JPH0714873Y2 - X-ray diffraction measuring device - Google Patents

X-ray diffraction measuring device

Info

Publication number
JPH0714873Y2
JPH0714873Y2 JP1986152600U JP15260086U JPH0714873Y2 JP H0714873 Y2 JPH0714873 Y2 JP H0714873Y2 JP 1986152600 U JP1986152600 U JP 1986152600U JP 15260086 U JP15260086 U JP 15260086U JP H0714873 Y2 JPH0714873 Y2 JP H0714873Y2
Authority
JP
Japan
Prior art keywords
detector
ray
diffraction
sample
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986152600U
Other languages
Japanese (ja)
Other versions
JPS6358740U (en
Inventor
繁 宗川
弘 円山
Original Assignee
理学電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理学電機株式会社 filed Critical 理学電機株式会社
Priority to JP1986152600U priority Critical patent/JPH0714873Y2/en
Publication of JPS6358740U publication Critical patent/JPS6358740U/ja
Application granted granted Critical
Publication of JPH0714873Y2 publication Critical patent/JPH0714873Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【考案の詳細な説明】 本考案は例えば鉄鋼材料における残留オーステナイトの
測定等に用いるためのX線回折測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an X-ray diffraction measuring device for use in, for example, measuring retained austenite in a steel material.

従来のX線回折測定装置は、試料を中心とする円弧状の
軌道に沿って1つのX線検出器を走査することにより、
回折角と強度との関係を測定する構造であった。しかし
このような装置を用いて、例えば鉄鋼の残留オーステナ
イトを検出しようとすると鉄の蛍光X線による妨害を受
けないクロームターゲツトX線管を用いた場合に、α相
であるマルテンサイトの回折角2θは155.8度、γ相で
あるオーステナイトの回折角は128.2度となる。すなわ
ちマルテンサイトによる回折線と投射X線との間の角度
は僅かに20度強に過ぎない。従ってX線管あるいは検出
器の縁で回折線または投射X線が遮蔽されることを防止
するためには、試料とX線源並びに前記円弧状軌道の半
径を充分大きくしなければならない。このため強度の弱
いオーステナイトの回折線を正確に検出することが困難
になる欠点があつた。従って本考案は例えば上述のよう
な欠点を除去し、回折角の大きいX線をも容易に検出す
ることができて、しかも回折角の比較的小さいX線は、
その強度を精密に検出することのできる装置を提供する
ものである。
A conventional X-ray diffraction measurement apparatus scans one X-ray detector along an arcuate trajectory centered on the sample,
It was a structure for measuring the relationship between the diffraction angle and the intensity. However, using such an apparatus, for example, when a chromium target X-ray tube that is not disturbed by the fluorescent X-rays of iron is used to detect residual austenite of steel, the diffraction angle 2θ of martensite, which is the α phase, is used. Is 155.8 degrees and the diffraction angle of γ-phase austenite is 128.2 degrees. That is, the angle between the diffraction line by martensite and the projected X-ray is only slightly over 20 degrees. Therefore, in order to prevent the diffraction rays or projected X-rays from being blocked by the edges of the X-ray tube or the detector, the radius of the sample, the X-ray source and the arcuate orbit must be sufficiently large. For this reason, there is a drawback that it is difficult to accurately detect the diffraction line of austenite having a weak intensity. Therefore, the present invention eliminates the above-mentioned drawbacks and can easily detect X-rays having a large diffraction angle.
It is intended to provide a device capable of accurately detecting the intensity.

本考案は従来の装置のように、1個の検出器を1っの円
弧状軌道に沿って移動させることにより回折角の測定を
行う構成によることなく、複数個の位置敏感形X線検出
器を用いてそれぞれで適宜の回折角範囲のX線を検出
し、かつ回折角の大きい側のX線検出器と試料面との距
離が、回折角の小さい側のX線検出器と試料面との距離
よりも大きくなるようにしたものである。すなわち回折
角の大きいX線の検出器は、試料との間の距離が大きい
位置に配置されるために、検出器の縁の部分で投射X線
が遮断される角度範囲を充分小さくして、広角度範囲に
亘る測定を可能にすると共に回折角の小さいX線に対し
ては検出器と試料との間の距離を小さくすることによっ
て、その強度を精密に測定し得る作用効果がある。なお
検出器と試料との間の距離の相違にもとづく検出感度の
差は、これを電子計算器の併用によって時間遅れなく補
正することができる。
The present invention does not rely on the structure of measuring the diffraction angle by moving one detector along one arcuate trajectory as in the conventional device, but instead of using a plurality of position sensitive X-ray detectors. X-rays within a suitable diffraction angle range are detected by using the X-ray detector, and the distance between the X-ray detector on the larger diffraction angle side and the sample surface is the same as that on the smaller diffraction angle side and the sample surface. It is designed to be larger than the distance. That is, the X-ray detector having a large diffraction angle is arranged at a position where the distance between the X-ray and the sample is large, so that the angle range where the projected X-rays are blocked at the edge of the detector is sufficiently small, By making it possible to perform measurement over a wide angle range and reducing the distance between the detector and the sample for X-rays having a small diffraction angle, there is an effect that the intensity can be accurately measured. The difference in detection sensitivity due to the difference in distance between the detector and the sample can be corrected without delay by using an electronic calculator together.

第1図は本考案実施例の正面図、第2図はその右側面図
で、必要に応じては内部をポンプで排気されるコリメー
タ1を用いて、例えばクロームターゲツトX線管2から
鉄鋼等の試料3上の点pに細い平行X線を入射させる。
この点pを通って紙面に直角な軸4によつて微調整腕5
および6の一端をそれぞれ独立に回動し得るように支持
し、腕5,6の他端にそれぞれ位置敏感形X線検出器7お
よび8を取り付けてある。検出器7,8は試料3に対向す
る面にそれぞれ帯状のX線窓9を有し、この窓に入射す
るX線の位置、すなわち窓の長手方向における入射点並
びにその強度に対応した信号を送出する。なお前記腕5,
6は図示してないが、比較的小さい適当な範囲で検出器
7,8の位置調整を行って固定される機構を具備し、測定
中は固定状態に置かれる。また検出器7は試料3上の点
pから破線で示したように角Aの範囲に回折したX線を
検出し、検出器8は角Bの範囲の回折線を検出するもの
で、前者は点pから充分大きい距離1の位置に、後者は
これより小さい適当な距離mの位置に配置される。第1
図の角Dは、検出器7のX線管2に近い側の測定限界と
投射X線とのなす角度であり、角Cは、検出器8のX線
管2に近い側の測定限界と投射X線とのなす角度であ
る。検出器7および8によってそれぞれ検出することの
できる最大回折角はそれぞれ(π−D)並びに(π−
C)であり、また検出できる最小の回折角はそれぞれ
{π−(D+A)}並びに{π−(C+B)}である。
なお、この実施例では(C+B)=π/2となっているの
で、検出器8が検出できる最小の回折角はπ/2となる。
ここで、(D+A)よりCが小さくなるように設計する
と、検出器8で検出できる最大回折角(π−C)が、検
出器7が検出できる最小回折角{π−(D+A)}を上
回ることになり、その結果、回折角がπ/2から(π−
D)の範囲内にある全ての回折X線を検出器7または8
のいずれかによって検出することができる。
FIG. 1 is a front view of an embodiment of the present invention, and FIG. 2 is a right side view thereof. If necessary, a collimator 1 whose inside is exhausted by a pump is used, for example, from a chrome target X-ray tube 2 to steel or the like. A thin parallel X-ray is made incident on a point p on the sample 3.
The fine adjustment arm 5 is moved by the axis 4 perpendicular to the plane of the drawing through this point p.
1 and 6 are supported so as to be independently rotatable, and position-sensitive X-ray detectors 7 and 8 are attached to the other ends of the arms 5 and 6, respectively. Each of the detectors 7 and 8 has a strip-shaped X-ray window 9 on the surface facing the sample 3, and the position of the X-ray incident on this window, that is, the incident point in the longitudinal direction of the window and the signal corresponding to the intensity thereof are detected. Send out. The arm 5,
6 is not shown, but the detector can
It is equipped with a mechanism that adjusts the position of 7 and 8 and is fixed, and is kept in a fixed state during measurement. The detector 7 detects the X-rays diffracted in the range of the angle A from the point p on the sample 3 as shown by the broken line, and the detector 8 detects the diffracted lines in the range of the angle B. The former is The point 1 is located at a sufficiently large distance 1 from the point p, and the latter is located at an appropriately smaller distance m. First
Angle D in the figure is the angle between the measurement limit of the detector 7 near the X-ray tube 2 and the projected X-ray, and angle C is the measurement limit of the detector 8 near the X-ray tube 2. This is the angle formed by the projected X-rays. The maximum diffraction angles that can be detected by the detectors 7 and 8 are (π-D) and (π-D), respectively.
C), and the minimum detectable diffraction angles are {π- (D + A)} and {π- (C + B)}, respectively.
Since (C + B) = π / 2 in this embodiment, the minimum diffraction angle that the detector 8 can detect is π / 2.
Here, if C is designed to be smaller than (D + A), the maximum diffraction angle (π−C) that can be detected by the detector 8 exceeds the minimum diffraction angle {π− (D + A)} that can be detected by the detector 7. As a result, the diffraction angle changes from π / 2 to (π−
All the diffracted X-rays within the range of D) are detected by the detector 7 or 8
Can be detected by any of the following.

このように本考案のX線回折測定装置は、複数個の位置
敏感形X線検出器を用いるから、その1つ例えば7を試
料3から充分大きい距離1の位置に配置することによっ
て、この検出器の端部7′とコリメータ1との衝突によ
り検出不能となる角度Dを充分小さくすることができ
る。また、検出器7から試料3までの距離を、X線管2
から試料3までの距離よりも大きくした場合は、X線管
2の縁の部分で回折線が遮蔽される位置まで角度Dを充
分小さくすることができる。しかも他方の検出器8等
は、これを試料に充分近い位置に配置することによつ
て、弱い回折線を高感度で検出することが可能となる。
このような実施例を鉄鋼の残留オーステナイトの測定に
適用する例を以下に説明する。炭素鋼をγ相のオーステ
イト状態から焼き入れすると、ほどんどがα相のマルテ
ンサイトに変態するが、γ相のオーステナイトが残るこ
とがある。これを残留オーステイトと呼び、歯車や工具
鋼などではこの残留オーステイナイトの体積率を制御す
る要求がある。この残留オーステナイトの体積率をX線
回折で測定するには、α相のマルテンサイトの(211)
面からの回折線のプロファイルの積分強度と、γ相のオ
ーステナイトの(220)面からの回折線のプロファイル
の積分強度とを比較すればよい。そこで、上述の実施例
をこの残留オーステナイトの測定に適用すると、α相の
マルテンサイトからの回折線(回折角2θ=155.8度)
を検出器7で検出できるとともに、γ相のオーステナイ
トからの回折線(回折角2θ=128.2度)を検出器8で
検出できる。検出器7は、試料3から遠い位置に配置し
てあるので、2θ=155.8度というような大きな回折角
を測定する場合でも、検出器7がコリメータ1に衝突す
ることはない。このα相のマルテンサイトからの回折線
の強度は比較的強いので、検出器7を遠くても、検出精
度はそれほど低下しない。これに対して、γ相のオース
テイトからの回折線の強度は比較的弱いので、検出器8
を検出器7よりも試料3に近付けることによって高精度
の測定ができる。検出器8は2θ=128.2度の回折線を
測定する位置にあってコリメータ1からは離れているの
で、検出器8を試料3に近付けても、検出器8がコリメ
ータ1に衝突する心配はない。検出器と試料との間の距
離に基づく検出感度の差は、電子計算器によって補正を
すればよい。本実施例によれば、残留オーステナイトの
体積率が1%程度の試料でも測定が可能である。かつ検
出器を機械的に移動させて測定を行う等の必要がないか
ら、測定に要する時間も著しく短縮される。
As described above, since the X-ray diffraction measuring apparatus of the present invention uses a plurality of position-sensitive X-ray detectors, one of them, for example, 7 is arranged at a position of a sufficiently large distance 1 from the sample 3 to detect this. The angle D that cannot be detected due to the collision between the end 7'of the container and the collimator 1 can be made sufficiently small. In addition, the distance from the detector 7 to the sample 3 is determined by the X-ray tube 2
If the distance is larger than the distance from the sample to the sample 3, the angle D can be made sufficiently small to the position where the diffraction line is shielded at the edge portion of the X-ray tube 2. Moreover, by arranging the other detector 8 or the like at a position sufficiently close to the sample, it becomes possible to detect a weak diffraction line with high sensitivity.
An example in which such an example is applied to the measurement of retained austenite of steel will be described below. When carbon steel is quenched from the γ-phase austenite state, it mostly transforms into α-phase martensite, but γ-phase austenite may remain. This is called residual austenite, and there is a demand for controlling the volume ratio of this residual austenite in gears and tool steels. To measure the volume fraction of this retained austenite by X-ray diffraction, the α phase martensite (211)
The integrated intensity of the profile of the diffraction line from the plane and the integrated intensity of the profile of the diffraction line from the (220) plane of the γ-phase austenite may be compared. Therefore, when the above-mentioned embodiment is applied to the measurement of this retained austenite, the diffraction line from the α-phase martensite (diffraction angle 2θ = 155.8 degrees)
Can be detected by the detector 7, and the diffraction line (diffraction angle 2θ = 128.2 degrees) from the γ-phase austenite can be detected by the detector 8. Since the detector 7 is arranged at a position far from the sample 3, the detector 7 does not collide with the collimator 1 even when measuring a large diffraction angle such as 2θ = 155.8 degrees. Since the intensity of the diffraction line from the α-phase martensite is comparatively strong, the detection accuracy does not decrease so much even if the detector 7 is far away. On the other hand, the intensity of the diffracted rays from the γ-phase overstate is comparatively weak, so the detector 8
It is possible to perform highly accurate measurement by bringing the sample 3 closer to the sample 3 than the detector 7. Since the detector 8 is located at a position for measuring a diffraction line of 2θ = 128.2 degrees and is apart from the collimator 1, there is no concern that the detector 8 will collide with the collimator 1 even if the detector 8 is brought close to the sample 3. . The difference in detection sensitivity based on the distance between the detector and the sample may be corrected by an electronic calculator. According to this example, it is possible to measure even a sample having a volume ratio of retained austenite of about 1%. Moreover, since it is not necessary to mechanically move the detector to perform the measurement, the time required for the measurement is significantly shortened.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案実施例の正面図、第2図は第1図の装置
の右側面図である。なお図において、1はコリメータ、
2はX線管、3は試料、4は軸、5および6は微調整
腕、7および8は位置敏感形X線検出器、9はX線窓で
ある。
FIG. 1 is a front view of the embodiment of the present invention, and FIG. 2 is a right side view of the apparatus of FIG. In the figure, 1 is a collimator,
2 is an X-ray tube, 3 is a sample, 4 is an axis, 5 and 6 are fine adjustment arms, 7 and 8 are position-sensitive X-ray detectors, and 9 is an X-ray window.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】試料面に所定の波長の細い平行X線を入射
させる細長いコリメータと上記試料面で所望の平面内に
回折したX線の回折角をそれぞれ検出する複数個の位置
敏感型X線検出器とを有し、上記複数個のX線検出器の
うち回折角の大きい側のX線検出器と試料面との距離
が、回折角の小さい側のX線検出器と試料面との距離よ
りも大きくなっていることを特徴とするX線回折測定装
置。
1. A slender collimator for injecting a thin parallel X-ray having a predetermined wavelength on a sample surface and a plurality of position-sensitive X-rays for detecting the diffraction angles of X-rays diffracted in a desired plane on the sample surface. A detector, and the distance between the X-ray detector on the larger diffraction angle side of the plurality of X-ray detectors and the sample surface is smaller than that of the X-ray detector on the smaller diffraction angle side and the sample surface. An X-ray diffraction measuring device characterized in that it is larger than the distance.
JP1986152600U 1986-10-06 1986-10-06 X-ray diffraction measuring device Expired - Lifetime JPH0714873Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986152600U JPH0714873Y2 (en) 1986-10-06 1986-10-06 X-ray diffraction measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986152600U JPH0714873Y2 (en) 1986-10-06 1986-10-06 X-ray diffraction measuring device

Publications (2)

Publication Number Publication Date
JPS6358740U JPS6358740U (en) 1988-04-19
JPH0714873Y2 true JPH0714873Y2 (en) 1995-04-10

Family

ID=31070730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986152600U Expired - Lifetime JPH0714873Y2 (en) 1986-10-06 1986-10-06 X-ray diffraction measuring device

Country Status (1)

Country Link
JP (1) JPH0714873Y2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4851679A (en) * 1971-10-29 1973-07-20
JPS55163445A (en) * 1979-06-06 1980-12-19 Kawasaki Steel Corp On-line measurement of austenitic quantity in rolled steel plate

Also Published As

Publication number Publication date
JPS6358740U (en) 1988-04-19

Similar Documents

Publication Publication Date Title
US7852983B2 (en) X-ray diffractometer for mechanically correlated movement of the source, detector, and sample position
CN1155797C (en) Ellipsometer measuring instrument
JPH0714873Y2 (en) X-ray diffraction measuring device
EP0614068A1 (en) Method of measuring orientation flat width of single crystal ingot
JPS636428A (en) Measuring method for surface temperature of body
JPS5842904A (en) Length measuring device
US4442535A (en) Fluorescent X-ray film thickness gauge for very small areas
KR200418412Y1 (en) An apparatus for measuring the distance between bragg's planes of a crystal using X-ray
SE7613514L (en) SATURATION DEVICE
SU1492208A1 (en) Protractor
US4867556A (en) Apparatus for determining the path of a pulsed light beam
US3427451A (en) X-ray diffractometer having several detectors movable on a goniometer circle
JPS5582006A (en) Measuring method for thickness
JP2546092B2 (en) Method and apparatus for measuring thickness of coating film on metal by Compton scattering X-ray method
Berger et al. Application of the/spl Omega/scan to the sorting of doubly rotated quartz blanks
SU1144040A1 (en) Diffractometer adjustment method
RU2132535C1 (en) Method determining forms of profiles of notches on surfaces of solid bodies
SU1631265A1 (en) Method and device for coating thickness determination
SU718769A1 (en) Three-crystal x-ray spectrometer
SU1041918A1 (en) Diffractometer primary beam adjusting method
JPH11142129A (en) Radiation thickness gauge
JPH03269351A (en) X-ray measuring method for main strain distribution of thin film
SU1141321A1 (en) X-ray spectrometer
SU881592A2 (en) X-ray spectrometer
JPH03148054A (en) X-ray diffraction apparatus