JPH07146125A - Straightness measuring apparatus - Google Patents

Straightness measuring apparatus

Info

Publication number
JPH07146125A
JPH07146125A JP29583093A JP29583093A JPH07146125A JP H07146125 A JPH07146125 A JP H07146125A JP 29583093 A JP29583093 A JP 29583093A JP 29583093 A JP29583093 A JP 29583093A JP H07146125 A JPH07146125 A JP H07146125A
Authority
JP
Japan
Prior art keywords
distance
sensors
moving body
straightness
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29583093A
Other languages
Japanese (ja)
Inventor
Toshio Takitani
俊夫 滝谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP29583093A priority Critical patent/JPH07146125A/en
Publication of JPH07146125A publication Critical patent/JPH07146125A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a straightness measuring apparatus which eliminates the influence of the physical-property values of an object surface and which can perform a strict measurement. CONSTITUTION:Three optical sensors 4' which measure a distance up to a measuring face are arranged at equal intervals and in the same height position on a moving body 5' which can be moved freely in the horizontal direction, a horizontal groove 6 is formed in the moving body 5' so as to change the distance between the three sensors 4' and the measuring face, and piezoelectric elements 7 are arranged and installed. An arithmetic unit is installed in such a way that, in an initial state, the piezoelectric elements 7 are driven, that distance detection signals from the three sensors 4' are input, that the distance detection signals are input after that whenever the moving body 5' is moved by the interval of the sensors, that the distance between the measuring face and a reference horizontal face for the moving body is operated by a sequential multipoint method at every interval, that an operated distance is stored and that the straightness value is measured and evaluated. As a result, the straightness value can be measured and evaluated in such a way that the optical sensors 4' are not affected by the reflectance of an object face.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工作機械や形状測定機
における直線案内面の真直度評価や直線運動機構の直線
性評価に使用される真直度測定装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a straightness measuring device used for straightness evaluation of a straight guide surface and straightness of a linear motion mechanism in a machine tool or a shape measuring machine.

【0002】[0002]

【従来の技術】従来の真直度測定装置の一例を図3に示
す。図示するように、左右一対の第1ガイド体1と、こ
れら両ガイド体1に案内される第2ガイド体2と、この
第2ガイド体2に案内されて第1ガイド体1と直交する
方向(X方向)に移動自在にされるとともに両第1ガイ
ド体1間に載置された被測定物3の測定対象面Lまでの
距離(ギャップ)を測定する変位センサ4を有する移動
体5と、移動体5を移動させ、変位センサ4の距離測定
信号を入力して順次記憶し、真直度を評価する演算装置
(図示せず)とから構成されている。また、要求される
測定精度としては、変位センサ4の移動体5の走査機構
の誤差が被測定物3の測定対象面Lの形状精度(真直
度)と同じオーダーとなっていることが多く、このよう
な場合、図示するように変位センサ4を移動体5の進行
方向Xに同じ高さ位置で2台並べて配置し、演算装置
に、アルゴリズムとして逐次2点法が適用される。
2. Description of the Related Art An example of a conventional straightness measuring device is shown in FIG. As shown in the drawing, a pair of left and right first guide bodies 1, a second guide body 2 guided by these both guide bodies 1, and a direction orthogonal to the first guide body 1 guided by the second guide bodies 2. A movable body 5 having a displacement sensor 4 that is movable in the (X direction) and that measures the distance (gap) to the measurement target surface L of the measured object 3 placed between the first guide bodies 1; , A moving device 5 is moved, a distance measurement signal of the displacement sensor 4 is input and sequentially stored, and an arithmetic unit (not shown) for evaluating straightness is configured. As the required measurement accuracy, the error of the scanning mechanism of the moving body 5 of the displacement sensor 4 is often in the same order as the shape accuracy (straightness) of the measurement target surface L of the DUT 3, In such a case, as shown in the drawing, two displacement sensors 4 are arranged side by side at the same height position in the traveling direction X of the moving body 5, and the sequential two-point method is applied to the arithmetic device as an algorithm.

【0003】この遂次2点法について図4により説明す
る。この方法は、2台の変位センサ4間隔毎に被測定物
3の遂次対象面Lとの距離を測っていくことにより、移
動体5の基準水平面と対象面Lとの距離(対象面の形
状、すなわち真直度に相当する)と、移動体5の上下方
向の移動時のずれ(変位センサ4の走査誤差)がその都
度得られるものである。
This sequential two-point method will be described with reference to FIG. This method measures the distance between the reference horizontal plane of the moving body 5 and the target surface L (measures the target surface L by measuring the distance from the target surface L of the object to be measured 3 at intervals of two displacement sensors 4). The shape, that is, the straightness) and the deviation (scanning error of the displacement sensor 4) when the moving body 5 moves in the vertical direction are obtained each time.

【0004】今、時間の進行をi、空間の配列をjで表
わし、基準水平面から対象面Lまでの距離をXj 、変位
センサ4の固定基準面の基準水平面からのずれ(変位セ
ンサ4の走査誤差)をYi 、各時刻での各変位センサ4
からの信号をそれぞれSa (i ) ,Sb (i) とすると、 Sa (i) =Xj +Yib (i) =Xj+1 +Yi の関係がある。初期状態、すなわち Sa (0) =X0 +Y0b (0) =X1 +Y0 において、Y0 を基点としてその後の変化量だけがわか
ればよいから、Y0 =0とすれば、X0 ,X1 はただち
に求められる。そこで、次のステップ、時間i=1では
移動体5をX方向に△Xだけ進めて、 Sa (1) =X1 +Y1b (1) =X2 +Y1 の信号が得られる。この時、 X2 =X1 +(Sb (1) −Sa (1) ) Y1 =Sa (1) −X1 =Y0 +(Sa (1) −Sb (0) ) が得られる。一般には、 Xj+1 =Xj +(Sb (i) −Sa (i) ) Yi =Yi-1 +(Sa (i) −Sb (i-1) ) に従ってXj ,Yi が遂次求められ、順次Xj を記憶
し、△X毎にXj をプロットすることにより測定対象面
Lの凹凸形状が求められ、真直度が評価される。
Now, the progress of time is represented by i, the array of space is represented by j, the distance from the reference horizontal plane to the target surface L is X j , and the displacement of the fixed reference plane of the displacement sensor 4 from the reference horizontal plane (of the displacement sensor 4). (Scanning error) Y i , each displacement sensor 4 at each time
Letting the signals from S a (i ) and S b (i) be respectively, there is a relationship of S a (i) = X j + Y i S b (i) = X j + 1 + Y i . In the initial state, that is, S a (0) = X 0 + Y 0 S b (0) = X 1 + Y 0 , it is necessary to know only the amount of change after that, with Y 0 as the base point. Therefore, if Y 0 = 0, X 0 and X 1 are immediately obtained. Therefore, the next step, advancing the moving body 5 at time i = 1 in the X direction △ X only, S a (1) = X 1 + Y 1 S b (1) = X 2 + Y 1 of the signal is obtained. In this case, X 2 = X 1 + ( S b (1) -S a (1)) Y 1 = S a (1) -X 1 = Y 0 + (S a (1) -S b (0)) Is obtained. In general, X j + 1 = X j + (S b (i) -S a (i)) Y i = Y i-1 + (S a (i) -S b (i-1)) according to X j , Y i are sequentially obtained, X j is sequentially stored and X j is plotted for each ΔX to obtain the concavo-convex shape of the measurement target surface L, and the straightness is evaluated.

【0005】そして、第2ガイド体2を第1ガイド体1
に案内されて方向Yに移動させて、次の測定対象面Lの
真直度を評価する。
Then, the second guide body 2 is replaced with the first guide body 1.
And moves in the direction Y to evaluate the straightness of the next measurement target surface L.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記真直度測
定装置では、被測定物3が液晶ガラスやシリコンウェハ
など表面損傷が起こりやすく非接触測定が必要条件とさ
れる場合には、変位センサ4として、非接触の光学式
(光反射式)センサが多く使用されている。
However, in the above straightness measuring device, when the object 3 to be measured is likely to suffer surface damage such as liquid crystal glass or a silicon wafer, the displacement sensor 4 is required. As such, a non-contact optical (light reflection type) sensor is often used.

【0007】このように変位センサ4に光学式センサを
用いるものとすると、得られる信号は対象面Lの表面反
射率αi の分布を含んで次のように書きかえられる。 Sa (i) =αj (Xj +Yi ) Sb (i) =αj+1 (Xj+1 +Yi ) このように、対象面Lからの距離信号には表面反射率α
i が比例定数としてかかった形となり、これらの信号か
ら表面反射率αi を分離できないため、距離X j だけの
情報は得られないという問題があった。
As described above, the displacement sensor 4 is provided with an optical sensor.
If it is used, the obtained signal is the surface inverse of the target surface L.
Emissivity αiIt can be rewritten as follows including the distribution of. Sa (i)= Αj(Xj+ Yi) Sb (i)= Αj + 1(Xj + 1+ Yi) Thus, the surface reflectance α is included in the distance signal from the target surface L.
iIs multiplied as a constant of proportionality.
Surface reflectance αiCannot be separated, so the distance X jOnly
There was a problem that information could not be obtained.

【0008】本発明は上記問題を解決するものであり、
光学式センサに対する測定面の反射率の如く、比例的に
受ける対象面の物性値の影響を無くし、厳密な測定を可
能とした真直度測定装置を提供することを目的とするも
のである。
The present invention solves the above problems,
It is an object of the present invention to provide a straightness measuring device capable of performing strict measurement by eliminating the influence of the physical property value of the target surface which is proportionally received, such as the reflectance of the measuring surface with respect to the optical sensor.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明の真直度測定装置は、被測定物の測定面に対
向して水平方向に移動自在な移動体を設け、この移動体
に、前記測定面までの距離を測定する3台の非接触式セ
ンサを前記水平方向に等間隔で同じ高さ位置で配置し、
前記移動体の3台のセンサと前記測定面間の距離を変動
する変動手段を設け、初期状態において、前記変動手段
を駆動して前記3台のセンサの距離検出信号を入力し、
以後前記移動体のセンサ間隔移動毎に3台のセンサの距
離検出信号を入力し、この間隔毎に逐次多点法により前
記測定面と前記移動体の基準水平面との距離を演算して
記憶し、その距離の推移により真直度を評価する演算装
置を設けたことを特徴とするものである。
In order to solve the above-mentioned problems, the straightness measuring device of the present invention is provided with a movable body which is movable in the horizontal direction so as to face the measurement surface of the object to be measured, and this movable body is provided. , Three non-contact type sensors for measuring the distance to the measurement surface are arranged at equal intervals in the horizontal direction,
Variation means for varying the distance between the three sensors of the moving body and the measurement surface is provided, and in the initial state, the variation means is driven to input the distance detection signals of the three sensors,
Thereafter, the distance detection signals of the three sensors are input every time the mobile unit moves between the sensors, and the distance between the measurement surface and the reference horizontal plane of the mobile unit is calculated and stored by the multipoint method at each interval. A calculation device for evaluating the straightness based on the change in the distance is provided.

【0010】[0010]

【作用】上記構成によると、3台のセンサの距離検出信
号による逐次多点法により、対象面の物性値の影響を受
けずに、測定面と移動体の基準水平面との距離、および
移動体の走査機構の誤差(直線性)が遂次算出され、測
定面の凹凸形状が求められ、真直度の評価が行われる。
According to the above structure, the distance between the measurement surface and the reference horizontal plane of the moving body and the moving body are not affected by the physical property value of the target surface by the sequential multipoint method using the distance detection signals of the three sensors. The error (linearity) of the scanning mechanism is sequentially calculated, the uneven shape of the measurement surface is obtained, and the straightness is evaluated.

【0011】[0011]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。なお、従来例の図3の構成と同一の構成には同
一の符号を付して説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. It should be noted that the same components as those of the conventional example shown in FIG.

【0012】図1は本発明の一実施例における真直度測
定装置の要部斜視図である。移動体5’の先端にX方向
に水平溝6を設け、この水平溝6にピエゾ素子7を嵌合
し、また移動体5’の先端下部に等間隔で同じ高さ位置
でX方向に、対象面Lまでの距離を測定する光学式セン
サ4’を3台設けている。なお、ピエゾ素子7に交番電
圧を印加することにより、後述する初期状態(i=0)
での基準変位△Yが発生される。
FIG. 1 is a perspective view of an essential part of a straightness measuring device according to an embodiment of the present invention. A horizontal groove 6 is provided in the X direction at the tip of the moving body 5 ', a piezo element 7 is fitted in the horizontal groove 6, and the lower portion of the tip of the moving body 5'is equally spaced in the X direction at the same height position. Three optical sensors 4'for measuring the distance to the target surface L are provided. By applying an alternating voltage to the piezo element 7, the initial state (i = 0) described later
A reference displacement ΔY at is generated.

【0013】本発明では、3台の光学式センサ4’の距
離検出信号を入力する演算装置に下記の遂次多点方式の
アルゴリズムを使用することにより、表面反射率を分離
測定することができる。図2により説明する。
In the present invention, the surface reflectance can be measured separately by using the following algorithm of the sequential multi-point system in the arithmetic unit for inputting the distance detection signals of the three optical sensors 4 '. . This will be described with reference to FIG.

【0014】3本の光学式センサ4’を進行方向Xに並
べると、 Sa (i) =αj (Xj +Yi ) Sb (i) =αj+1 (Xj+1 +Yi ) Sc (i) =αj+2 (Xj+2 +Yi ) …(1) という信号が得られる。初期状態、i=0ではY0 =0
としてよいから Sa (0) =α0 0 b (0) =α1 1 c (0) =α2 2 …(2) この時、ピエゾ素子7に交番電圧を印加することによっ
て、光学式センサ4’を上方に△Yだけ動かして、信号
の増分△Sa ,△Sb および△Sc が得られたとする。
このとき、 Sa (0) +△Sa =α0 (X0 +△Y) Sb (0) +△Sb =α1 (X1 +△Y) Sc (0) +△Sc =α2 (X2 +△Y) …(3) となる。これより、直ちに、 α0 =△Sa /△Y α1 =△Sb /△Y α2 =△Sc /△Y …(4) が得られる。(4)を(2)に代入すると、X0
1 ,X2 が得られる。すなわち、 X0 =(Sa (0) /△Sa )△Y X1 =(Sb (0) /△Sb )△Y X2 =(Sc (0) /△Sc )△Y …(5) となる。次に、1ステップ進んでi=1となった時、 Sa (1) =α1 (X1 +Y1 ) Sb (1) =α2 (X2 +Y1 ) Sc (1) =α3 (X3 +Y1 ) …(6) これより、 Y1 =Sa (1) /α1 −X1 あるいは、 Y1 =Sb (1) /α2 −X2 …(7) によりY1 が求まる。さらに1ステップ進んでi=2と
なった時、 Sa (2) =α2 (X2 +Y2 ) Sb (2) =α3 (X3 +Y2 ) Sc (2) =α4 (X4 +Y2 ) …(8) が得られ、(8)の第1式より、 Y2 =Sa (2) /α2 −X2 …(9) が求まる。また、(6)の第3式と(8)の第2式よ
り、 α3 =(Sb (2) −Sc (1) )/(Y2 −Y1 ) …(10) X3 =Sb (2) /α3 −Y2 …(11) が得られる。これを一般的に書くと、(1)の Sa (i) =αj (Xj +Yi ) Sb (i) =αj+1 (Xj+1 +Yi ) Sc (i) =αj+2 (Xj+2 +Yi ) およびi+1において Sa (i+1) =αj+1 (Xj+1 +Yi+1 ) Sb (i+1) =αj+2 (Xj+2 +Yi+1 ) Sc (i+1) =αj+3 (Xj+3 +Yi+1 ) …(12) (1)において一般に、αj ,Xj ,αj+1 ,Xj+1
i は既知であって、(12)より、 Yi+1 =Sa (i+1) /αj+1 −Xj+1 …(13) (1)の第3式と(12)の第2式より、 αj+2 =(Sb (i+1) −Sc (i) )/(Yi+1 −Yi ) …(14) Xj+2 =Sb (i+1) /αj+2 −Yi+1 …(15) が得られる。(13),(14),(15)によりαj
j ,Yi が遂次に得られる。
When three optical sensors 4'are arranged in the traveling direction X, S a (i) = α j (X j + Y i ) S b (i) = α j + 1 (X j + 1 + Y i ) S c (i) = α j + 2 (X j + 2 + Y i ) ... (1) A signal is obtained. In the initial state, i 0, Y 0 = 0
S a (0) = α 0 X 0 S b (0) = α 1 X 1 S c (0) = α 2 X 2 (2) At this time, apply an alternating voltage to the piezo element 7. by moving the optical sensor 4 'upward △ Y only, the signals of the incremental △ S a, is △ S b and △ S c was obtained.
At this time, S a (0) + ΔS a = α 0 (X 0 + ΔY) S b (0) + ΔS b = α 1 (X 1 + ΔY) S c (0) + ΔS c = Α 2 (X 2 + ΔY) (3) From this, immediately α 0 = ΔS a / ΔY α 1 = ΔS b / ΔY α 2 = ΔS c / ΔY (4) Substituting (4) into (2), X 0 ,
X 1 and X 2 are obtained. That is, X 0 = (S a (0) / ΔS a ) ΔY X 1 = (S b (0) / ΔS b ) ΔY X 2 = (S c (0) / ΔS c ) ΔY … (5) Next, when i is advanced by 1 step, S a (1) = α 1 (X 1 + Y 1 ) S b (1) = α 2 (X 2 + Y 1 ) S c (1) = α 3 (X 3 + Y 1 ) (6) From this, Y 1 = S a (1) / α 1 -X 1 or Y 1 = S b (1) / α 2 -X 2 (7) 1 is obtained. When i is further advanced by 1 step, S a (2) = α 2 (X 2 + Y 2 ) S b (2) = α 3 (X 3 + Y 2 ) S c (2) = α 4 ( X 4 + Y 2 ) (8) is obtained, and Y 2 = S a (2) / α 2 -X 2 (9) is obtained from the first expression of (8). Also, from the third equation of (6) and the second equation of (8), α 3 = (S b (2) −S c (1) ) / (Y 2 −Y 1 ) ... (10) X 3 = S b (2) / α 3 -Y 2 (11) is obtained. If this is generally written, S a (i) = α j (X j + Y i ) S b (i) = α j + 1 (X j + 1 + Y i ) S c (i) of ( 1 ) = In α j + 2 (X j + 2 + Y i ) and i + 1, S a (i + 1) = α j + 1 (X j + 1 + Y i + 1 ) S b (i + 1) = α j + 2 ( X j + 2 + Y i + 1 ) S c (i + 1) = α j + 3 (X j + 3 + Y i + 1 ) ... (12) Generally in (1), α j , X j , and α j + 1 , X j + 1 ,
Y i is known, and from (12), Y i + 1 = S a (i + 1) / α j + 1 −X j + 1 (13) The third equation of (1) and (12) From the second expression of α j + 2 = (S b (i + 1) −S c (i) ) / (Y i + 1 −Y i ) ... (14) X j + 2 = S b (i + 1) / α j + 2- Y i + 1 (15) is obtained. From (13), (14), and (15), α j ,
X j and Y i are successively obtained.

【0015】したがって、この方法によれば、基準水平
面から対象面Lまでの距離Xj (j=0…n+1)、対
象面Lの反射率分布αj (j=0…n+1),センサ
4’の走査軌跡Yi (i=0…n)が求められる。
Therefore, according to this method, the distance X j (j = 0 ... n + 1) from the reference horizontal plane to the target surface L, the reflectance distribution α j (j = 0 ... n + 1) of the target surface L, and the sensor 4 '. The scanning locus Y i (i = 0 ... N) of is obtained.

【0016】このように、光学式センサ4’が受ける対
象面Lの反射率αj の影響を受けずに、基準水平面から
対象面Lまでの距離Xj を測定でき、距離Xj を順次記
憶し、△X毎にプロットすることにより、対象面Lの凹
凸形状を検出でき、真直度を測定・評価することができ
る。また、同時に対象面Lの反射率分布αj と,センサ
4’の走査軌跡(移動体5’の移動ずれ)Yi を測定で
きる。
As described above, the distance X j from the reference horizontal plane to the target surface L can be measured without being affected by the reflectance α j of the target surface L which the optical sensor 4 ′ receives, and the distance X j is sequentially stored. However, by plotting for each ΔX, the uneven shape of the target surface L can be detected, and the straightness can be measured and evaluated. At the same time, the reflectance distribution α j of the target surface L and the scanning locus (movement shift of the moving body 5 ′) Y i of the sensor 4 ′ can be measured.

【0017】なお、本発明は、光学式センサ4’の表面
反射率αj の依存性に限らず、他のセンサが比例的に対
象面Lの物性値の影響を受ける場合に同様に適用でき
る。また、本実施例では、初期状態(i=0)での基準
変位△Yの発生に、ピエゾ素子7に交番電圧を印加して
いるが、何らかのアクチュエータによって、センサと対
象面L間の距離を上下に△Yだけ変動することができれ
ばよい。
The present invention is not limited to the dependency of the surface reflectance α j of the optical sensor 4 ', but can be similarly applied to the case where other sensors are proportionally affected by the physical property value of the target surface L. . Further, in the present embodiment, an alternating voltage is applied to the piezo element 7 to generate the reference displacement ΔY in the initial state (i = 0), but the distance between the sensor and the target surface L is changed by some actuator. It is only necessary to be able to fluctuate up and down by ΔY.

【0018】[0018]

【発明の効果】以上のように本発明によれば、対象面の
物性値の影響を受けることなく、基準水平面から対象面
までの距離およびセンサの走査軌跡(移動体の誤差)を
遂次多点方式により遂次算出でき、より厳密な真直度の
測定・評価を行なうことができる。
As described above, according to the present invention, the distance from the reference horizontal plane to the target surface and the scanning locus of the sensor (error of the moving body) are successively increased without being affected by the physical property value of the target surface. Sequential calculation can be performed by the point method, and stricter straightness measurement and evaluation can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における真直度測定装置の要
部斜視図である。
FIG. 1 is a perspective view of a main part of a straightness measuring device according to an embodiment of the present invention.

【図2】同真直度測定装置における真直度測定方法の説
明図である。
FIG. 2 is an explanatory diagram of a straightness measuring method in the straightness measuring device.

【図3】従来の真直度測定装置の概略斜視図である。FIG. 3 is a schematic perspective view of a conventional straightness measuring device.

【図4】従来の真直度測定装置における真直度測定方法
の説明図である。
FIG. 4 is an explanatory diagram of a straightness measuring method in a conventional straightness measuring device.

【符号の説明】[Explanation of symbols]

1 第1ガイド体 2 第2ガイド体 3 測定対象物 4’ 光学式センサ(非接触センサ) 5’ 移動体 6 水平溝 7 ピエゾ素子 L 対象面 1 1st guide body 2 2nd guide body 3 Measurement object 4'Optical sensor (non-contact sensor) 5'Movable body 6 Horizontal groove 7 Piezo element L Target surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定物の測定面に対向して水平方向に
移動自在な移動体を設け、この移動体に、前記測定面ま
での距離を測定する3台の非接触式センサを前記水平方
向に等間隔で同じ高さ位置で配置し、前記移動体の3台
のセンサと前記測定面間の距離を変動する変動手段を設
け、初期状態において、前記変動手段を駆動して前記3
台のセンサの距離検出信号を入力し、以後前記移動体の
センサ間隔移動毎に3台のセンサの距離検出信号を入力
し、この間隔毎に逐次多点法により前記測定面と前記移
動体の基準水平面との距離を演算して記憶し、その距離
の推移により真直度を評価する演算装置を設けたことを
特徴とする真直度測定装置。
1. A movable body that is movable in a horizontal direction is provided so as to face a measurement surface of an object to be measured, and three non-contact type sensors that measure a distance to the measurement surface are horizontally mounted on the movable body. Are arranged at equal heights in the same direction, and a changing means for changing the distance between the three sensors of the moving body and the measurement surface is provided, and in the initial state, the changing means is driven to change the distance between the three means.
The distance detection signals of the sensors of the pedestals are input, and thereafter, the distance detection signals of the three sensors are input for each movement of the sensor of the moving body, and the distance detection signals of the three sensors are sequentially input at each of the intervals by the multipoint method. A straightness measuring device comprising a calculating device for calculating and storing a distance from a reference horizontal plane and evaluating straightness based on a transition of the distance.
JP29583093A 1993-11-26 1993-11-26 Straightness measuring apparatus Pending JPH07146125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29583093A JPH07146125A (en) 1993-11-26 1993-11-26 Straightness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29583093A JPH07146125A (en) 1993-11-26 1993-11-26 Straightness measuring apparatus

Publications (1)

Publication Number Publication Date
JPH07146125A true JPH07146125A (en) 1995-06-06

Family

ID=17825735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29583093A Pending JPH07146125A (en) 1993-11-26 1993-11-26 Straightness measuring apparatus

Country Status (1)

Country Link
JP (1) JPH07146125A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526068A (en) * 2006-02-08 2009-07-16 シコール インコーポレイティド Ciclesonide crystal form
KR101104174B1 (en) * 2008-10-29 2012-01-12 스미도모쥬기가이고교 가부시키가이샤 Straight measuring method and apparatus
CN113587883A (en) * 2021-07-27 2021-11-02 联想新视界(江苏)设备服务有限公司 Elevator main rail installation detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526068A (en) * 2006-02-08 2009-07-16 シコール インコーポレイティド Ciclesonide crystal form
KR101104174B1 (en) * 2008-10-29 2012-01-12 스미도모쥬기가이고교 가부시키가이샤 Straight measuring method and apparatus
CN113587883A (en) * 2021-07-27 2021-11-02 联想新视界(江苏)设备服务有限公司 Elevator main rail installation detection device
CN113587883B (en) * 2021-07-27 2023-05-23 联想新视界(江苏)设备服务有限公司 Elevator main rail installation detection device

Similar Documents

Publication Publication Date Title
US7376261B2 (en) Surface scan measuring device and method of forming compensation table for scanning probe
JP6254456B2 (en) CMM and correction matrix calculation method using CMM
JP5138268B2 (en) Dimensional measuring device
US20050283989A1 (en) Method of inspecting workpieces on a measuring machine
KR20100050493A (en) Compensation of measurement errors due to dynamic deformations in a coordinate measuring machine
JPH0310042B2 (en)
JP2008505328A (en) Measuring device having a plurality of distance sensors, calibration means for the measuring device and method for determining the shape of the surface
JPH06213653A (en) Measurement for workpiece using surface contact measuring probe
US6484571B1 (en) Surface configuration measuring method
US6710339B2 (en) Scanning probe microscope
JPH07146125A (en) Straightness measuring apparatus
US6434845B1 (en) Dual-axis static and dynamic force characterization device
JP3913519B2 (en) Straightness measurement method by scanning gap detection
JP2008286598A (en) Wavelength estimation method of tracking laser interferometer
TWI519791B (en) Method of scanning sample for atom force microscope system and method of determining boundary point and device thereof
JP5009560B2 (en) Apparatus for measuring the shape of a thin object to be measured
JP2547333B2 (en) Position detection device
JPH01221605A (en) Thickness measuring instrument
JP3539795B2 (en) Stylus type surface roughness measuring instrument and measuring method
JP2547334B2 (en) Position detection device
JPH06109455A (en) Measuring device for straightness of long material
JPH0972925A (en) Scanning type microscope
JPH06186028A (en) Measuring method for straightness of long member
JPS62162908A (en) Method and instrument for measuring surface profile
JPH08210803A (en) Straightness measuring instrument