JPH03189055A - Manufacture of refractory for continuous casting - Google Patents

Manufacture of refractory for continuous casting

Info

Publication number
JPH03189055A
JPH03189055A JP1325323A JP32532389A JPH03189055A JP H03189055 A JPH03189055 A JP H03189055A JP 1325323 A JP1325323 A JP 1325323A JP 32532389 A JP32532389 A JP 32532389A JP H03189055 A JPH03189055 A JP H03189055A
Authority
JP
Japan
Prior art keywords
mgo
refractory
aggregate
zro2
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1325323A
Other languages
Japanese (ja)
Other versions
JPH0714832B2 (en
Inventor
Shigeki Niwa
丹羽 茂樹
Toshio Kawamura
川村 俊夫
Shoji Shibata
柴田 昭司
Takafumi Nishibe
隆文 西部
Norio Kondo
憲生 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP1325323A priority Critical patent/JPH0714832B2/en
Publication of JPH03189055A publication Critical patent/JPH03189055A/en
Publication of JPH0714832B2 publication Critical patent/JPH0714832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve corrosion resistance, heat chock resistance and binding strength in the structure by kneading the specific range of grain diameter of MgO-ZrO2 and MgO series refractory raw materials, forming and firing it. CONSTITUTION:To 100 wt parts of MgO or the refractory material containing MgO, 5 - 50 parts of ZrO2 is added, and the grain diameter is adjusted to 44 - 1,000mum. The refractory raw material composed of 20 - 100 parts of this MgO- ZrO2 series aggregate (MZ series aggregate) and the balance mainly MgO series aggregate is kneaded together with the binder. This is fired after pressurized- forming to form a refractory for slide gate, etc. By this method, the refractory for continuous casting having excellent binding strength, heat shock resistance and corrosion resistance is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、連続鋳造の鋳型とタンデイシエとの間に介在
されるスライドゲート、ノズル等の連続鋳造用耐火物の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing refractories for continuous casting, such as slide gates and nozzles, which are interposed between a continuous casting mold and a tandem.

[従来の技術] 通常、連続鋳造用耐火物としては、MgO(マグネシア
)を含むMgO系耐火物が、溶鋼との接触角が大きいこ
とから、他の材質に比べ高耐食性を期待でき、広く用い
られている。
[Prior Art] Usually, MgO-based refractories containing MgO (magnesia) are widely used as refractories for continuous casting because they have a large contact angle with molten steel and are expected to have higher corrosion resistance than other materials. It is being

しかし、MgO系耐火物は、熱膨張率が大きいことから
、熱衝撃抵抗性に劣る欠点がある。
However, MgO-based refractories have a drawback of poor thermal shock resistance due to their large coefficient of thermal expansion.

従来、上記欠点に対処するため、 (1)MgO系骨材の他にC(カーボン)を多量に耐火
物骨材として含有させ、熱膨張率を低くあるいは熱伝導
性をよくしたり、 (2)単斜晶型ZrO2(ジルコニア)骨材を併用し、
耐火物製造時にマトリックス中にマイクロクラックを得
る。
Conventionally, in order to deal with the above drawbacks, (1) in addition to MgO-based aggregates, a large amount of C (carbon) was contained as a refractory aggregate to lower the coefficient of thermal expansion or improve thermal conductivity; (2) ) Monoclinic type ZrO2 (zirconia) aggregate is used in combination,
Microcracks are obtained in the matrix during refractory production.

等の方法により、熱m撃抵抗性の向上を図る連続鋳造用
耐火物の製造方法が考えられている。
Methods for producing continuous casting refractories that improve thermal shock resistance have been considered.

[発明が解決しようとする課題] しかしながら、多量のCを耐火物骨材として併用する従
来の製造方法によるMg0−C系連続鋳造用耐火物にお
いては、カーボンの酸化・脱炭による組織の脆弱化ある
いは極低炭素鋼種に対する耐食性劣化の問題がある。
[Problems to be Solved by the Invention] However, in Mg0-C continuous casting refractories manufactured by conventional manufacturing methods that use a large amount of C as a refractory aggregate, the structure becomes weak due to oxidation and decarburization of carbon. Alternatively, there is a problem of deterioration in corrosion resistance for ultra-low carbon steel types.

又、単斜晶型ZrO,を耐火物骨材として併用する従来
の製造方法によるM g O−Z r Oz系連続鋳造
用耐火物においては、ZrO2の使用量が少ないと、M
gOによって安定化された立方晶型ZrO2の比率が増
し、単斜晶型→正方晶型の相変態に起因するマイクロク
ラックが減少して効果が減少する一方、ZrO2の使用
量が多い、あるいは粗角として使用すると、結合組織内
に多数のクラックが発生し、強度が著しく劣化する問題
がある。
In addition, in MgO-ZrOz series continuous casting refractories manufactured by conventional manufacturing methods that use monoclinic ZrO as a refractory aggregate, if the amount of ZrO2 used is small, Mg
The ratio of cubic ZrO2 stabilized by gO increases, and the microcracks caused by monoclinic → tetragonal phase transformation decrease, reducing the effect. When used as a corner, there is a problem in that many cracks occur within the connective tissue and the strength deteriorates significantly.

そこで、本発明は、耐食性、熱衝撃抵抗性に優れ、かつ
組織の結合強度を高め得る連続鋳造用耐火物の製造方法
の提供を目的とする。
Therefore, an object of the present invention is to provide a method for producing a refractory for continuous casting that has excellent corrosion resistance and thermal shock resistance, and can increase the bonding strength of the structure.

[課題を解決するための手段] 前記課題を解決するため、本発明は、MgOのみ又はM
gOを含む耐火材料100重量部に対しZrO2を5〜
50重量部添加して粒径44〜10000μmに調製し
たMgO−ZrO2系骨材(以下、MZ系骨材と称す)
20〜ioo重量%、残部が主としてMgO系骨材から
なる耐火物原料を混練して、成形、焼成する方法である
[Means for Solving the Problems] In order to solve the above problems, the present invention provides MgO only or MgO.
5 to 5 parts of ZrO2 per 100 parts by weight of refractory material containing gO
MgO-ZrO2-based aggregate prepared by adding 50 parts by weight to have a particle size of 44 to 10,000 μm (hereinafter referred to as MZ-based aggregate)
In this method, a refractory raw material containing 20 to 100% by weight and the remainder mainly consisting of MgO-based aggregate is kneaded, molded, and fired.

ここで、MgOを含む耐火材料とは、MgOの他に、酸
化物、炭化物、はう化物、もしくは窒化物耐火材料又は
金属の1種以上を添加したものをいい、例えばAJ22
03(アルミナ)、cr20s(酸化クロム)、ZrB
x  (はう化ジルコニウム)あるいは5isN4 (
窒化けい素)ウィスカ、sic (炭化けい素)ウィス
カ等が用いられる。MgO以外の耐火材料は、MZ系骨
材自身の耐食性や強度を高めるもので、その添加量の割
合は、MZ系骨材全体のうち80重量%以下であること
が好ましい。80重量%を超えると、MgOの配合量が
減少し、高い耐食性を期待できなくなるおそれがあり、
かつMgOとZrO2のバランスがくずれ、不適である
Here, the refractory material containing MgO refers to a refractory material containing one or more of oxide, carbide, ferride, or nitride refractory material or metal in addition to MgO, such as AJ22
03 (alumina), cr20s (chromium oxide), ZrB
x (zirconium pyridide) or 5isN4 (
Silicon nitride (silicon nitride) whiskers, SIC (silicon carbide) whiskers, etc. are used. The refractory material other than MgO increases the corrosion resistance and strength of the MZ aggregate itself, and the amount added thereof is preferably 80% by weight or less of the entire MZ aggregate. If it exceeds 80% by weight, the amount of MgO mixed may decrease and high corrosion resistance may not be expected.
In addition, the balance between MgO and ZrO2 is lost, making it unsuitable.

又、MgO系骨材とは、MgO%MgO・Aj2i0s
(スピネル)又はMgO・Cr20s(クロムスピネル
)の1種以上、あるいはこれらの他にA1□0.そのも
の若しくはCを添加したものをいい、より一層の耐スポ
ーリング性あるいは耐食性向上のために、やや多めにC
を併用する、いわゆるMg0−C系の骨材も有効であり
、本願のMgO系骨材に含まれるものである。
In addition, MgO aggregate is MgO%MgO・Aj2i0s
(spinel) or one or more of MgO・Cr20s (chromium spinel), or in addition to these, A1□0. It refers to C as it is or to which C is added.In order to further improve spalling resistance or corrosion resistance, slightly more C is added.
A so-called MgO-C aggregate, which is used in combination with MgO-C, is also effective and is included in the MgO aggregate of the present application.

[作 用] MZ系骨材は、バブレアイト(baddeleylte
)とペリクレース(periclase)あるいはスピ
ネル等を原料として溶融製造したタリンカーだけでなく
、1500℃以上の温度で焼結させたものを破砕調製し
たものでもよいが、ZrO2結晶の大きさを制御する面
及び現状の製造技術、コスト面で電融品が特に望ましい
[Function] MZ aggregate is similar to bubble light.
), periclase, spinel, etc. as raw materials, and sintered at a temperature of 1,500°C or higher and crushed and prepared. Electric fusion products are particularly desirable in terms of current manufacturing technology and cost.

ZrO,は、MgO,A、Q20s % Cr2o3に
はほとんど固溶しないため、MZ系骨材は、MgOある
いはMg0−A℃、O,、MgO・Cr2O,やフリー
のAJ1203やCr2O5等のマトリックス中にZr
O2粒子が分散した組織を呈する。
Since ZrO hardly dissolves in solid solution in MgO, A, Q20s % Cr2O3, MZ-based aggregates contain MgO or Mg0-A℃, O,, MgO・Cr2O, or free AJ1203, Cr2O5, etc. in the matrix. Zr
It exhibits a structure in which O2 particles are dispersed.

このZrO2は、MgOの固溶量に応じて単斜晶型、正
方晶型あるいは立方晶型として存在する。そして、MZ
系骨材を耐火物に使用した場合、焼成時あるいは実使用
時の熱履歴により以下のようにしてマイクロクランクを
生じる。
This ZrO2 exists as a monoclinic type, a tetragonal type, or a cubic type depending on the amount of solid solution of MgO. And MZ
When aggregates are used in refractories, micro-cranks are generated as described below depending on the thermal history during firing or actual use.

MZ系骨材中のZrO,粒子が単斜晶型であった場合に
は、単斜晶型→正方晶型の相変態における膨張収縮によ
りZrO2粒子周辺部にマイクロクラックを生ずる。
When the ZrO particles in the MZ aggregate are monoclinic, microcracks are generated around the ZrO2 particles due to expansion and contraction during the phase transformation from monoclinic to tetragonal.

又、ZrO,粒子が正方晶型であった場合には、熱応力
の増減によって一部が単斜晶型に相変態して同様のマイ
クロクラックを生ずる。
Furthermore, if the ZrO particles are tetragonal, a portion of the ZrO particles undergo phase transformation to monoclinic due to an increase or decrease in thermal stress, resulting in similar microcracks.

更に、ZrO2粒子が立方晶型であった場合には、13
00〜1400℃でアニールされて膜安定化し、一部が
正方晶型に相変態し、かつ単斜晶型に相変態することで
マイクロクラックを生ずる。
Furthermore, when the ZrO2 particles are cubic crystal type, 13
The film is stabilized by annealing at 00 to 1,400° C., and part of the film undergoes a phase transformation to a tetragonal phase and then to a monoclinic phase, thereby producing microcracks.

従って、MZ系骨材中のZrO,相の違いにかかわらず
、焼成時あるいは製品使用時の熱履歴においてマイクロ
クラックが得られ、このマイクロクランクが外部から製
品に加わる熱応力を吸収、緩和することで、骨材自体及
び耐火物の熱衝撃抵抗性を高めることができる。しかも
、このマイクロクラックは、MZ系骨材中のZrO,粒
子及びその周囲にのみ発生するので、組織の結合強度を
劣化させるには至らない。
Therefore, regardless of the difference in the ZrO phase in the MZ aggregate, microcracks are obtained during the thermal history during firing or product use, and these microcracks absorb and alleviate the thermal stress applied to the product from the outside. This can improve the thermal shock resistance of the aggregate itself and the refractory. Furthermore, since these microcracks occur only in the ZrO and particles in the MZ aggregate and their surroundings, they do not deteriorate the bonding strength of the tissue.

ZrO2は、MgOによって立方晶型ZrO。ZrO2 is cubic type ZrO due to MgO.

に安定化されるため、MZ系骨材調製時のZrO2の添
加量が、MgOのみ又はMgOを含む耐火材料100重
量部に対し5重量部未満では、マイクロクラックの発生
量が減少して効果がなく、50重量部を超えると、立方
晶型ZrO2が増加して線熱膨張係数が大きくなり、熱
衝撃抵抗性が改善されない。
Therefore, if the amount of ZrO2 added when preparing MZ-based aggregate is less than 5 parts by weight per 100 parts by weight of refractory material containing only MgO or MgO, the amount of microcracks generated will be reduced and the effect will be less. If the amount exceeds 50 parts by weight, cubic ZrO2 increases and the coefficient of linear thermal expansion increases, and thermal shock resistance is not improved.

MZ系骨材の粒径は、44μm未満であると、耐火物の
マトリックスにもマイクロクランクを生ずることになり
、その結果、組織の結合強度を劣化させることとなり、
10000μmを超えると、耐火物の製造が困難となる
If the particle size of the MZ-based aggregate is less than 44 μm, micro-cranks will also occur in the refractory matrix, resulting in a deterioration of the bonding strength of the tissue.
If it exceeds 10,000 μm, it becomes difficult to manufacture refractories.

耐火物原料中におけるMZ系骨材の配合量が20重量%
未満となると、MZ系骨材粒子におけるマイクロクラッ
クの総量が少なく、通常のMgO系耐火物の欠点である
低熱衝撃抵抗性が改善されない。
The amount of MZ aggregate in the refractory raw material is 20% by weight.
If it is less than this, the total amount of microcracks in the MZ-based aggregate particles will be small, and the low thermal shock resistance, which is a drawback of ordinary MgO-based refractories, will not be improved.

[実施例] 以下、本発明の詳細な説明する。[Example] The present invention will be explained in detail below.

MgO100重量部に対しZrO2を′s1表に示すよ
うに所要量ずつ添加し、又、MgOを含む耐火材料(M
 g O−A j! 20 s)に対しZrO2を第2
表に示すように所要量ずつ添加し、焼結法又は溶融法に
より粒径44〜5000μ■の粉末からなる12種類の
MZ系骨材を調製した。
Add ZrO2 in the required amount to 100 parts by weight of MgO as shown in Table 's1, and add refractory material containing MgO (M
g O-A j! 20 s) with ZrO2
Twelve types of MZ-based aggregates were prepared by adding the required amounts as shown in the table and using a sintering method or a melting method to prepare 12 types of MZ-based aggregates consisting of powders with a particle size of 44 to 5000 μm.

調製したMZ系骨材と、粒径0.5〜5000μmのM
gO粉末を第1,2表に示す割合で配合し、更に所要量
のバインダー(実施例3.12は、更に外車で3重量%
のカーボンを含有する)と共に混練し、1 、5 kg
/am”の圧力で成形した後、酸化又は還元雰囲気中に
おいて1600℃の温度で焼成してスライドゲート用耐
火物を得た。
The prepared MZ aggregate and M with a particle size of 0.5 to 5000 μm
gO powder was blended in the proportions shown in Tables 1 and 2, and the required amount of binder was added (in Example 3.12, 3% by weight was added for foreign cars).
(containing 1.5 kg of carbon)
The refractories for slide gates were obtained by molding at a pressure of /am'' and firing at a temperature of 1600° C. in an oxidizing or reducing atmosphere.

上記各スライドゲート用耐火物の曲げ強さ、耐食指数、
熱衝撃試験結果及び実用寿命は、単斜晶型ZrO2を耐
火物骨材として併用した従来の方法によるスライドゲー
ト用耐火物その他を併記する第1.2表に示すようにな
フた。
The bending strength and corrosion resistance index of each slide gate refractory mentioned above,
Thermal shock test results and service life are as shown in Table 1.2, which also lists refractories for slide gates and others prepared by the conventional method using monoclinic ZrO2 as a refractory aggregate.

第1表中、実施例1のZrO2含有量は、比較例1のそ
れに相当し、実施例2.3のZrO,含有量は、比較例
2のそれに相当する。
In Table 1, the ZrO2 content of Example 1 corresponds to that of Comparative Example 1, and the ZrO content of Example 2.3 corresponds to that of Comparative Example 2.

又、曲げ強さその他の特性は、焼成後のピッチ含浸・揮
発分除去後に測定した。
In addition, bending strength and other properties were measured after pitch impregnation and removal of volatile matter after firing.

従フて、実施例1〜12のように、MZ系骨材調製時に
、MgOのみ又はMgOを含む耐火材料ioo重量部に
対するZrO,の添加量を5〜50重量部とし、かつ耐
火物原料全体(バインダーを除く)におけるMZ茶系骨
材配合量を20〜100重量%とすることにより、曲げ
強さ及び耐食指数を従来の方法によるスライドゲート用
耐火物とほぼ同等とし得、かつ熱衝撃抵抗性及び実用寿
命を従来の方法によるものより飛躍的に向上し得ること
がわかる。
Therefore, as in Examples 1 to 12, when preparing the MZ-based aggregate, the amount of ZrO added is 5 to 50 parts by weight based on the weight of the refractory material containing only MgO or MgO, and the entire refractory raw material is By setting the blending amount of MZ brown aggregate to 20 to 100% by weight (excluding the binder), the bending strength and corrosion resistance index can be almost the same as that of refractories for slide gates made by conventional methods, and the thermal shock resistance It can be seen that the performance and practical life can be dramatically improved compared to conventional methods.

これは、調製温度の違いによるMZ系骨材中のZrO2
の結晶型の相違に影響されることなく、耐火物の焼成時
あるいは実使用時の熱履歴においてMZ系骨材粒子内に
マイクロクラックが適当量得られ、骨材を結合する耐火
物のマトリックスには、クランクが生じないためである
This is because the ZrO2 in MZ aggregate due to the difference in preparation temperature.
Regardless of the difference in the crystal type of the refractory, an appropriate amount of microcracks are obtained within the MZ aggregate particles during the firing or actual use of the refractory, and the matrix of the refractory that binds the aggregates. This is because no crank occurs.

又、実施例3,12には、カーボンを単独で添加し、か
つバインダーを多めにして還元焼成したカーボン含有耐
火物であるが、表かられかるように、曲げ強さ、耐熱衝
軍性及び耐食性が優れていることがわかる。
Furthermore, in Examples 3 and 12, carbon-containing refractories were obtained by adding carbon alone and reducing and firing with a large amount of binder, but as can be seen from the table, the bending strength, heat shock resistance, and It can be seen that the corrosion resistance is excellent.

[発明の効果] 以上のように本発明によれば、MZ系骨材中のZrO,
の結晶型の相違に影響されることなく、耐火物の焼成時
あるいは実使用時の熱履歴において、配合された耐火物
原料のうちのMZ系骨材粒子内にのみマイクロクラック
が得られるので、従来の方法によるものより、耐食性、
熱衝撃抵抗性に優れ、かつ組織の結合強度が高い連続鋳
造用耐火物を得ることができる。
[Effects of the Invention] As described above, according to the present invention, ZrO,
Microcracks are obtained only in the MZ aggregate particles of the blended refractory raw material during the firing or actual use of the refractory, without being affected by the difference in the crystal type of the refractory. Corrosion resistance than that by traditional methods,
A refractory for continuous casting that has excellent thermal shock resistance and high structural bonding strength can be obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)MgOのみ又はMgOを含む耐火材料100重量
部に対しZrO_2を5〜50重量部添加して粒径44
〜10000μmに調製したMgO−ZrO_2系骨材
20〜100重量%、残部が主としてMgO系骨材から
なる耐火物原料を混練して、成形、焼成することを特徴
とする連続鋳造用耐火物の製造方法。
(1) Add 5 to 50 parts by weight of ZrO_2 to 100 parts by weight of refractory material containing only MgO or MgO to obtain particles with a particle size of 44
Production of refractories for continuous casting, characterized by kneading, molding, and firing refractory raw materials consisting of 20 to 100% by weight of MgO-ZrO_2 aggregate prepared to ~10,000 μm, and the remainder mainly consisting of MgO aggregate. Method.
JP1325323A 1989-12-15 1989-12-15 Method for manufacturing refractory for continuous casting Expired - Fee Related JPH0714832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1325323A JPH0714832B2 (en) 1989-12-15 1989-12-15 Method for manufacturing refractory for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1325323A JPH0714832B2 (en) 1989-12-15 1989-12-15 Method for manufacturing refractory for continuous casting

Publications (2)

Publication Number Publication Date
JPH03189055A true JPH03189055A (en) 1991-08-19
JPH0714832B2 JPH0714832B2 (en) 1995-02-22

Family

ID=18175538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1325323A Expired - Fee Related JPH0714832B2 (en) 1989-12-15 1989-12-15 Method for manufacturing refractory for continuous casting

Country Status (1)

Country Link
JP (1) JPH0714832B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038818A1 (en) * 1998-01-28 1999-08-05 Krosaki Corporation Alumina-magnesia-graphite type refractory
JP2015193509A (en) * 2014-03-31 2015-11-05 黒崎播磨株式会社 Magnesia-spinel-zirconia brick

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038818A1 (en) * 1998-01-28 1999-08-05 Krosaki Corporation Alumina-magnesia-graphite type refractory
JP2015193509A (en) * 2014-03-31 2015-11-05 黒崎播磨株式会社 Magnesia-spinel-zirconia brick

Also Published As

Publication number Publication date
JPH0714832B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
US8609563B2 (en) Sintered product based on chromium oxide
JPH0657619B2 (en) Carbon-containing refractory
JPH03189055A (en) Manufacture of refractory for continuous casting
JPS6050750B2 (en) Silicon nitride composite sintered body
JP2844100B2 (en) Zirconia refractory and method for producing the same
JPH06305828A (en) Aluminum titanate composite material and its production
JP2607918B2 (en) Pouring refractories
JPH01308866A (en) Production of refractory for slide gate
JPH01305851A (en) Production of unfired mgo-c brick
JPH06321628A (en) Alumina-chromia-zircon-based sintered refractory brick
JPH0624839A (en) Zircon-based refractory
JP3014775B2 (en) Pouring refractory
JP2683217B2 (en) Nozzle for molten steel casting
JP2975849B2 (en) Refractories for steelmaking
JP3157310B2 (en) Refractory
JP3579231B2 (en) Zirconia / graphite refractories containing boron nitride
JP3753396B2 (en) High-temperature fired mug brick
JPH11157927A (en) Zirconia amorphous refractory
SU833856A1 (en) Charge for producing refractory materials
JPH05279118A (en) Refractory material
JPH0483755A (en) Alumina-chromia-zirconia refractory brick
JPH0510299B2 (en)
JPS61132557A (en) Magnesia sintered body
JPH01305848A (en) Production of burned brick
JP3209842B2 (en) Irregular refractories

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees