含まれる炭素微粒子の重量をスズの重量の30%以上に設定することが好ましい。炭素微粒子の重量がこれより少ないと、後述する担体粒子が多孔質で酸素欠損を有するものとならない場合がある。炭素微粒子としては、そのBET比表面積が100m/g以上のを用いることが好ましく、250m/g以上のものを用いることがより好ましい。BET比表面積が100m/g未満であると、鋳型としての効果が不十分となる場合がある。また、攪拌する際、超音波処理を施すことが好ましい。 As the precursor liquid, a metal tin fine particle dispersion or a tin oxide fine particle dispersion (colloidal solution) obtained by dispersing tin fine particles or tin oxide fine particles coated with a dispersant in a solvent can be used. Here, it is preferable to set the weight of the carbon fine particles contained in the slurry to 30% or more of the weight of tin. If the weight of the carbon fine particles is less than this, the carrier particles described later may not be porous and have oxygen vacancies. As the carbon fine particles, those having a BET specific surface area of 100 m 2 / g or more are preferably used, and those having a BET specific surface area of 250 m 2 / g or more are more preferably used. If the BET specific surface area is less than 100 m 2 / g, the effect as a mold may be insufficient. Moreover, it is preferable to perform ultrasonic treatment when stirring.

スズ微粒子としては、その平均粒子径が1nm〜50nmの範囲内であるものを用いることができる。平均粒子径が1nm未満になると、比表面積が増大してスズ微粒子表面を被覆する分散剤の量が増大し、焼成時に分散剤の脱離が不十分になるという不具合が生じる。一方、平均粒子径が50nmを超えると、スズ微粒子の分散性が低下するという不具合が生じる。   As the tin fine particles, those having an average particle diameter in the range of 1 nm to 50 nm can be used. When the average particle size is less than 1 nm, the specific surface area increases, the amount of the dispersant covering the surface of the tin fine particles increases, and there arises a problem that the detachment of the dispersant becomes insufficient during firing. On the other hand, when the average particle diameter exceeds 50 nm, there arises a problem that the dispersibility of the tin fine particles is lowered.

金属スズ微粒子分散液は、スズ微粒子の分散性を高めるための分散剤を含むことが好ましく、分散剤としては、炭素数6〜18の脂肪酸および炭素数6〜18の脂肪族アミンの少なくともいずれか一方を用いることが好ましい。炭素数6未満の脂肪酸や脂肪族アミンでは、スズ微粒子の分散性が低下するという不具合が生じる。一方、炭素数19以上の脂肪酸や脂肪族アミンでは、焼成時にスズ微粒子表面からの脂肪酸や脂肪族アミンの脱離が不十分となるという不具合が生じる。脂肪酸としては、例えば、カルボン酸を用いることができる。具体的には、炭素数6のヘキサン酸、2−エチル酪酸、ネオヘキサン酸(2,2−ジメチル酪酸);炭素数7のヘプタン酸、2−メチルヘキサン酸、シクロヘキサンカルボン酸;炭素数8のオクタン酸、2−エチルヘキサン酸、ネオオクタン酸(2,2−ジメチルヘキサン酸);炭素数9のノナン酸;炭素数10のデカン酸、ネオデカン酸(2,2−ジメチルオクタン酸);炭素数11のウンデカン酸;炭素数12のドデカン酸;炭素数14のテトラデカン酸;及び炭素数16のパルミチン酸;及び炭素数18のステアリン酸、オレイン酸、リノール酸、リノレン酸から選択された少なくとも1種を用いることが好ましい。脂肪族アミンとしては、炭素数6のヘキシルアミン、シクロヘキシルアミン、アニリン;炭素数7のヘプチルアミン;炭素数8のオクチルアミン、2−エチルヘキシルアミン;炭素数9のノニルアミン;炭素数10のデシルアミン;炭素数12のドデシルアミン;炭素数14のテトラドデシルアミン:炭素数16のパルミチルアミン;及び炭素数18のステアリルアミン、オレイルアミンから選択された少なくとも1種を好ましく用いることができる。   The metal tin fine particle dispersion preferably contains a dispersant for enhancing the dispersibility of the tin fine particles, and the dispersant is at least one of a fatty acid having 6 to 18 carbon atoms and an aliphatic amine having 6 to 18 carbon atoms. One is preferably used. In the case of fatty acids or aliphatic amines having less than 6 carbon atoms, there is a problem that the dispersibility of the tin fine particles is lowered. On the other hand, in the case of fatty acids and aliphatic amines having 19 or more carbon atoms, there arises a problem that the elimination of fatty acids and aliphatic amines from the surface of tin fine particles becomes insufficient during firing. As the fatty acid, for example, carboxylic acid can be used. Specifically, C6 hexanoic acid, 2-ethylbutyric acid, neohexanoic acid (2,2-dimethylbutyric acid); C7 heptanoic acid, 2-methylhexanoic acid, cyclohexanecarboxylic acid; C8 Octanoic acid, 2-ethylhexanoic acid, neooctanoic acid (2,2-dimethylhexanoic acid); Nonanoic acid having 9 carbon atoms; Decanoic acid having 10 carbon atoms, neodecanoic acid (2,2-dimethyloctanoic acid); At least one selected from the group consisting of undecanoic acid of 12 carbons; dodecanoic acid having 12 carbon atoms; tetradecanoic acid having 14 carbon atoms; and palmitic acid having 16 carbon atoms; It is preferable to use it. Examples of aliphatic amines include hexylamine, cyclohexylamine, and aniline having 6 carbon atoms; heptylamine having 7 carbon atoms; octylamine having 8 carbon atoms; 2-ethylhexylamine; nonylamine having 9 carbon atoms; decylamine having 10 carbon atoms; At least one selected from the group consisting of dodecylamine having 12 carbon atoms; tetradodecylamine having 14 carbon atoms: palmitylamine having 16 carbon atoms; and stearylamine and oleylamine having 18 carbon atoms can be preferably used.

上記の分散剤を含んでなる金属スズ微粒子分散液の溶媒としては、低極性溶媒を用いることができ、具体的には、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、トルエン、キシレン、シクロドデカン、シクロドデセン、オクチルベンゼン、ドデシルベンゼンから選ばれる少なくとも1種の液状炭化水素を単独でまたは組み合わせて用いることができる。   As the solvent of the tin metal fine particle dispersion containing the above-mentioned dispersant, a low polarity solvent can be used. Specifically, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, toluene, xylene, At least one liquid hydrocarbon selected from cyclododecane, cyclododecene, octylbenzene, and dodecylbenzene can be used alone or in combination.

また、酸化スズ微粒子を含む前駆体液としては、市販の酸化スズゾル溶液を好ましく使用することができる。市販の酸化スズゾル溶液の溶媒としては、アルコールや水などが用いられる。   Moreover, as a precursor liquid containing tin oxide fine particles, a commercially available tin oxide sol solution can be preferably used. Alcohol, water, etc. are used as a solvent of a commercially available tin oxide sol solution.

酸化セリウム粉末としては、その平均粒径が0.1〜1μmの範囲内であるものを用いることができる。酸化セリウム粉末には、顆粒状のものが含まれるものとする。   As the cerium oxide powder, one having an average particle diameter in the range of 0.1 to 1 μm can be used. The cerium oxide powder includes granules.

次に、上記スラリーを乾燥し、乾燥して得たものを焼成し、焼成して得られたものを粉砕することにより、担体粒子が得られる。乾燥は、減圧下で65〜110℃の温度で加熱することが好ましい。焼成は、大気中などの酸素含有雰囲気中で、上記炭素微粒子が完全に燃焼する温度、例えば、600〜800℃の温度で行うことが好ましい。このように焼成することにより、スズが酸化されて酸化スズとなり、酸化スズと酸化セリウムとで構成される担体粒子が得られる。しかも、焼成時に鋳型としての炭素微粒子が燃焼して脱離するため、その脱離した部分が空孔となる。このため、得られた担体粒子は、多孔質で広い表面積を有するものとなり、しかも、金属微粒子を担持するための有効なサイトである酸素欠損を有するものとなる。   Next, carrier particles are obtained by drying the slurry, firing the product obtained by drying, and grinding the product obtained by firing. Drying is preferably performed at a temperature of 65 to 110 ° C. under reduced pressure. Firing is preferably performed in an oxygen-containing atmosphere such as the air at a temperature at which the carbon fine particles completely burn, for example, a temperature of 600 to 800 ° C. By firing in this way, tin is oxidized to tin oxide, and carrier particles composed of tin oxide and cerium oxide are obtained. Moreover, since the carbon fine particles as the mold burn and desorb at the time of firing, the desorbed portions become vacancies. For this reason, the obtained carrier particles are porous and have a large surface area, and also have oxygen vacancies which are effective sites for supporting the metal fine particles.

このようにして得られた多孔質の担体粒子に触媒金属微粒子を担持させることにより、排ガス浄化用触媒が得られる。触媒金属微粒子としては銀微粒子を用いることができ、その担持方法は公知の方法を用いることができる。例えば、担体粒子に銀微粒子分散液を混合、攪拌してスラリーを得て、そのスラリーを蒸発、乾燥し、その蒸発乾固物を焼成し、粉砕することで、排ガス浄化用触媒を得ることができる。   An exhaust gas purifying catalyst can be obtained by supporting catalytic metal fine particles on the porous carrier particles obtained in this way. Silver fine particles can be used as the catalyst metal fine particles, and a known method can be used as the supporting method. For example, it is possible to obtain a catalyst for exhaust gas purification by mixing and stirring a silver fine particle dispersion with carrier particles, obtaining a slurry, evaporating and drying the slurry, firing the evaporated dry solid, and pulverizing the slurry. it can.

次に、本実施形態をより具体化した実施例について説明する。
(実施例1)
本実施例1では、前駆体液としてスズ微粒子分散液(株式会社アルバック製のスズナノメタルインク)「Sn1T」、スズ濃度:30.6重量%、溶媒:トルエン)を用い、フラスコ内でこのスズ微粒子分散液0.66gに炭素微粒子(オリオン・エンジニアドカーボンズ製のカーボンブラック「Printex 90」、BET比表面積:300m/g)0.10gを混合し、超音波処理により均一に攪拌した。この攪拌したものに、酸化セリウム粉末(高純度化学研究所製の「酸化セリウム(IV)粉末」、粒径:0.2μm)1.02gを更に混合(浸漬)し、超音波処理により均一に攪拌してスラリーを調製した(このとき、スラリー中に含まれる炭素微粒子の重量は、スズの重量の50%である)。このスラリーをロータリーエバポレータで減圧しながら80℃まで昇温し、スズ微粒子分散液の溶媒(トルエン)を留去して蒸発乾固物を得た。この蒸発乾固物を回収し、110℃で8時間乾燥させた後、マッフル炉にて、大気雰囲気中、700℃で3時間焼成し、焼成したものを粉砕することにより、酸化スズと酸化セリウムとで構成される担体粒子を得た。得られた担体粒子中の酸化スズ含有率は20重量%(酸化セリウム含有率は80重量%)であった。この担体粒子1.0gをフラスコに入れ、銀ナノ粒子分散液(株式会社アルバック製の銀ナノメタルインク「Ag1T」、銀濃度:4.5重量%、溶媒:トルエン)1.17gを混合し、超音波処理により均一に攪拌してスラリーを調製した。このスラリーをロータリーエバポレータで減圧しながら80℃まで昇温し、銀ナノ粒子分散液の溶媒(トルエン)を留去して蒸発乾固物を得た。この蒸発乾固物を回収し、110℃で8時間乾燥させた後、マッフル炉にて、大気雰囲気中、600℃で3時間焼成した。この焼成したものを粉砕することにより、担体粒子に銀微粒子が担持した排ガス浄化用触媒を得た(銀の担持量は排ガス浄化用触媒の総重量の5重量%である)。このようにして得た排ガス浄化用触媒を試料1aとし、この排ガス浄化用触媒の一部を分取して1000℃で10時間の加熱処理を更に行ったものを試料1bとした。これらの試料1a,1bの性能を「タイトコンタクト条件」により評価した。「タイトコンタクト条件」とは、浄化すべきPMと触媒とを十分に混合して両者の接触性を高めた状態で性能評価法である。具体的には、疑似PMとしてのカーボンブラック(オリオン・エンジニアドカーボンズ製のカーボンブラック「Printex 55」、BET比表面積:110m/g)と上記試料1a,1bとを1:10の重量比で乳鉢を用いて30分間夫々混合し、各混合粉体を窒素:酸素=79:21組成の混合ガスを流下させた雰囲気にて熱重量−示唆熱分析(TG−DTA)を行い、疑似PMの燃焼に伴う発熱反応が起こる温度をDTAプロファイルにて測定すると共に、疑似PMの燃焼に伴う重量減少をTGプロファイルにて測定することにより、試料1a,1bの性能を評価した。図2のDTAプロファイルを参照して、図中に実線で示す試料1aの発熱ピーク温度Tpkは302℃であり、破線で示す試料1bの発熱ピーク温度Tpkは370℃であり(表1参照)、両者の差は68℃であることが確認された。また、TGプロファイルより、燃焼によって疑似PMの重量が半分に減少する温度T50を求めたところ、表2に示すように、試料1aは332℃であり、試料1bは432℃であり、いずれのT50も450℃以下であり、両者の差は100℃であることが確認された。これらの結果より、実施例1で得られた排ガス浄化用触媒は、低温でPMを燃焼させることができ、しかも、1000℃程度に加熱されても失活しない優れた耐熱性を有するものであることが判った。
Next, a more specific example of the present embodiment will be described.
Example 1
In Example 1, a tin fine particle dispersion (tin nanometal ink manufactured by ULVAC, Inc.) “Sn1T”, tin concentration: 30.6% by weight, solvent: toluene) was used as a precursor liquid, and the tin fine particle dispersion was performed in the flask. To 0.66 g of the liquid, 0.10 g of carbon fine particles (carbon black “Printex 90” manufactured by Orion Engineered Carbons, BET specific surface area: 300 m 2 / g) were mixed and stirred uniformly by ultrasonic treatment. To this stirred material, 1.02 g of cerium oxide powder (“Cerium oxide (IV) powder” manufactured by High Purity Chemical Laboratory, particle size: 0.2 μm) is further mixed (immersed), and uniformized by ultrasonic treatment. A slurry was prepared by stirring (at this time, the weight of the carbon fine particles contained in the slurry is 50% of the weight of tin). The slurry was heated to 80 ° C. while reducing the pressure with a rotary evaporator, and the solvent (toluene) of the tin fine particle dispersion was distilled off to obtain an evaporated dry solid. The evaporated and dried product was recovered, dried at 110 ° C. for 8 hours, then baked in an air atmosphere at 700 ° C. for 3 hours, and the baked product was pulverized to obtain tin oxide and cerium oxide. The carrier particle comprised by these was obtained. The tin oxide content in the obtained carrier particles was 20% by weight (the cerium oxide content was 80% by weight). 1.0 g of this carrier particle is put in a flask, and 1.17 g of a silver nanoparticle dispersion (silver nanometal ink “Ag1T” manufactured by ULVAC, Inc., silver concentration: 4.5 wt%, solvent: toluene) is mixed. A slurry was prepared by stirring uniformly by sonication. The slurry was heated to 80 ° C. while reducing the pressure with a rotary evaporator, and the solvent (toluene) of the silver nanoparticle dispersion was distilled off to obtain an evaporated dry product. The evaporated and dried product was collected, dried at 110 ° C. for 8 hours, and then baked in a muffle furnace at 600 ° C. for 3 hours in an air atmosphere. The fired product was pulverized to obtain an exhaust gas purification catalyst in which silver particles were supported on carrier particles (the amount of silver supported was 5% by weight of the total weight of the exhaust gas purification catalyst). The exhaust gas-purifying catalyst thus obtained was designated as sample 1a, and a part of this exhaust gas-purifying catalyst that had been fractionated and further subjected to heat treatment at 1000 ° C. for 10 hours was designated as sample 1b. The performance of these samples 1a and 1b was evaluated by “tight contact conditions”. The “tight contact condition” is a performance evaluation method in a state in which PM to be purified and the catalyst are sufficiently mixed to improve the contact between them. Specifically, carbon black as a pseudo PM (carbon black “Printex 55” manufactured by Orion Engineered Carbons, BET specific surface area: 110 m 2 / g) and the above samples 1a and 1b in a weight ratio of 1:10. The mixture was mixed for 30 minutes using a mortar, and each mixed powder was subjected to thermogravimetric-suggested thermal analysis (TG-DTA) in an atmosphere in which a mixed gas of nitrogen: oxygen = 79: 21 was flowed, and simulated PM The temperature at which the exothermic reaction associated with the combustion of NO was measured with the DTA profile, and the weight loss associated with the combustion of the pseudo PM was measured with the TG profile, thereby evaluating the performance of the samples 1a and 1b. Referring to the DTA profile in FIG. 2, the exothermic peak temperature Tpk of sample 1a shown by a solid line in the figure is 302 ° C., and the exothermic peak temperature Tpk of sample 1b shown by a broken line is 370 ° C. (see Table 1) ), The difference between the two was confirmed to be 68 ° C. Further, from the TG profile, the temperature T 50 at which the weight of the pseudo PM is reduced by half by combustion is obtained. As shown in Table 2, the sample 1a is 332 ° C., the sample 1b is 432 ° C., T 50 was also 450 ° C. or lower, and it was confirmed that the difference between the two was 100 ° C. From these results, the exhaust gas purifying catalyst obtained in Example 1 can burn PM at a low temperature, and has excellent heat resistance that does not deactivate even when heated to about 1000 ° C. I found out.

Figure 0006376532
Figure 0006376532

Figure 0006376532
Figure 0006376532

(実施例2)
スズ微粒子分散液の量を1.65gとし、炭素微粒子の混合量を0.25gとし(このとき、スラリー中に含まれる炭素微粒子の重量は、スズの重量の50%である)、酸化セリウム粉末の混合量を0.64gとした以外は、上記実施例1と同様の方法で排ガス浄化用触媒を得て、得られた触媒を試料2aとした(このとき、担体粒子中の酸化スズ含有率は50重量%(酸化セリウム含有率は50重量%)であった)。そして、上記実施例1と同様に、試料2aをさらに1000℃で10時間の加熱処理したものを試料2bとし、これらの試料2a,2bの性能を評価した。図3のDTAプロファイルを参照して、図中実線で示す試料2aの発熱ピーク温度Tpkは338℃であり、破線で示す試料2bの発熱ピーク温度Tpkは362℃であり(表1参照)、両者の差は24℃であることが確認された。また、表2に示すように、試料2aの温度T50は370℃であり、試料2bの温度T50は414℃であり、何れのT50も450℃以下であり、両者の差は44℃であることが確認された。これらの結果より、実施例2で得られた排ガス浄化用触媒は、低温でPMを燃焼させることができ、しかも、1000℃程度に加熱されても失活しない優れた耐熱性を有するものであることが判った。
(Example 2)
The amount of tin fine particle dispersion is 1.65 g, the amount of carbon fine particles is 0.25 g (at this time, the weight of carbon fine particles contained in the slurry is 50% of the weight of tin), and cerium oxide powder Except that the amount of the mixture was changed to 0.64 g, an exhaust gas purification catalyst was obtained in the same manner as in Example 1, and the obtained catalyst was designated as sample 2a (at this time, the tin oxide content in the carrier particles) Was 50% by weight (the cerium oxide content was 50% by weight). In the same manner as in Example 1, the sample 2a was further heat-treated at 1000 ° C. for 10 hours as a sample 2b, and the performance of these samples 2a and 2b was evaluated. Referring to the DTA profile of FIG. 3, the exothermic peak temperature Tpk of sample 2a shown by a solid line in the figure is 338 ° C., and the exothermic peak temperature Tpk of sample 2b shown by a broken line is 362 ° C. (see Table 1). The difference between the two was confirmed to be 24 ° C. Further, as shown in Table 2, the temperature T 50 of the sample 2a is 370 ° C., a temperature T 50 of the sample 2b is 414 ° C., is any of T 50 is also 450 ° C. or less, the difference therebetween is 44 ° C. It was confirmed that. From these results, the exhaust gas purifying catalyst obtained in Example 2 can burn PM at a low temperature, and has excellent heat resistance that does not deactivate even when heated to about 1000 ° C. I found out.

(実施例3)
スズ微粒子分散液の量を2.64gとし、炭素微粒子の混合量を0.40gとし(このとき、スラリー中に含まれる炭素微粒子の重量は、スズの重量の50%である)、酸化セリウム粉末の混合量を0.26gとした以外は、上記実施例1と同様の方法で排ガス浄化用触媒を得て、得られた触媒を試料3aとした(このとき、担体粒子中の酸化スズ含有率は80重量%(酸化セリウム含有率は20重量%)であった)。そして、上記実施例1と同様に、試料3aをさらに1000℃で10時間の加熱処理したものを試料3bとし、これらの試料3a,3bの性能を評価した。図示省略のDTAプロファイルから、試料3aの発熱ピーク温度Tpkは366℃であり、試料3bの発熱ピーク温度Tpkは374℃であり(表1参照)、両者の差は8℃であることが確認された。また、表2に示すように、試料3aの温度T50は410℃であり、試料3bの温度T50は430℃であり、何れのT50も450℃以下であり、両者の差は20℃であることが確認された。これらの結果より、実施例3で得られた排ガス浄化用触媒は、低温でPMを燃焼させることができ、しかも、1000℃程度に加熱されても失活しない優れた耐熱性を有するものであることが判った。
(Example 3)
The amount of tin fine particle dispersion is 2.64 g, the amount of carbon fine particles is 0.40 g (at this time, the weight of carbon fine particles contained in the slurry is 50% of the weight of tin), and cerium oxide powder Except that the mixing amount was 0.26 g, an exhaust gas purification catalyst was obtained in the same manner as in Example 1, and the obtained catalyst was designated as sample 3a (at this time, the tin oxide content in the carrier particles) Was 80% by weight (the cerium oxide content was 20% by weight). As in Example 1, the sample 3a was further heat-treated at 1000 ° C. for 10 hours as a sample 3b, and the performance of these samples 3a and 3b was evaluated. From the DTA profile not shown in the figure, the exothermic peak temperature T pk of the sample 3a is 366 ° C., the exothermic peak temperature T pk of the sample 3b is 374 ° C. (see Table 1), and the difference between the two is 8 ° C. confirmed. Further, as shown in Table 2, the temperature T 50 of the sample 3a is 410 ° C., a temperature T 50 in the sample 3b is 430 ° C., is any of T 50 is also 450 ° C. or less, the difference between 20 ° C. It was confirmed that. From these results, the exhaust gas purifying catalyst obtained in Example 3 can burn PM at a low temperature, and has excellent heat resistance that does not deactivate even when heated to about 1000 ° C. I found out.

(実施例4)
前駆体溶液として、酸化スズゾル(日産化学製セルナックスCX−S204IP、酸化スズ濃度20重量%、イソプロピルアルコール溶媒)を用いて、その混合量を1.30gとした点(このとき、スラリー中に含まれる炭素微粒子の重量は、スズの重量の50%である)以外は、上記実施例1と同様の方法で排ガス浄化用触媒を得て、得られた触媒を試料4aとした。そして、上記実施例1と同様に、試料4aをさらに1000℃で10時間の加熱処理したものを試料4bとし、これらの試料4a,4bの性能を評価した。図示省略のDTAプロファイルから、試料4aの発熱ピーク温度Tpkは310℃であり、試料4bの発熱ピーク温度Tpkは380℃であり、両者の差は70℃であることが確認された。また、図示省略のTGプロファイルから、試料4aの温度T50は338℃であり、試料4bのT50は429℃であり、両者の差は91℃であることが確認された。これらの結果より、実施例5で得られた排ガス浄化用触媒は、低温でPMを燃焼させることができ、しかも、1000℃程度に加熱されても失活しない優れた耐熱性を有するものであることが判った。
Example 4
As a precursor solution, using tin oxide sol (Sellnax CX-S204IP manufactured by Nissan Chemical Industries, tin oxide concentration 20 wt%, isopropyl alcohol solvent), the amount of the mixture was 1.30 g (at this time included in the slurry) Except that the weight of carbon fine particles is 50% of the weight of tin), an exhaust gas purifying catalyst was obtained in the same manner as in Example 1 above, and the obtained catalyst was used as sample 4a. In the same manner as in Example 1, sample 4a was further heat-treated at 1000 ° C. for 10 hours as sample 4b, and the performance of these samples 4a and 4b was evaluated. From the DTA profile not shown, it was confirmed that the exothermic peak temperature T pk of the sample 4a was 310 ° C., the exothermic peak temperature T pk of the sample 4b was 380 ° C., and the difference between them was 70 ° C. Further, from the TG profile not shown, it was confirmed that the temperature T 50 of the sample 4a was 338 ° C., the T 50 of the sample 4b was 429 ° C., and the difference between them was 91 ° C. From these results, the exhaust gas purifying catalyst obtained in Example 5 can burn PM at a low temperature and has excellent heat resistance that does not deactivate even when heated to about 1000 ° C. I found out.

(比較例1)
次に、上記実施例に対する比較例について説明する。比較例1では、担体粒子を作製する際に、スズ微粒子分散液及び炭素微粒子を配合せず、酸化セリウム粉末1.28gを用いた点以外は、上記実施例1と同様の方法で排ガス浄化用触媒を得て、得られた触媒を試料5aとした。そして、上記実施例1と同様に、試料5aをさらに1000℃で10時間の加熱処理したものを試料5bとし、これらの試料5a,5bの性能を評価した。図5のDTAプロファイルを参照して、図中実線で示す試料5aの発熱ピーク温度Tpkは297℃であり、破線で示す試料5bの発熱ピーク温度Tpkは494℃であり、両者の差は197℃と大きいことが確認された。また、表2に示すように、試料5aの温度T50は310℃であり、試料5bの温度T50は464℃であり、両者の差は154℃と大きいことが確認された。これらの結果より、比較例1で得られた排ガス浄化用触媒は、耐熱性が低く、1000℃程度に加熱されると失活することが判った。
(Comparative Example 1)
Next, a comparative example for the above embodiment will be described. In Comparative Example 1, when producing carrier particles, the tin fine particle dispersion and the carbon fine particles are not blended, and the cerium oxide powder is used in the same manner as in Example 1 except that 1.28 g of cerium oxide powder is used. A catalyst was obtained, and the obtained catalyst was designated as sample 5a. In the same manner as in Example 1, sample 5a was further heat-treated at 1000 ° C. for 10 hours as sample 5b, and the performance of these samples 5a and 5b was evaluated. With reference to the DTA profile of FIG. 5, the exothermic peak temperature Tpk of the sample 5a indicated by the solid line in the figure is 297 ° C., and the exothermic peak temperature Tpk of the sample 5b indicated by the broken line is 494 ° C. It was confirmed to be as large as 197 ° C. Further, as shown in Table 2, the temperature T 50 of the sample 5a is 310 ° C., a temperature T 50 of the sample 5b is 464 ° C., the difference between them was confirmed to be as large as 154 ° C.. From these results, it was found that the exhaust gas purifying catalyst obtained in Comparative Example 1 had low heat resistance and was deactivated when heated to about 1000 ° C.

(比較例2)
比較例2では、担体粒子を作製する際に、酸化セリウム粉末を配合せず、スズ微粒子分散液の量を3.29gとし、炭素微粒子の混合量を0.50gとした点以外は、上記実施例1と同様の方法で排ガス浄化用触媒を得て、得られた触媒を試料6aとした(このとき、スラリー中に含まれる炭素微粒子の重量は、スズの重量の50%である)。そして、上記実施例1と同様に、試料6aをさらに1000℃で10時間の加熱処理したものを試料6bとし、これらの試料6a,6bの性能を評価した。図6のDTAプロファイルを参照して、図中実線で示す試料6aの発熱ピーク温度Tpkは390℃であり、破線で示す試料6bの発熱ピーク温度Tpkは382℃であり、両者の差は8℃であることが確認された。また、表2に示すように、試料6aの温度T50は439℃であり、試料6bの温度T50は464℃であり、両者の差は25℃と小さいことが確認された。しかし、試料6bのT50が450℃以上となり、比較例2で得られた排ガス浄化用触媒は、1000℃程度に加熱されたときの活性が不十分であることが判った。
(Comparative Example 2)
In Comparative Example 2, the above procedure was performed except that the carrier particles were not mixed with cerium oxide powder, the amount of the tin fine particle dispersion was 3.29 g, and the amount of carbon fine particles was 0.50 g. An exhaust gas purifying catalyst was obtained in the same manner as in Example 1, and the obtained catalyst was designated as Sample 6a (at this time, the weight of the carbon fine particles contained in the slurry was 50% of the weight of tin). In the same manner as in Example 1, sample 6a was further heat-treated at 1000 ° C. for 10 hours as sample 6b, and the performance of these samples 6a and 6b was evaluated. With reference to the DTA profile in FIG. 6, the exothermic peak temperature Tpk of the sample 6a indicated by the solid line in the figure is 390 ° C., and the exothermic peak temperature Tpk of the sample 6b indicated by the broken line is 382 ° C. It was confirmed to be 8 ° C. Further, as shown in Table 2, the temperature T 50 of the sample 6a is 439 ° C., a temperature T 50 of the sample 6b is 464 ° C., the difference between them was confirmed that 25 ° C. and less. However, T 50 of sample 6b was 450 ° C. or higher, and the exhaust gas purifying catalyst obtained in Comparative Example 2 was found to have insufficient activity when heated to about 1000 ° C.

図6は、担体粒子の酸化スズ含有率と発熱ピーク温度Tpkとの関係を示すグラフであり、図7は、担体粒子の酸化スズ含有率と温度T50との関係を示すグラフである。これらのグラフによれば、PM燃焼温度の指標となるTpk及びT50の双方を低くするには、酸化スズ含有率を20〜80重量%の範囲に設定することが好ましく、50〜80重量%の範囲にすることがより好ましい。 Figure 6 is a graph showing the relationship between the tin oxide content of carrier particles exothermic peak temperature T pk, FIG. 7 is a graph showing the relationship between a tin oxide content and the temperature T 50 of the support particles. According to these graphs, in order to reduce both T pk and T 50 which are indicators of PM combustion temperature, it is preferable to set the tin oxide content in the range of 20 to 80 wt%, and 50 to 80 wt. % Is more preferable.

以上説明したように、本実施形態及び実施例によれば、担体粒子を作製する際、前駆体液に酸化セリウム粉末と鋳型としての炭素微粒子とを混合するため、この混合により調整されたスラリーを乾燥すると、酸化セリウムやスズ微粒子の間に炭素微粒子が介在するものが得られる。そして、この乾燥により得られたものを焼成すると、スズ微粒子が酸化されて酸化スズ粒子となると共に、炭素微粒子が燃焼して除去され、この炭素微粒子が除去された部分が空孔となる。このため、焼成後に得られた担体粒子は、酸化セリウムと酸化スズとで構成され、多孔質で広い表面積を有するものとなり、しかも、金属微粒子を担持させるための有効なサイトである酸素欠損を有するものとなる。この担体粒子にAg等の金属微粒子を担持すれば、従来例よりも多量の金属微粒子が分散した状態で担持される。このようにして作製された排ガス浄化用触媒は、低温でもPMを燃焼させることができ、1000℃程度に加熱されても失活しないことが確認された。   As described above, according to the present embodiment and examples, when the carrier particles are produced, the cerium oxide powder and the carbon fine particles as the template are mixed with the precursor liquid. Then, what has carbon fine particles intervening between cerium oxide and tin fine particles is obtained. When the product obtained by this drying is fired, the tin fine particles are oxidized to become tin oxide particles, and the carbon fine particles are burned and removed, and the portions where the carbon fine particles are removed become pores. For this reason, the carrier particles obtained after firing are composed of cerium oxide and tin oxide, are porous and have a large surface area, and have oxygen vacancies that are effective sites for supporting metal fine particles. It will be a thing. If metal fine particles such as Ag are supported on the carrier particles, a larger amount of metal fine particles are supported than in the conventional example. It was confirmed that the exhaust gas-purifying catalyst thus produced can burn PM even at a low temperature and does not deactivate even when heated to about 1000 ° C.

なお、本発明は、上記に限定されるものではない。例えば、上記実施形態及び実施例では、前駆体液に炭素微粒子を混合した後に酸化セリウム粉末を混合しているが、酸化セリウム粉末と炭素微粒子とを同時に混合してもよく、また、酸化セリウム粉末を混合した後に炭素微粒子を混合してもよい。   The present invention is not limited to the above. For example, in the above-described embodiments and examples, the cerium oxide powder is mixed after the carbon fine particles are mixed with the precursor liquid. However, the cerium oxide powder and the carbon fine particles may be mixed at the same time. Carbon fine particles may be mixed after mixing.

また、上記実施形態及び実施例では、スズ微粒子を含む前駆体液を用いる場合を例に説明したが、酸化スズ微粒子を含む前駆体液を用いて担体粒子を作製してもよい。
Moreover, although the case where the precursor liquid containing tin fine particles was used as an example has been described in the above embodiment and examples, the carrier particles may be produced using the precursor liquid containing tin oxide fine particles.

Claims (2)

酸化スズと酸化セリウムとで構成される担体粒子を作製し、作製した担体粒子に金属微粒子を担持させて排ガス浄化用触媒を得る排ガス浄化用触媒の製造方法であって、
前記担体粒子は、スズ微粒子及び酸化スズ微粒子の少なくとも一方を含む前駆体液に酸化セリウムの粉末と炭素微粒子とを混合してスラリーを調製し、調製したスラリーを乾燥し、乾燥したものを焼成して炭素微粒子を除去することにより作製し、
前記前駆体液として、金属スズ微粒子を溶媒に分散させた金属スズ微粒子分散液を用いることを特徴とする排ガス浄化用触媒の製造方法。
A method for producing an exhaust gas purification catalyst by producing carrier particles composed of tin oxide and cerium oxide, and obtaining metal exhaust particles by carrying metal fine particles on the produced carrier particles,
The carrier particles are prepared by mixing a cerium oxide powder and carbon fine particles with a precursor liquid containing at least one of tin fine particles and tin oxide fine particles, drying the prepared slurry, and firing the dried one. Produced by removing carbon particles ,
A method for producing an exhaust gas purifying catalyst, wherein a metal tin fine particle dispersion in which metal tin fine particles are dispersed in a solvent is used as the precursor liquid .
前記スラリー中に含まれる炭素微粒子の重量をスズの重量の30%以上に設定したことを特徴とする請求項記載の排ガス浄化用触媒の製造方法。 The process according to claim 1, wherein the exhaust gas purifying catalyst is characterized in that the weight of the carbon particles contained in the slurry is set more than 30% by weight of tin.
JP2014180071A 2014-09-04 2014-09-04 Method for producing exhaust gas purification catalyst Active JP6376532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014180071A JP6376532B2 (en) 2014-09-04 2014-09-04 Method for producing exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014180071A JP6376532B2 (en) 2014-09-04 2014-09-04 Method for producing exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2016052637A JP2016052637A (en) 2016-04-14
JP6376532B2 true JP6376532B2 (en) 2018-08-22

Family

ID=55744132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014180071A Active JP6376532B2 (en) 2014-09-04 2014-09-04 Method for producing exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP6376532B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11439952B2 (en) 2018-11-16 2022-09-13 Umicore Ag & Co. Kg Low temperature nitrogen oxide adsorber

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9226434D0 (en) * 1992-12-18 1993-02-10 Johnson Matthey Plc Catalyst
JP2000246103A (en) * 1999-02-26 2000-09-12 Toyota Motor Corp Production of catalyst for cleaning exhaust gas
JP2002282689A (en) * 2001-01-19 2002-10-02 Toyota Motor Corp Catalyst carrier and catalyst, and method for producing them
JP2012036821A (en) * 2010-08-06 2012-02-23 Mitsui Mining & Smelting Co Ltd Exhaust emission control system of internal combustion engine
JP5716603B2 (en) * 2010-08-24 2015-05-13 株式会社豊田中央研究所 SCR catalyst, exhaust gas purification filter, and exhaust gas purification device

Also Published As

Publication number Publication date
JP2016052637A (en) 2016-04-14

Similar Documents

Publication Publication Date Title
US9427732B2 (en) Catalyst design for heavy-duty diesel combustion engines
TWI655962B (en) Method for preparing a catalyzed fabric filter and a catalyzed fabric filter
CN101992089B (en) Three-dimensional ordered porous-mesoporous iron-based perovskite oxide catalyst and preparation method thereof
JP2016531725A (en) High surface area catalyst
JP2007044585A (en) Manufacturing method of porous composite metal oxide material
JP2007268460A (en) Metal oxide catalyst carrier particle, and exhaust gas purification catalyst
JP5703924B2 (en) Columnar ceria catalyst
CN103781548A (en) Exhaust gas purification catalyst, and method for producing same
JP6376532B2 (en) Method for producing exhaust gas purification catalyst
JP6444265B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
JP6358902B2 (en) Method for producing exhaust gas purification catalyst
JP4696767B2 (en) Method for producing composite metal oxide porous body
KR102059404B1 (en) Cerium-Praseodymium mixed oxide catalyst with fibrous morphology for combustion of carbon particulate matter, and method for carbon particulate matter combustion using the same
KR101068543B1 (en) Mixtured Catalyst For Emission Reduction Device Of Diesel Vehicles And Preparing Method For The Same
JP5031642B2 (en) Catalyst production method
CN111379613B (en) Diesel particulate trap loaded with macroporous perovskite oxide and application thereof
EP2870997A1 (en) Catalyst for emission gas purification and production method thereof
CN111068677B (en) Composite oxide supported noble metal nanocluster catalyst and preparation and application thereof
JP2008149289A (en) Gas cleaning method, gas cleaning catalyst, and exhaust gas cleaning apparatus
JP2017100120A (en) Method for producing catalyst for methane oxidation removal, and catalyst for methane oxidation removal
JP5215880B2 (en) Exhaust gas purification catalyst and exhaust gas purification apparatus using the same
JP2012179573A (en) Catalyst for purifying exhaust gas, and method for producing the same
JP6909402B2 (en) A catalyst carrier for exhaust gas purification, a catalyst for exhaust gas purification using the same, and a method for producing a catalyst carrier for exhaust gas purification.
JP2007244975A (en) Automobile exhaust gas treatment catalyst and method for manufacturing the same
JP6051783B2 (en) Exhaust gas purification catalyst and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180717

R150 Certificate of patent or registration of utility model

Ref document number: 6376532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250