JPH0714832B2 - Method for manufacturing refractory for continuous casting - Google Patents

Method for manufacturing refractory for continuous casting

Info

Publication number
JPH0714832B2
JPH0714832B2 JP1325323A JP32532389A JPH0714832B2 JP H0714832 B2 JPH0714832 B2 JP H0714832B2 JP 1325323 A JP1325323 A JP 1325323A JP 32532389 A JP32532389 A JP 32532389A JP H0714832 B2 JPH0714832 B2 JP H0714832B2
Authority
JP
Japan
Prior art keywords
mgo
refractory
zro
aggregate
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1325323A
Other languages
Japanese (ja)
Other versions
JPH03189055A (en
Inventor
茂樹 丹羽
俊夫 川村
昭司 柴田
隆文 西部
憲生 近藤
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP1325323A priority Critical patent/JPH0714832B2/en
Publication of JPH03189055A publication Critical patent/JPH03189055A/en
Publication of JPH0714832B2 publication Critical patent/JPH0714832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、連続鋳造の鋳型とタンディッシュとの間に介
在されるスライドゲート、ノズル等の連続鋳造用耐火物
の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a refractory material for continuous casting, such as a slide gate or a nozzle, which is interposed between a continuous casting mold and a tundish.

[従来の技術] 通常、連続鋳造用耐火物としては、MgO(マグネシア)
を含むMgO系耐火物が、溶鋼との接触角が大きいことか
ら、他の材質に比べ高耐食性を期待でき、広く用いられ
ている。
[Prior Art] Usually, MgO (magnesia) is used as a refractory for continuous casting.
Since MgO-based refractory materials containing Mg have a large contact angle with molten steel, they can be expected to have higher corrosion resistance than other materials and are widely used.

しかし、MgO系耐火物は、熱膨張率が大きいことから、
熱衝撃抵抗性に劣る欠点がある。
However, since the MgO refractory has a large coefficient of thermal expansion,
It has the drawback of being poor in thermal shock resistance.

従来、上記欠点に対処するため、 (1) MgO系骨材の他にC(カーボン)を多量に耐火
物骨材として含有させ、熱膨張率を低くあるいは熱伝導
性をよくしたり、 (2) 単斜晶型ZrO2(ジルコニア)骨材を併用し、耐
火物製造時にマトリックス中にマイクロクラックを得
る。
Conventionally, in order to deal with the above-mentioned drawbacks, (1) in addition to MgO-based aggregate, a large amount of C (carbon) is contained as a refractory aggregate to lower the coefficient of thermal expansion or improve the thermal conductivity. ) Using monoclinic ZrO 2 (zirconia) aggregate together to obtain microcracks in the matrix during refractory production.

等の方法により、熱衝撃抵抗性の向上を図る連続鋳造用
耐火物の製造方法が考えられている。
A method for producing a refractory for continuous casting, which aims to improve the thermal shock resistance, has been considered.

[発明が解決しようとする課題] しかしながら、多量のCを耐火物骨材として併用する従
来の製造方法によるMgO−C系連続鋳造用耐火物におい
ては、カーボンの酸化・脱炭による組織の脆弱化あるい
は極低炭素鋼種に対する耐食性劣化の問題がある。
[Problems to be Solved by the Invention] However, in the MgO-C-based continuous casting refractory manufactured by the conventional manufacturing method in which a large amount of C is used as a refractory aggregate, the structure becomes brittle due to carbon oxidation and decarburization. Alternatively, there is a problem of deterioration of corrosion resistance for extremely low carbon steel grades.

又、単斜晶型ZrO2を耐火物骨材として併用する従来の製
造方法によるMgO−ZrO2系連続鋳造用耐火物において
は、ZrO2の使用量が少ないと、MgOによって安定化され
た立方晶型ZrO2の比率が増し、単斜晶型正方晶型の相
変態に起因するマイクロクラックが減少して効果が減少
する一方、ZrO2の使用量が多い、あるいは粗角として使
用すると、結合組織内に多数のクラックが発生し、強度
が著しく劣化する問題がある。
Further, in the MgO-ZrO 2 series continuous casting refractory by the conventional manufacturing method in which monoclinic ZrO 2 is used as the refractory aggregate together, when the amount of ZrO 2 used is small, the cubic stabilized by MgO is used. The ratio of crystalline ZrO 2 is increased, the microcracks due to the monoclinic tetragonal phase transformation are reduced and the effect is reduced, while when the amount of ZrO 2 used is large or when it is used as a rough angle, There is a problem that many cracks are generated in the structure and the strength is significantly deteriorated.

そこで、本発明は、耐食性、熱衝撃抵抗性に優れ、かつ
組織の結合強度を高め得る連続鋳造用耐火物の製造方法
の提供を目的とする。
Therefore, an object of the present invention is to provide a method for producing a refractory for continuous casting, which is excellent in corrosion resistance and thermal shock resistance and which can enhance the bond strength of the structure.

[課題を解決するための手段] 前記課題を解決するため、本発明は、MgOのみ又はMgOを
含む耐火材料100重量部に対しZrO2を5〜50重量部添加
して粒径44〜10000μmに調製したMgO−ZrO2系骨材(以
下、MZ系骨材と称す)20〜100重量%、残部が主としてM
gO系骨材からなる耐火物原料を混練して、成形、焼成す
る方法である。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides 5 to 50 parts by weight of ZrO 2 with respect to 100 parts by weight of MgO alone or a refractory material containing MgO to obtain a particle size of 44 to 10000 μm. 20 to 100% by weight of the prepared MgO-ZrO 2 -based aggregate (hereinafter referred to as MZ-based aggregate), the balance being mainly M
This is a method in which a refractory raw material made of gO-based aggregate is kneaded, molded, and fired.

ここで、MgOを含む耐火材料とは、MgOの他に、酸化物、
炭化物、ほう化物、もしくは窒化物耐火材料又は金属の
1種以上を添加したものをいい、例えばAl2O3(アルミ
ナ)、Cr2O3(酸化クロム)、ZrB2(ほう化ジルコニウ
ム)あるいはSi3N4(窒化けい素)ウイスカ、SiC(炭化
けい素)ウイスカ等が用いられる。MgO以外の耐火材料
は、MZ系骨材自身の耐食性や強度を高めるもので、その
添加量の割合は、MZ系骨材全体のうち80重量%以下であ
ることが好ましい。80重量%を超えると、MgOの配合量
が減少し、高い耐食性を期待できなくなるおそれがあ
り、かつMgOとZrO2のバランスがくずれ、不適である。
Here, the refractory material containing MgO, in addition to MgO, oxide,
Carbide, boride, or nitride Refractory material or one to which one or more metals are added, such as Al 2 O 3 (alumina), Cr 2 O 3 (chromium oxide), ZrB 2 (zirconium boride), or Si 3 N 4 (silicon nitride) whiskers, SiC (silicon carbide) whiskers, etc. are used. The refractory material other than MgO enhances the corrosion resistance and strength of the MZ-based aggregate itself, and the proportion of the addition amount thereof is preferably 80% by weight or less based on the entire MZ-based aggregate. If it exceeds 80% by weight, the amount of MgO blended will decrease, and high corrosion resistance may not be expected, and the balance between MgO and ZrO 2 may be unfavorable.

又、MgO系骨材とは、MgO、MgO・Al2O3(スピネル)又は
MgO・Cr2O3(クロムスピネル)の1種以上、あるいはこ
れらの他にAl203を添加したものをいい、これら主とな
るMgO系骨材に加え、他の骨材として、より一層の耐ス
ポーリング性あるいは耐食性向上のためにC(炭素)を
併用することも有効である。
In addition, MgO-based aggregate means MgO, MgO.Al 2 O 3 (spinel) or
One or more of MgO / Cr 2 O 3 (chromium spinel), or the one in which Al203 is added in addition to these, in addition to these main MgO-based aggregates, as a further aggregate, it is more resistant to spatter. It is also effective to use C (carbon) together for improving the poling property or the corrosion resistance.

[作 用] MZ系骨材は、バデレアイト(baddeleyite)とペリクレ
ース(periclase)あるいはスピネル等を原料として溶
融製造したクリンカーだけでなく、1500℃以上の温度で
焼結させたものを破砕調製したものでもよいが、ZrO2
晶の大きさを制御する面及び現状の製造技術、コスト面
で電融品が特に望ましい。
[Work] MZ aggregate is not only clinker melt-produced from baddeleyite and periclase or spinel, but also crushed and prepared by sintering at 1500 ° C or higher. It is good, but an electrofused product is particularly desirable in terms of controlling the size of the ZrO 2 crystal, current manufacturing technology, and cost.

ZrO2は、MgO、Al2O3、Cr2O3にはほとんど固溶しないた
め、MZ系骨材は、MgOあるいはMgO・Al2O3、MgO・Cr2O3
やフリーのAl2O3やCr2O3等のマトリックス中にZrO2粒子
が分散した組織を呈する。
Since ZrO 2 hardly forms a solid solution with MgO, Al 2 O 3 , and Cr 2 O 3 , MZ-based aggregates are MgO or MgO.Al 2 O 3 , MgO.Cr 2 O 3
It has a structure in which ZrO 2 particles are dispersed in a matrix of free Al 2 O 3 or Cr 2 O 3 .

このZrO2は、MgOの固溶量に応じて単斜晶型、正方晶型
あいは立方晶型として存在する。そして、MZ系骨材を耐
火物に使用した場合、焼成時あるいは実使用時の熱履歴
により以下のようにしてマイクロクラックを生じる。
This ZrO 2 exists as a monoclinic type, a tetragonal type or a cubic type depending on the solid solution amount of MgO. When the MZ-based aggregate is used as a refractory, microcracks are generated as follows due to the thermal history during firing or actual use.

MZ系骨材中のZrO2粒子が単斜晶型であった場合には、単
斜晶型正方晶型の相変態における膨張収縮によりZrO2
粒子周辺部にマイクロクラックを生ずる。
When ZrO 2 particles of the MZ system aggregate in was monoclinic type, ZrO 2 by expansion and contraction in the phase transformation of monoclinic tetragonal
Microcracks are generated around the particles.

又、ZrO2粒子が正方晶型であった場合には、熱応力の増
減によって一部が単斜晶型に相変態して同様のマイクロ
クラックを生ずる。
In addition, when the ZrO 2 particles are tetragonal, a part thereof undergoes phase transformation into monoclinic type due to increase / decrease in thermal stress, and similar microcracks are generated.

更に、ZrO2粒子が立方晶型であった場合には、1300〜14
00℃でアニールされて脱安定化し、一部が正方晶型に相
変態し、かつ単斜晶型に相変態することでマイクロクラ
ックを生ずる。
Furthermore, if the ZrO 2 particles were of cubic type, 1300-14
Microcracks are generated by annealing at 00 ° C. for destabilization, partly changing into a tetragonal phase and monoclinic phase.

従って、MZ系骨材中のZrO2相の違いにかかわらず、焼成
時あるいは製品使用時の熱履歴においてマイクロクラッ
クが得られ、このマイクロクラックが外部から製品に加
わる熱応力を吸収、緩和することで、骨材自体及び耐火
物の熱衝撃抵抗性を高めることができる。しかも、この
マイクロクラックは、MZ系骨材中のZrO2粒子及びその周
囲にのみ発生するので、組織の結合強度を劣化させるに
は至らない。
Therefore, regardless of the difference in the ZrO 2 phase in the MZ-based aggregate, microcracks are obtained in the thermal history during firing or when the product is used, and these microcracks absorb and relax the thermal stress applied to the product from the outside. Thus, the thermal shock resistance of the aggregate itself and the refractory can be enhanced. Moreover, since these microcracks are generated only in the ZrO 2 particles and their surroundings in the MZ-based aggregate, they do not deteriorate the bond strength of the tissue.

ZrO2は、MgOによって立方晶型ZrO2に安定化されるた
め、MZ系骨材調製時のZrO2の添加量が、MgOのみ又はMgO
を含む耐火材料100重量部に対し5重量部未満では、マ
イクロクラックの発生量が減少して効果がなく、50重量
部を超えると、立方晶型ZrO2が増加して線熱膨張係数が
大きくなり、熱衝撃抵抗性が改善されない。
Since ZrO 2 is stabilized to cubic ZrO 2 by MgO, the amount of ZrO 2 added during preparation of the MZ-based aggregate is MgO alone or MgO.
If the amount is less than 5 parts by weight relative to 100 parts by weight of the refractory material containing, the amount of microcracks is reduced and there is no effect. If it exceeds 50 parts by weight, cubic ZrO 2 increases and the linear thermal expansion coefficient becomes large. The thermal shock resistance is not improved.

MZ系骨材の粒径は、44μm未満であると、耐火物のマト
リックスにもマイクロクラックを生ずることになり、そ
の結果、組織の結合強度を劣化させることとなり、1000
0μmを超えると、耐火物の製造が困難となる。
If the particle size of the MZ-based aggregate is less than 44 μm, micro-cracks also occur in the refractory matrix, resulting in deterioration of the bond strength of the tissue.
If it exceeds 0 μm, it becomes difficult to manufacture a refractory.

耐火物原料中におけるMZ系骨材の配合量が20重量%未満
となると、MZ系骨材粒子におけるマイクロクラックの総
量が少なく、通常のMgO系耐火物の欠点である低熱衝撃
抵抗性が改善されない。
If the content of MZ-based aggregate in the refractory raw material is less than 20% by weight, the total amount of microcracks in the MZ-based aggregate particles is small, and the low thermal shock resistance, which is a defect of ordinary MgO-based refractory, cannot be improved. .

[実施例] 以下、本発明の実施例を説明する。[Examples] Examples of the present invention will be described below.

MgO 100重量部に対してZrO2を第1表に示すように所要
量ずつ添加し、又、MgOを含む耐火材料(MgO−Al2O3
に対してZrO2を第2表に示すように所要量ずつ添加し、
焼結法又は溶融法により粒径44〜5000μmの粉末からな
る12種類のMZ系骨材を調製した。
ZrO 2 is added to 100 parts by weight of MgO by the required amount as shown in Table 1, and a refractory material containing MgO (MgO-Al 2 O 3 )
ZrO 2 was added to each of the required amounts as shown in Table 2, and
Twelve types of MZ-based aggregates made of powder having a particle size of 44 to 5000 μm were prepared by a sintering method or a melting method.

調製したMZ系骨材と、粒径0.5〜5000μmのMgO粉末を第
1,2表に示す割合で配合し、更に所要量のバインダー
(実施例3,12は、更に外率で3重量%のカーボンを含有
する)と共に混練し、1.5kg/cm2の圧力で成形した後、
酸化又は還元雰囲気中において1600℃の温度で焼成して
スライドゲート用耐火物を得た。
Prepare the prepared MZ-based aggregate and MgO powder with a particle size of 0.5-5000 μm.
Blended in the proportions shown in Tables 1 and 2, further kneaded with the required amount of binder (Examples 3 and 12 further contain 3% by weight of carbon in an external ratio) and molded at a pressure of 1.5 kg / cm 2. After doing
A refractory for a slide gate was obtained by firing at a temperature of 1600 ° C. in an oxidizing or reducing atmosphere.

上記各スライドゲート用耐火物の曲げ強さ、耐食指数、
熱衝撃試験結果及び実用寿命は、単斜晶型ZrO2を耐火物
骨材として併用した従来の方法によるスライドゲート用
耐火物その他を併記する第1,2表に示すようになった。
Bending strength of the refractory for each slide gate, corrosion resistance index,
The thermal shock test results and practical life are shown in Tables 1 and 2 which also show the conventional refractory for slide gates and others using monoclinic ZrO 2 as refractory aggregate.

第1表中、実施例1のZrO2含有量は、比較例1のそれに
相当し、実施例2,3のZrO2含有量は、比較例2のそれに
相当する。
In Table 1, the ZrO 2 content of Example 1 corresponds to that of Comparative Example 1, and the ZrO 2 content of Examples 2 and 3 corresponds to that of Comparative Example 2.

又、曲げ強さその他の特性は、焼成後のピッチ含浸・揮
発分除去後に測定した。
Bending strength and other properties were measured after pitch impregnation and volatile matter removal after firing.

従って、実施例1〜12のように、MZ系骨材調製時に、Mg
Oのみ又はMgOを含む耐火材料100重量部に対するZrO2
添加量を5〜50重量部とし、かつ耐火物原料全体(バイ
ンダーを除く)におけるMZ系骨材の配合量を20〜100重
量%とすることにより、曲げ強さ及び耐食指数を従来の
方法によるスライドゲート用耐火物とほぼ同等とし得、
かつ熱衝撃抵抗性及び実用寿命を従来の方法によるもの
より飛躍的に向上し得ることがわかる。
Therefore, as in Examples 1 to 12, when preparing the MZ-based aggregate, Mg
The amount of ZrO 2 added is 5 to 50 parts by weight based on 100 parts by weight of the refractory material containing only O or MgO, and the amount of MZ-based aggregate in the entire refractory raw material (excluding the binder) is 20 to 100% by weight. By doing so, the bending strength and the corrosion resistance index can be made substantially the same as those of the conventional slide gate refractory,
Moreover, it can be seen that the thermal shock resistance and the practical life can be dramatically improved as compared with the conventional method.

これは、調製温度の違いによるMZ系骨材中のZrO2の結晶
型の相違に影響されることなく、耐火物の焼成時あるい
は実使用時の熱履歴においてMZ系骨材粒子内にマイクロ
クラックが適当量得られ、骨材を結合する耐火物のマト
リックスには、クラックが生じないためである。
This is due to the fact that the micro cracks in the MZ-based aggregate particles are not affected by the difference in the crystal type of ZrO 2 in the MZ-based aggregate due to the difference in the preparation temperature, and during the thermal history during firing or actual use of the refractory. Is obtained, and cracks do not occur in the matrix of the refractory material that binds the aggregate.

又、実施例3,12には、カーボンを単独で添加し、かつバ
インダーを多めにして還元焼成したカーボン含有耐火物
であるが、表からわかるように、曲げ強さ、耐熱衝撃性
及び耐食性が優れていることわかる。
Further, in Examples 3 and 12, although carbon is added alone, and the carbon-containing refractory is reduced and fired with a large amount of binder, as can be seen from the table, bending strength, thermal shock resistance and corrosion resistance are I see that it is excellent.

[発明の効果] 以上のように本発明によれば、MZ系骨材中のZrO2の結晶
型の相違に影響されることなく、耐火物の焼成時あるい
は実使用時の熱履歴において、配合された耐火物原料の
うちMZ系骨材粒子内にのみマイクロクラックが得られる
ので、従来の方法によるものより、耐食性、熱衝撃抵抗
性に優れ、かつ組織の結合強度が高い連続鋳造用耐火物
を得ることができる。
[Effects of the Invention] As described above, according to the present invention, the composition of the heat history of the refractory during firing or in actual use is not affected by the difference in the crystal type of ZrO 2 in the MZ-based aggregate. Since microcracks can be obtained only in the MZ-based aggregate particles among the refractory raw materials, the refractory material for continuous casting, which has better corrosion resistance and thermal shock resistance than the conventional method, and has a high bond strength of the structure. Can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西部 隆文 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社刈谷製造所内 (72)発明者 近藤 憲生 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社刈谷製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takafumi Nishibe, Takashi Nishi, 1st Nanto, Ogakie-cho, Kariya city, Aichi Toshiba Ceramics Co., Ltd. Kariya factory Lamix Co., Ltd. Kariya Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】MgOのみ又はMgOを含む耐火材料100重量部
に対しZrO2を5〜50重量部添加して粒径44〜10000μm
に調製したMgO−ZrO2系骨材20〜100重量%、残部が主と
してMgO系骨材からなる耐火物原料を混練して、成形、
焼成することを特徴とする連続鋳造用耐火物の製造方
法。
1. Particle size of 44 to 10000 μm by adding 5 to 50 parts by weight of ZrO 2 to 100 parts by weight of refractory material containing MgO alone or containing MgO.
The MgO-ZrO 2 -based aggregate prepared in 20 to 100% by weight, the balance is kneaded with a refractory raw material mainly composed of MgO-based aggregate, and molded,
A method for producing a refractory for continuous casting, which comprises firing.
JP1325323A 1989-12-15 1989-12-15 Method for manufacturing refractory for continuous casting Expired - Fee Related JPH0714832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1325323A JPH0714832B2 (en) 1989-12-15 1989-12-15 Method for manufacturing refractory for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1325323A JPH0714832B2 (en) 1989-12-15 1989-12-15 Method for manufacturing refractory for continuous casting

Publications (2)

Publication Number Publication Date
JPH03189055A JPH03189055A (en) 1991-08-19
JPH0714832B2 true JPH0714832B2 (en) 1995-02-22

Family

ID=18175538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1325323A Expired - Fee Related JPH0714832B2 (en) 1989-12-15 1989-12-15 Method for manufacturing refractory for continuous casting

Country Status (1)

Country Link
JP (1) JPH0714832B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2288772T3 (en) * 1998-01-28 2008-01-16 Krosaki Corporation REFRACTORY MATERIAL OF ALUMINA-MAGNESIA-GRAFITO.
JP2015193509A (en) * 2014-03-31 2015-11-05 黒崎播磨株式会社 Magnesia-spinel-zirconia brick

Also Published As

Publication number Publication date
JPH03189055A (en) 1991-08-19

Similar Documents

Publication Publication Date Title
EP0323010B1 (en) Carbon containing refractory
US5565390A (en) Use of a refractory ceramic brick for lining cement rotary kilns
JPH0714832B2 (en) Method for manufacturing refractory for continuous casting
JP2607918B2 (en) Pouring refractories
JP2601134B2 (en) Alumina-chromia-zircon sintered refractory brick
JP2599428B2 (en) Method for producing unburned MgO-C brick
JP2683217B2 (en) Nozzle for molten steel casting
JP3014775B2 (en) Pouring refractory
JP2575580B2 (en) Carbon containing refractories
JPH01308866A (en) Production of refractory for slide gate
JP2975849B2 (en) Refractories for steelmaking
JPH11240747A (en) Plate brick
JP3753396B2 (en) High-temperature fired mug brick
JP3579231B2 (en) Zirconia / graphite refractories containing boron nitride
JP3088096B2 (en) High corrosion resistant alumina-chromium refractory
JPH11157927A (en) Zirconia amorphous refractory
JPH06172044A (en) Castable refractory of alumina spinel
SU833856A1 (en) Charge for producing refractory materials
JP3209842B2 (en) Irregular refractories
JPH11199330A (en) Construction of castable refractory
JPH0520380B2 (en)
JPH07206511A (en) Magnesia clinker, monolithic refractory and ladle for steel making
JPH0483755A (en) Alumina-chromia-zirconia refractory brick
JPH0463022B2 (en)
JPH11246266A (en) Alumina-zirconia-graphite refractory material

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees