JPH0714802B2 - Ozonizer - Google Patents

Ozonizer

Info

Publication number
JPH0714802B2
JPH0714802B2 JP12256891A JP12256891A JPH0714802B2 JP H0714802 B2 JPH0714802 B2 JP H0714802B2 JP 12256891 A JP12256891 A JP 12256891A JP 12256891 A JP12256891 A JP 12256891A JP H0714802 B2 JPH0714802 B2 JP H0714802B2
Authority
JP
Japan
Prior art keywords
cooling water
plate
electrode
water tank
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12256891A
Other languages
Japanese (ja)
Other versions
JPH04325404A (en
Inventor
博一 塩田
Original Assignee
株式会社オーディーエス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オーディーエス filed Critical 株式会社オーディーエス
Priority to JP12256891A priority Critical patent/JPH0714802B2/en
Publication of JPH04325404A publication Critical patent/JPH04325404A/en
Publication of JPH0714802B2 publication Critical patent/JPH0714802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸素または酸素含有気
体を放電界と接触させてオゾンを得るオゾナイザーに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozonizer that obtains ozone by contacting oxygen or an oxygen-containing gas with a discharge field.

【0002】[0002]

【従来の技術】従来、この種のオゾナイザーの代表例と
しては「図5」に示すごとき、無声放電式と称されるも
のが最も広く汎用されている。この無声放電式オゾナイ
ザーは、ガラス管よりなる誘電体1内にその内周面から
一定の間隔を有して電極2を遊挿し、この誘電体1の外
側を冷却水槽5aで被包し、該電極2と誘電体1の裏面
側(通常、相手側電極3を積層する)との間には高圧交
番電源装置9により高電圧を印加(図示例では、冷却水
槽5aが導電性材で構成され、この冷却水槽5a内の冷
却水を介して相手側電極3に電気的に連結されてい
る。)し、原料気体の流入口7より流入した原料気体は
誘電体1の一端側から該誘電体1内の電極2との間の気
体の通過間隙4内を通過して他方側流出口8より流出す
るようになし、さらに、上記冷却水槽5aの一端側には
冷却水流入口10を、他端側には冷却水流出口11を設
けてなるものである。
2. Description of the Related Art Conventionally, as a representative example of this type of ozonizer, a so-called silent discharge type is widely used as shown in FIG. In this silent discharge type ozonizer, an electrode 2 is loosely inserted into a dielectric 1 made of a glass tube with a constant distance from its inner peripheral surface, and the outside of the dielectric 1 is covered with a cooling water tank 5a. A high voltage is applied between the electrode 2 and the back side of the dielectric 1 (usually, the opposite electrode 3 is laminated) by a high voltage alternating power supply device 9 (in the illustrated example, the cooling water tank 5a is made of a conductive material). , And is electrically connected to the counter electrode 3 through the cooling water in the cooling water tank 5a.) The raw material gas flowing in from the raw material gas inlet 7 is introduced from one end side of the dielectric 1 to the dielectric material. The gas is passed through the gas passage gap 4 between the electrode 2 and the electrode 2 in 1 to flow out from the other side outlet 8. Further, a cooling water inlet 10 is provided at one end of the cooling water tank 5a and another end is provided at the other end. A cooling water outlet 11 is provided on the side.

【0003】そして、上記「図5」例は、電極2と誘電
体1の内周面との間の通過間隙4内に無声放電界が生
じ、原料気体は該通過間隙4内を通過することで無声放
電界と接触してオゾン化される。なお、放電によって発
生した熱は誘電体1の外側で冷却水と熱交換され誘電体
1内に蓄熱されないようになしてある。なお、「図5」
中、21は誘電体1の保持を兼ねる隔壁である。
In the above-mentioned "FIG. 5", a silent discharge field is generated in the passage gap 4 between the electrode 2 and the inner peripheral surface of the dielectric 1, and the raw material gas passes through the passage gap 4. It is contacted with the silent discharge field and is ozoned. The heat generated by the discharge is exchanged with the cooling water outside the dielectric 1 so that the heat is not stored in the dielectric 1. In addition, "Fig. 5"
Inside, 21 is a partition which also serves to hold the dielectric 1.

【0004】また、従来「図6」に示すものが、沿面放
電式と称して提案されている。この沿面放電式オゾナイ
ザーは、セラミックス等の誘電体板1の一面に電極板2
をプリント手段等によって積層し、該誘電体板1の他面
または該誘電体板1内に相手側電極15を積層または埋
入するもので、電極板2と相手側電極15との間に高圧
交番電源装置9により高電圧を印加すると、電極板2を
積層した側の誘電体板1の表面に沿って沿面放電が発生
し、原料気体はこの沿面放電界と接触してオゾン化され
るようになしてある。
The one shown in FIG. 6 has been proposed as a creeping discharge type. This creeping discharge type ozonizer has a structure in which an electrode plate 2 is provided on one surface of a dielectric plate 1 made of ceramics or the like.
Is laminated by a printing means or the like, and the opposite electrode 15 is laminated or embedded in the other surface of the dielectric plate 1 or in the dielectric plate 1, and a high voltage is applied between the electrode plate 2 and the opposite electrode 15. When a high voltage is applied by the alternating-current power supply device 9, a creeping discharge is generated along the surface of the dielectric plate 1 on which the electrode plates 2 are laminated, and the raw material gas comes into contact with this creeping discharge field to be ozoned. It has been done.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来の装
置はオゾン発生効率が今なお満足できるものでないこと
が広く知られている。すなわち、無声放電方式は消費エ
ネルギーの大半は発熱となって消費され、実際にオゾン
化に利用される電気エネルギーは数%でしかないとも言
われている。また、沿面放電方式は無声放電方式に比較
して放電密度が高くオゾン化効率は向上するが、それで
も実際には無声放電方式に比較して数%の効率向上であ
るにすぎない。
However, it is widely known that the above-mentioned conventional apparatus is still unsatisfactory in ozone generation efficiency. That is, it is said that most of the energy consumed by the silent discharge method is consumed as heat and the electric energy actually used for ozonization is only a few percent. Further, the creeping discharge method has a higher discharge density and higher ozonization efficiency than the silent discharge method, but in reality, the efficiency is only several percent higher than that of the silent discharge method.

【0006】また、上記従来装置は共に、印加電圧を高
めるとオゾン発生量が向上することが知られているが、
実際には無声放電方式は10〜15KV程度までは印加
電圧にオゾン発生量が略比例するが、それ以上の電圧で
はオゾン発生量はほとんど向上しないし、また、沿面放
電方式では8KV程度まで電圧に対してオゾン発生量が
比例するもそれ以上の電圧では逆にオゾン発生量は低下
する。この原因は必ずしも明確には説明されていない
が、最も大きな原因は、電気エネルギによる発熱が単な
るエネルギー浪費にとどまらず、高温雰囲気中では酸素
のオゾン化効率を低減し、さらには、一度オゾン化され
たものが熱分解され、結果としてオゾン発生率を低下さ
せるためとされている。
In both of the above conventional devices, it is known that the amount of ozone generated is improved by increasing the applied voltage.
Actually, in the silent discharge method, the ozone generation amount is substantially proportional to the applied voltage up to about 10 to 15 KV, but at a voltage higher than that, the ozone generation amount is hardly improved, and in the creeping discharge method, the voltage is up to about 8 KV. On the other hand, the ozone generation amount is proportional, but at a voltage higher than that, the ozone generation amount decreases. The cause of this is not always explained clearly, but the main cause is that heat generated by electric energy is not just energy waste, it reduces the ozonization efficiency of oxygen in a high-temperature atmosphere, and furthermore, it is once ozonized. It is said that these are thermally decomposed and, as a result, the ozone generation rate is lowered.

【0007】特に、上記沿面放電方式は、電極板2の近
くが最も放電密度が高くオゾン化し易い部位であるが、
反面、この部位は発熱量も多く、かつ電極板2が通常熱
伝導率が良いことからこの電極板2、特に電極板2の隅
部の放電電界の最も濃い部分の近くが加熱されて、この
熱がオゾン化効率を低減し、さらには発生したオゾンが
熱分解され易くなり上記説明に整合する。
In particular, in the above-mentioned creeping discharge method, the vicinity of the electrode plate 2 is the portion having the highest discharge density and being easily turned into ozone.
On the other hand, since this portion also generates a large amount of heat and the electrode plate 2 usually has good thermal conductivity, the electrode plate 2, especially the corners of the electrode plate 2 are heated near the darkest part of the discharge electric field, The heat reduces the ozonization efficiency, and the generated ozone is more likely to be thermally decomposed, which is consistent with the above description.

【0008】すなわち、従来のオゾナイザーの課題は、
オゾン発生効率向上のための適宜な放熱・冷却が行われ
ておらず、特に一対の電極のうち高圧側が連結される電
極は、安全性の面から電気的には遮断する必要性を有す
るため、この電気的絶縁が放熱・冷却の支障となり、従
来はほとんど放熱乃至冷却手段を有さないか、或は電気
的絶縁材を介しての非効率的放熱・冷却(「図」6例で
は誘電体1の裏面から冷却される。)を強いられている
ことである。
That is, the problem of the conventional ozonizer is
Since proper heat dissipation / cooling to improve ozone generation efficiency has not been performed, especially the electrode to which the high-voltage side of the pair of electrodes is connected has the need to be electrically cut off from the viewpoint of safety. This electrical insulation hinders heat dissipation / cooling, and there has been almost no heat dissipation / cooling means in the past, or inefficient heat dissipation / cooling via an electrically insulating material 1 is cooled from the back side.).

【0009】そこで、本発明は上記に鑑みなされたもの
で、高圧側が連結される電極をも直接的に冷却できる高
出力のオゾナイザーを提供することを目的としたもので
ある。
Therefore, the present invention has been made in view of the above, and an object thereof is to provide a high-power ozonizer capable of directly cooling the electrode connected to the high-voltage side.

【0010】[0010]

【課題を解決するための手段】上記の目的に沿い、先述
特許請求の範囲を要旨とする本発明の構成は前述課題を
解決するために、セラミック等よりなる誘電体板1の外
面側に、この誘電体板1を密閉壁の一部とする一方側冷
却水槽6を連設し、上記一方側冷却水槽6の冷却水流入
口10に連結される注水管12aと、冷却水流出口11
に連結される排水管12bとには、各々細くて長い絶縁
性材で形成した細径絶縁流路13a,13bを介装し、
上記誘電体板1の内面側には、原料気体の通過間隙4を
有して電極板2を対設し、上記電極板2の外面側に、こ
の電極板2を密閉壁の一部とする他方側冷却水槽5を連
設し、上記電極板2または他方側冷却水槽5内の冷却水
を高圧交番電源装置9の接地側出力端に、一方側冷却水
槽6内の冷却水またはこの一方側冷却水槽内に収納され
た相手側電極3を上記高圧交番電源装置9の高電圧側出
力端に連結してなる技術的手段を講じたものである。
In order to solve the above-mentioned problems, in order to solve the above-mentioned problems, in order to solve the above-mentioned problems, the structure of the present invention, which is based on the above-mentioned claims, is provided on the outer surface side of the dielectric plate 1. One side cooling water tank 6 having the dielectric plate 1 as a part of a hermetically sealed wall is continuously provided, and a water injection pipe 12a connected to a cooling water inlet 10 of the one side cooling water tank 6 and a cooling water outlet 11 are provided.
The drainage pipe 12b connected to each of the drainage pipes 12b is provided with thin insulating flow paths 13a and 13b formed of a thin and long insulating material.
An electrode plate 2 is provided on the inner surface side of the dielectric plate 1 so as to have a raw material gas passage gap 4, and the electrode plate 2 is formed on the outer surface side of the electrode plate 2 as a part of a sealing wall. The other side cooling water tank 5 is provided in series, and the cooling water in the electrode plate 2 or the other side cooling water tank 5 is connected to the ground side output end of the high-voltage alternating-current power supply 9 and the cooling water in the one side cooling water tank 6 or one side thereof. The technical means is provided by connecting the counterpart electrode 3 housed in the cooling water tank to the high-voltage side output end of the high-voltage alternating-current power supply device 9.

【0011】[0011]

【作用】それ故、本発明オゾナイザーは、通過間隙4内
に放電界が発生し、この中を通る原料気体がオゾン化さ
れる作用を呈することは従来と全く同じである。
Therefore, in the ozonizer of the present invention, a discharge field is generated in the passage gap 4, and the raw material gas passing through the ozonizer has the same action as that of the conventional one.

【0012】そして、本発明の大きな作用に冷却作用が
ある。「図5」従来例にも示したごとく、水冷式のオゾ
ナイザーは従来公知なものであるが、本発明が特徴とす
るのは両電極自体を直接水冷することである。
A major function of the present invention is a cooling function. [FIG. 5] As shown in the conventional example, the water-cooling type ozonizer is conventionally known, but the feature of the present invention is that both electrodes are directly water-cooled.

【0013】もっとも、電極自体を冷却する提案が皆無
では無かったが、現実的には高電圧印加部位である側の
電極を直接冷却することは電気絶縁が必要となるため従
来はフロン等の冷媒と電極との間に電気絶縁材を介装し
ている。即ち、電極と冷媒との間に熱伝導性の少ない電
気絶縁材が介在するので特殊な冷媒を必要とすることに
なる。しかるに、熱伝導率が大きい電極に直接冷媒を接
触できれば通常の水を冷媒に使用しても充分冷却するこ
とができる作用を呈するものである。
However, although there has been no proposal to cool the electrode itself, in reality, directly cooling the electrode on the side where the high voltage is applied requires electrical insulation, so that a refrigerant such as chlorofluorocarbon has hitherto been used. An electrical insulating material is interposed between the electrode and the electrode. That is, since an electric insulating material having a low thermal conductivity is interposed between the electrode and the coolant, a special coolant is required. However, if the coolant having a high thermal conductivity can be brought into direct contact with the coolant, the coolant can be sufficiently cooled even if ordinary water is used as the coolant.

【0014】しかし、水(特に水道水)は導電性を有し
ているので、これを直接高電圧が印加される側の電極に
接触させると、高電圧は水を通路として流れ、放電界を
減衰するばかりか冷却水系全体を絶縁しないと危険でも
ある。そこで、本発明は絶縁材で構成された細くて長い
細径絶縁路13a,13bを設けたので、この細径絶縁
路13a,13bが抵抗となって高電圧部位をこの両細
径絶縁路13a,13b間内に限定し、冷却水を電極2
に直接接触させても安全性が保たれ、効率的冷却作用が
得られるものである。
However, since water (especially tap water) has conductivity, when it is brought into direct contact with the electrode on the side to which a high voltage is applied, the high voltage flows through the water as a passage, causing a discharge field. In addition to damping, it is also dangerous if the entire cooling water system is not insulated. Therefore, in the present invention, since the thin and long thin insulating paths 13a and 13b made of the insulating material are provided, the thin insulating paths 13a and 13b serve as a resistance and the high voltage portion is formed on both the small insulating paths 13a. , 13b, and the cooling water is limited to the electrode 2
Even if it is brought into direct contact with, the safety is maintained and an efficient cooling action is obtained.

【0015】[0015]

【実施例】次に、本発明の実施例を添付図面にしたがっ
て説明する。図中、1がセラミック等よりなる誘電体板
で、この誘電体板1の外面側に、この誘電体板1を密閉
壁の一部とする一方側冷却水槽6を連設してある。
Embodiments of the present invention will now be described with reference to the accompanying drawings. In the figure, reference numeral 1 denotes a dielectric plate made of ceramic or the like, and one side cooling water tank 6 having the dielectric plate 1 as a part of a hermetically sealed wall is continuously provided on the outer surface side of the dielectric plate 1.

【0016】上記、誘電体板1としてはガラス、セラミ
ックス等従来公知なものが使用でき、本実施例では厚み
1mm以下、実際には厚み0.5mmのセラミックス板
を使用している。
As the above-mentioned dielectric plate 1, conventionally known ones such as glass and ceramics can be used. In this embodiment, a ceramic plate having a thickness of 1 mm or less, actually 0.5 mm is used.

【0017】そして、上記一方側冷却水槽6は、一端側
に冷却水流入口10が他端側に冷却水流出口11が設け
られ、冷却水流入口10より流入した冷却水は該一方側
冷却水槽6内を通って冷却水流出口11より流出するよ
うになっている。
The one side cooling water tank 6 is provided with a cooling water inflow port 10 on one end side and a cooling water outflow port 11 on the other end side, and the cooling water flowing from the cooling water inflow port 10 is in the one side cooling water tank 6. Through the cooling water outlet 11.

【0018】そして、上記一方側冷却水槽6の冷却水流
入口10に連結される注水管12aと、冷却水流出口1
1に連結される排水管12bとには、各々細くて長い絶
縁性材で形成した細径絶縁流路13a,13bを介装し
てある。
A water injection pipe 12a connected to the cooling water inlet 10 of the one side cooling water tank 6 and the cooling water outlet 1
The drain pipe 12b connected to 1 is provided with small-diameter insulating flow paths 13a and 13b each formed of a thin and long insulating material.

【0019】上記細径絶縁流路13a,13bはその流
路径を細くして冷却水の電気抵抗値を高め、その長さを
所定の寸法とすることで充分な電気抵抗値を保つもの
で、内径4mmの塩化ビニールパイプ7mを収納の便宜
上コイル上に巻いて使用したところ、両細径絶縁流路1
3a,13b間の冷却水(水道水)に20KVの高電圧
を印加しても該冷却水流路部12a,12bより下流側
または上流側に連通する冷却水に電流が流れたり電圧の
変化は認められなかった。
The small-diameter insulating flow passages 13a, 13b maintain a sufficient electric resistance value by reducing the diameter of the flow passages to increase the electric resistance value of the cooling water and setting the length thereof to a predetermined dimension. A vinyl chloride pipe 7 m with an inner diameter of 4 mm was wound around a coil for convenience of storage, and both small-diameter insulating flow paths 1
Even if a high voltage of 20 KV is applied to the cooling water (tap water) between 3a and 13b, a current or a change in voltage is recognized in the cooling water communicating downstream or upstream from the cooling water flow passages 12a and 12b. I couldn't do it.

【0020】そして、上記誘電体板1の内面側には、原
料気体の通過間隙4を有して電極板2を対設してある。
この電極板2は導電性で耐食性薄板金属、たとえば、ス
テンレス、チタン、白金等が使用され、熱伝導を良好な
らしめるため薄板状(厚み1mm以下が望ましい)のも
のが使用され、本実施例ではチタンの厚み1mmのもを
使用している。そして、この電極板2は誘電体板1と所
定の間隔を有して平行に対設し、この間隔部で原料気体
の通過間隙4を形成し、「図1」に示す原料気体の流入
口7より流入した原料気体は、この通過間隙4内を通っ
てオゾンの流出口8より流出するようになしてある。
On the inner surface side of the dielectric plate 1, an electrode plate 2 is provided oppositely with a passage gap 4 for the raw material gas.
This electrode plate 2 is made of a conductive and corrosion-resistant thin plate metal, such as stainless steel, titanium, platinum, etc., and a thin plate-like one (preferably having a thickness of 1 mm or less) is used for good heat conduction. Titanium with a thickness of 1 mm is used. The electrode plate 2 is placed in parallel with the dielectric plate 1 at a predetermined interval, and a raw material gas passage gap 4 is formed at this interval, and the raw material gas inlet port shown in FIG. 1 is formed. The raw material gas introduced from 7 passes through the passage gap 4 and flows out from the ozone outlet 8.

【0021】なお、上記電極板2は薄いほど冷却効率が
良いのは無論であり、可能な限り薄くすることが望まし
いが、図2実施例においてその厚みをあまり薄くする
と、後述他方側冷却水槽5内の水圧によって、撓みが発
生し電極間隔が正常に保てなくなるので留意が必要であ
る。
It is needless to say that the thinner the electrode plate 2 is, the better the cooling efficiency is, and it is desirable to make it as thin as possible. However, if the thickness is made too thin in the embodiment of FIG. It is necessary to note that the internal water pressure causes flexure and the electrode interval cannot be maintained normally.

【0022】そこで、「図3」例は、上記電極板2が薄
くても撓みが発生しずらくしたもので、予め電極板2
が、その一部を誘電体板1の内面に接触する凹凸薄板で
構成してなる。具体的には「図3」例は電極板2に断面
三角波板を使用している。すなわち、断面形状を複雑化
することで強度を増して撓みの発生を防止している。な
お、この実施例では電極板2が誘電体板1に接触する部
位で沿面放電が発生し、「図1」例の無声放電とはその
放電形態が相違することになる。また、この実施例にお
いて原料気体の通過間隙4は電極板2の下面と誘電体板
1の上面とで囲まれた断面三角状の多数の通路で構成さ
れることになる。
Therefore, in the example shown in FIG. 3, the electrode plate 2 is made thin so that it does not easily bend even if it is thin.
However, a part of it is formed by an uneven thin plate that contacts the inner surface of the dielectric plate 1. Specifically, in the example shown in FIG. 3, a triangular corrugated plate is used for the electrode plate 2. That is, by complicating the cross-sectional shape, the strength is increased and the occurrence of bending is prevented. In this embodiment, a creeping discharge is generated at the portion where the electrode plate 2 contacts the dielectric plate 1, and the discharge form is different from the silent discharge in the example of FIG. In this embodiment, the raw material gas passage gap 4 is composed of a large number of passages each having a triangular cross section surrounded by the lower surface of the electrode plate 2 and the upper surface of the dielectric plate 1.

【0023】さらに、「図4」例は、電極板2は平板が
使用されるも、上記電極板2と誘電体板1との間に、両
者間を局所的に連結する導電性体20を介装してなる。
具体的には「図4」例は該導電性体20に金網体を使用
している。すなわち、該導電性体20を誘電体板1と電
極板2とで挟持してなり、この実施例で原料気体の通過
間隙4は金網体の一つの網目内から網条の傾斜部によっ
て誘電体板1または電極板2との間に形成される空隙を
通って隣接する網目内に順次連通する通路で構成される
ことになる。
Further, in the example of FIG. 4, a flat plate is used as the electrode plate 2, but a conductive body 20 for locally connecting the electrode plate 2 and the dielectric plate 1 is locally provided between the electrode plate 2 and the dielectric plate 1. It will be installed.
Specifically, in the example shown in FIG. 4, a wire mesh body is used as the conductive body 20. That is, the conductive body 20 is sandwiched between the dielectric plate 1 and the electrode plate 2, and in this embodiment, the passage gap 4 for the raw material gas is formed from the inside of one mesh of the wire mesh body by the inclined portion of the mesh to form the dielectric body. It will be constituted by a passage which is successively communicated with the adjacent meshes through a gap formed between the plate 1 or the electrode plate 2.

【0024】そして、上記電極板2の外面に、この電極
板2を密閉壁の一部とする他方側冷却水槽5を連設して
ある。この他方側冷却水槽5は、前記一方側冷却水槽6
と同様、一端側に冷却水流入口10が他端側に流出口1
1が設けられ、冷却水流入口10より流入した冷却水は
この他方側冷却水槽5内を通って流出口11より流出す
るようになっている。
On the outer surface of the electrode plate 2, the other side cooling water tank 5 having the electrode plate 2 as a part of a hermetically sealed wall is continuously provided. The other side cooling water tank 5 is the one side cooling water tank 6 described above.
Similarly, the cooling water inlet 10 is provided on one end side and the outlet 1 is provided on the other end side.
1 is provided, and the cooling water that has flowed in from the cooling water inlet 10 flows through the other side cooling water tank 5 and flows out from the outlet 11.

【0025】さらに、上記電極板2または他方側冷却水
槽5内の冷却水を高圧交番電源装置9の接地側出力端
に、一方側冷却水槽6内の冷却水またはこの一方側冷却
水槽内に収納された相手側電極3を上記高圧交番電源装
置9の高電圧側出力端に連結してなる。通常、数KVの
電圧では冷却水、特に水道水は導電性材と見做すことが
でき、冷却水を介して電極板2に通電することも可能
で、さらには一方側冷却水槽6内の冷却水を相手側電極
として使用することも可能である。しかし、一方側冷却
水槽6内の冷却水を相手側電極とした場合、多少の電気
抵抗と局所的電圧の変動がともなうこともあるため、本
実施例では誘電体板1の外面に相手側電極3(実施例で
は良導電性材として銀ペーストを使用)を積層してい
る。
Further, the cooling water in the electrode plate 2 or the other side cooling water tank 5 is stored at the grounding side output end of the high-voltage alternating-current power supply 9, the cooling water in the one side cooling water tank 6 or the one side cooling water tank. The opposite electrode 3 thus formed is connected to the high-voltage output terminal of the high-voltage alternating power supply device 9. Usually, at a voltage of several KV, cooling water, especially tap water, can be regarded as a conductive material, and it is possible to energize the electrode plate 2 through the cooling water. It is also possible to use cooling water as the counter electrode. However, when the cooling water in the one side cooling water tank 6 is used as the counter electrode, it may be accompanied by some variation in electrical resistance and local voltage. Therefore, in the present embodiment, the counter electrode is formed on the outer surface of the dielectric plate 1. 3 (a silver paste is used as a good conductive material in the example).

【0026】なお、図中、17は冷却水タンク、18は
ポンプを示すもので、該ポンプ18の吐き出し口には注
水管12aが連結され、この注水管12aの下流側は細
径絶縁流路13aを介して一方側冷却水槽5の冷却水流
入口10に連結し、また、該細径絶縁流路13aより上
流部位で分岐した分岐注水管19aの下流端は他方側冷
却水槽5の冷却水流入口10に連結してある。さらに、
一方側冷却水槽5の冷却水流出口11に連結した排水管
12bは途中に細径絶縁流路13bを介してその下流端
を冷却水タンク17に戻し、他方側冷却水槽6の冷却水
流出口11に連結した第二排水管19bの下流端も冷却
水タンク17に戻してある。また、16は螺締螺子、1
4,15はパッキンを示すものである。
In the figure, 17 denotes a cooling water tank and 18 denotes a pump. A water injection pipe 12a is connected to an outlet of the pump 18, and a downstream side of the water injection pipe 12a has a small-diameter insulating flow path. The cooling water inlet 10 of the one side cooling water tank 5 is connected via 13a, and the downstream end of the branched water injection pipe 19a branched at the upstream side from the small-diameter insulating flow path 13a is the cooling water inlet of the other side cooling water tank 5. It is connected to 10. further,
The drain pipe 12b connected to the cooling water outlet 11 of the one side cooling water tank 5 returns its downstream end to the cooling water tank 17 via a small-diameter insulating flow path 13b, and is connected to the cooling water outlet 11 of the other side cooling water tank 6. The downstream end of the connected second drain pipe 19b is also returned to the cooling water tank 17. In addition, 16 is a screw, 1
Reference numerals 4 and 15 indicate packings.

【0027】[0027]

【発明の効果】本発明は上記のごときで、冷却水が誘電
体板1の一面(図示例では、相手側電極3の外面)と、
電極板2の一面とに直接接触するので、冷却効率が高
く、その分オゾン発生効率が高まり、効率的なオゾナイ
ザーを提供することができるものである。
According to the present invention as described above, the cooling water is applied to one surface of the dielectric plate 1 (the outer surface of the mating electrode 3 in the illustrated example).
Since it comes into direct contact with the one surface of the electrode plate 2, the cooling efficiency is high, the ozone generation efficiency is correspondingly increased, and an efficient ozonizer can be provided.

【0028】具体的には、「図4」の実施例にて、誘電
体板1(厚み0.5mmのセラミックス)の面積を10
0cm2 ・電極板2に厚み0.1mmのチタン板・導電
性体20に50メッシュのチタン網を使用し、原料気体
に酸素2リッタ/分を使用し、10Kzの電圧を印加し
て測定したところ、以下のごときとなった。 (1) 冷却水の循環を停止した場合は電圧7KVで3
0g/m3 のオゾンが得られ、電圧8KVで35g/m
3 のオゾンが得られ、電圧を8KV以上となすとオゾン
濃度・発生量は低減した。 (2) 冷却水として15℃のチラー冷却水を2リッタ
/分としたところ、電圧7KVで40g/m3 、電圧8
KVで50g/m3 、電圧9KVで60g/m3、電圧
10KVで72g/m3 、電圧15KVで102g/m
3 のオゾンが得られた。 (3) 冷却水として4℃のチラー冷却水を2リッタ/
分としたところ、電圧7KVで48g/m3 、電圧8K
Vで55g/m3 、電圧9KVで70g/m3 、電圧1
0KVで3g/m3 、電圧15KVで120g/m3
のオゾンが得られた。
Specifically, in the embodiment shown in FIG. 4, the area of the dielectric plate 1 (ceramic having a thickness of 0.5 mm) is 10
0 cm 2 · Titanium plate having a thickness of 0.1 mm for the electrode plate 2 · 50-mesh titanium net for the conductive body 20, oxygen 2 liter / min was used as the source gas, and a voltage of 10 Kz was applied for measurement. However, the following happened. (1) If the circulation of cooling water is stopped, the voltage is 7KV and 3
Ozone of 0 g / m 3 was obtained and 35 g / m at a voltage of 8 KV.
When ozone of 3 was obtained and the voltage was set to 8 KV or more, the ozone concentration / amount of generation decreased. (2) When chiller cooling water at 15 ° C. was used as cooling water at 2 liters / minute, 40 g / m 3 at voltage 7 KV, voltage 8
KV 50g / m 3 , voltage 9KV 60g / m 3 , voltage 10KV 72g / m 3 , voltage 15KV 102g / m
Ozone of 3 was obtained. (3) 2 liters of 4 ° C chiller cooling water as cooling water
As a result, the voltage is 7 KV, 48 g / m 3 , and the voltage is 8 K.
55 g / m 3 at V, 70 g / m 3 at 9 KV, voltage 1
Ozone of 3 g / m 3 was obtained at 0 KV and ozone of 120 g / m 3 was obtained at a voltage of 15 KV.

【0029】上記実測値からも明らかなように、冷却す
ることによるオゾン発生効率向上は顕著なものがあり、
例えば酸素2リッタ/分の原料気体で80g/m3 のオ
ゾンを「図5」従来例で得るには誘電体1の面積が20
00cm2 ・冷却水に4℃の水道水を10リッタ/分・
電圧20KVが必要で、この場合、電圧と冷却水の水量
とを種々変更しても効率の向上は認められなかったの
で、冷却水の直接接触による冷却効率の向上が小型化を
可能とし、小型化されたことにより冷却面積が減少さ
れ、さらに冷却効率を向上され、結果として小型で効率
的なオゾナイザーを提供できるものである。
As is clear from the above measured values, there is a remarkable improvement in ozone generation efficiency by cooling,
For example, in order to obtain 80 g / m 3 of ozone with a source gas of 2 liters of oxygen per minute in FIG.
00 cm 2 · 10 liters / min of 4 ° C tap water for cooling water
A voltage of 20 KV is required. In this case, even if the voltage and the amount of cooling water were variously changed, no improvement in efficiency was observed. Therefore, the cooling efficiency can be improved by directly contacting the cooling water, which enables miniaturization. As a result, the cooling area is reduced, the cooling efficiency is further improved, and as a result, a compact and efficient ozonizer can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明オゾナイザーの一実施例を示す平面図で
ある。
FIG. 1 is a plan view showing an embodiment of an ozonizer of the present invention.

【図2】A−A線断面図である。FIG. 2 is a sectional view taken along line AA.

【図3】もう一つの実施例を示す要部断面図である。FIG. 3 is a cross-sectional view of a main part showing another embodiment.

【図4】もう一つの実施例を示す要部断面図である。FIG. 4 is a cross-sectional view of a main part showing another embodiment.

【図5】従来例要部断面図である。FIG. 5 is a cross-sectional view of a main part of a conventional example.

【図6】もう一つの従来例要部断面図である。FIG. 6 is a sectional view of a main part of another conventional example.

【符号の説明】[Explanation of symbols]

1 誘電体板 2 電極板 3 相手側電極 4 通過間隙 5 他方側冷却水槽 6 一方側冷却水槽 9 高圧交番電源装置 10 冷却水流入口 11 冷却水流出口 12a 注水管 12b 排水管 13a 細径絶縁流路 13b 細径絶縁流路 1 Dielectric Plate 2 Electrode Plate 3 Counter Electrode 4 Passing Gap 5 Other Side Cooling Water Tank 6 One Side Cooling Water Tank 9 High Voltage Alternating Power Supply Device 10 Cooling Water Inlet 11 Cooling Water Outlet 12a Water Injection Pipe 12b Drainage Pipe 13a Small Diameter Insulation Channel 13b Small diameter insulated flow path

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 セラミック等よりなる誘電体板の外面側
に、この誘電体板を密閉壁の一部とする一方側冷却水槽
を連設し、上記一方側冷却水槽の冷却水流入口に連結さ
れる注水管と、冷却水流出口に連結される排水管とに
は、各々細くて長い絶縁性材で形成した細径絶縁流路を
介装し、上記誘電体板の内面側には、原料気体の通過間
隙を有して電極板を対設し、上記電極板の外面側に、こ
の電極板を密閉壁の一部とする他方側冷却水槽を連設
し、上記電極板または他方側冷却水槽内の冷却水を高圧
交番電源装置の接地側出力端に、一方側冷却水槽内の冷
却水またはこの一方側冷却水槽内に収納された相手側電
極を上記高圧交番電源装置の高電圧側出力端に連結して
なるオゾナイザー。
1. A one side cooling water tank having the dielectric plate as a part of a hermetically sealed wall is continuously provided on the outer surface side of a dielectric plate made of ceramic or the like, and is connected to a cooling water inlet of the one side cooling water tank. A small-diameter insulating flow path formed of a thin and long insulating material is interposed between the water injection pipe and the drain pipe connected to the cooling water outlet, and the raw material gas is provided on the inner surface side of the dielectric plate. Electrode plates are provided opposite to each other with a passage gap of, and on the outer surface side of the electrode plate, the other side cooling water tank in which the electrode plate is a part of a sealing wall is continuously provided, and the electrode plate or the other side cooling water tank is provided. The cooling water in the high-voltage alternating-current power supply is connected to the ground-side output end of the high-voltage alternating-current power supply, and the cooling water in the one-side cooling water tank or the counterpart electrode stored in the one-side cooling-water tank is connected to the high-voltage side output end of the high-voltage alternating-current power supply. An ozonizer connected to.
【請求項2】 上記電極板が、誘電体板と平行な平板で
構成されたことを特徴とする「請求項1」記載のオゾナ
イザー。
2. The ozonizer according to claim 1, wherein the electrode plate is a flat plate parallel to the dielectric plate.
【請求項3】 上記電極板が、その一部を誘電体板の内
面に接触する凹凸薄板で構成されたことを特徴とする
「請求項1」記載のオゾナイザー。
3. The ozonizer according to claim 1, wherein the electrode plate is formed of an uneven thin plate, a part of which is in contact with the inner surface of the dielectric plate.
【請求項4】 上記電極板と誘電体板との間に、両者間
を局所的に連結する導電性体を介装してなることを特徴
とした「請求項1」記載のオゾナイザー。
4. The ozonizer according to claim 1, wherein a conductive material that locally connects the electrode plate and the dielectric plate is interposed between the electrode plate and the dielectric plate.
JP12256891A 1991-04-25 1991-04-25 Ozonizer Expired - Fee Related JPH0714802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12256891A JPH0714802B2 (en) 1991-04-25 1991-04-25 Ozonizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12256891A JPH0714802B2 (en) 1991-04-25 1991-04-25 Ozonizer

Publications (2)

Publication Number Publication Date
JPH04325404A JPH04325404A (en) 1992-11-13
JPH0714802B2 true JPH0714802B2 (en) 1995-02-22

Family

ID=14839121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12256891A Expired - Fee Related JPH0714802B2 (en) 1991-04-25 1991-04-25 Ozonizer

Country Status (1)

Country Link
JP (1) JPH0714802B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5533249B2 (en) 2010-05-20 2014-06-25 Tdk株式会社 Volume hologram recording material and volume hologram recording medium

Also Published As

Publication number Publication date
JPH04325404A (en) 1992-11-13

Similar Documents

Publication Publication Date Title
EP0679608B1 (en) Method for the generation of ozone
EP0160964A2 (en) Method for producing an ozone gas and apparatus for producing the same
KR100753233B1 (en) Ozone generator
US5417936A (en) Plate-type ozone generator
JPH0714802B2 (en) Ozonizer
US20080025883A1 (en) Ozone generator
US3576733A (en) Ozonizers
JPH0747482B2 (en) Ozonizer
JP2002255514A (en) Ozone generator
JP2641886B2 (en) Ozone generator
JPS61215202A (en) Ozonizer
JPH0859213A (en) Ozonizer
JP2006143522A (en) Ozone generator
CN112320765B (en) Composite high-voltage electrode and double-electrode cooling ozone generator
JPS63242903A (en) Ozonizer
JP2000072410A (en) Ozone generation device
JP2556805B2 (en) Plate type ozone generator
JP3837931B2 (en) Ozonizer
JP2553338B2 (en) Liquid ozone production equipment
JP2009091209A (en) Discharge tube for ozone generation
JPH07223805A (en) Double pipe type ozone-generator
JP2002160906A (en) Ozone generator
JPH09161966A (en) Glow discharge heating device
JPH11310404A (en) Ozonizer
JPS62212201A (en) Ozonizer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees