TWI519791B - Method of scanning sample for atom force microscope system and method of determining boundary point and device thereof - Google Patents

Method of scanning sample for atom force microscope system and method of determining boundary point and device thereof Download PDF

Info

Publication number
TWI519791B
TWI519791B TW102142894A TW102142894A TWI519791B TW I519791 B TWI519791 B TW I519791B TW 102142894 A TW102142894 A TW 102142894A TW 102142894 A TW102142894 A TW 102142894A TW I519791 B TWI519791 B TW I519791B
Authority
TW
Taiwan
Prior art keywords
midpoint
point
coordinate
scan
scanning
Prior art date
Application number
TW102142894A
Other languages
Chinese (zh)
Other versions
TW201520557A (en
Inventor
傅立成
吳俊緯
陳志烈
林奕廷
羅宇廷
Original Assignee
國立臺灣大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣大學 filed Critical 國立臺灣大學
Priority to TW102142894A priority Critical patent/TWI519791B/en
Publication of TW201520557A publication Critical patent/TW201520557A/en
Application granted granted Critical
Publication of TWI519791B publication Critical patent/TWI519791B/en

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Description

用於一光學輔助原子力顯微鏡系統的掃描樣本的方法及其裝置 Method and device for scanning samples for an optical assisted atomic force microscope system

本發明是關於一種掃描裝置及其掃描方法,特別是關於一種掃描樣本的裝置及其掃描樣本的方法。 The present invention relates to a scanning device and a scanning method thereof, and more particularly to a device for scanning a sample and a method of scanning the same.

原子力顯微鏡(Atom Force Microscope,AFM)可建立導体或是非導體樣本的三維表面輪廓,其解析度可達到奈米等級的解析度,因此是一種非常實用的量測儀器。 The Atom Force Microscope (AFM) is a very practical measuring instrument that can be used to create a three-dimensional surface profile of a conductor or non-conductor sample with a resolution of nanometer resolution.

請參閱第一圖,其為習用的AFM系統10。習用的AFM系統包含一掃描平台109、一探測器104、一雷射源裝置105、一光學感測器106、一xy軸控制器107、以及一z軸控制器108。該掃描平台109包含一xy軸平台101、一z軸平台102。該探測器104包含一懸臂1041以及一探針1042。欲掃描之樣本103置於掃描平台109上藉由該探測器104掃描。掃描時可藉由設定掃描軌跡來控制該xy軸控制器107,以控制該xy軸平台101的xy軸之水平面移動的軌跡,掃描時亦可依據設定的掃描軌跡來移動探測器104而xy軸平台101保持不動,或是依據設定的掃描軌跡來移動xy軸平台101而探測器104保持不動。探測器104與掃描平台109之間可使用接觸或非接觸的方式來掃描,探測器104的探針1042通常包含一壓電元件(未顯示),當以非接觸的方 式來掃描樣本103時,由於探測器104與樣本103之間存在著交互作用力,探測器104的懸臂1041會以z軸方向振盪,一般而言,生物樣本不希望受到破壞,故會盡量採用非接觸的方式來掃描。利用非接觸的方式來掃描可在探針1042與樣本之間設定一特定距離,但這種方式在當樣本103的表面高低起伏不平時,探針1042或樣本103亦都有容易被損壞的可能,故z軸控制器108除了設定z軸平台102的座標之外,還會根據設定的回授資訊FB2來控制該z軸平台102,以維持探針1042與樣本103之間在z軸方向上的距離,一般而言,探針1042與樣本103之間的距離典型地約為數十奈米左右。 Please refer to the first figure, which is a conventional AFM system 10. A conventional AFM system includes a scanning platform 109, a detector 104, a laser source device 105, an optical sensor 106, an xy axis controller 107, and a z-axis controller 108. The scanning platform 109 includes an xy axis platform 101 and a z-axis platform 102. The detector 104 includes a cantilever 1041 and a probe 1042. The sample 103 to be scanned is placed on the scanning platform 109 by the detector 104. The xy axis controller 107 can be controlled by setting a scan trajectory to control the trajectory of the xy axis of the xy axis platform 101 during scanning, and the detector 104 can be moved according to the set scan trajectory during scanning. The platform 101 remains stationary or the xy-axis platform 101 is moved in accordance with the set scan trajectory while the detector 104 remains stationary. The detector 104 and the scanning platform 109 can be scanned in a contact or non-contact manner, and the probe 1042 of the detector 104 typically includes a piezoelectric element (not shown) when the non-contact side is used. When scanning the sample 103, due to the interaction between the detector 104 and the sample 103, the cantilever 1041 of the detector 104 will oscillate in the z-axis direction. Generally, the biological sample is not expected to be damaged, so it will be used as much as possible. Non-contact way to scan. Scanning in a non-contact manner can set a specific distance between the probe 1042 and the sample, but in this way, when the surface of the sample 103 is undulating, the probe 1042 or the sample 103 may be easily damaged. Therefore, in addition to setting the coordinates of the z-axis platform 102, the z-axis controller 108 controls the z-axis platform 102 according to the set feedback information FB2 to maintain the z-axis direction between the probe 1042 and the sample 103. The distance, in general, the distance between the probe 1042 and the sample 103 is typically about tens of nanometers.

在第一圖中,根據設定的掃描軌跡以及回授資訊FB1,xy軸控制器107可控制xy軸平台101在xy軸的水平面上的移動軌跡。請參閱第二圖(a)以及(b),第二圖(a)為xy軸的水平面上的柵欄式掃描軌跡的示意圖,第二圖(b)為三角波掃描軌跡的示意圖,P代表柵欄間距,A1代表xy軸水平面上的掃描振幅,T1代表xy軸水平面上的掃描週期。傳統上,AFM在xy軸之水平面上的掃描軌跡係使用三角波式或是柵欄式等不平滑的掃描軌跡來掃描,不平滑的掃描軌跡容易引發水平面方向的機械共振頻率變大,此將會使掃描到的AFM影像失真。為了避免上述問題,在掃描樣本103時必須降低掃描速率。 In the first figure, the xy-axis controller 107 can control the movement trajectory of the xy-axis stage 101 on the horizontal plane of the xy-axis according to the set scan trajectory and the feedback information FB1. Please refer to the second figure (a) and (b). The second figure (a) is a schematic diagram of the barrier scanning track on the horizontal plane of the xy axis, the second figure (b) is a schematic diagram of the triangular wave scanning track, and P represents the fence spacing. , A1 represents the scanning amplitude on the horizontal plane of the xy axis, and T1 represents the scanning period on the horizontal plane of the xy axis. Conventionally, the scanning trajectory of the AFM on the horizontal plane of the xy axis is scanned using a non-smooth scanning trajectory such as a triangular wave type or a fence type. The unsmooth scanning trajectory easily causes the mechanical resonance frequency in the horizontal direction to become large, which will make The scanned AFM image is distorted. In order to avoid the above problem, the scanning rate must be lowered when scanning the sample 103.

除此之外,在第二圖(a)中的柵欄式掃描軌跡經過了樣本103與樣本110,當兩樣本103,110相距較遠時,則多餘的掃描軌跡造成掃描時間的浪費。在第二圖(b)中的三角波掃描軌跡經過了樣本111,並涵蓋樣本111的所有區域,在樣本111外的區域之掃描軌跡亦是多餘的,其亦造成掃描時間的浪費。 In addition, the barrier scanning trajectory in the second diagram (a) passes through the sample 103 and the sample 110. When the two samples 103, 110 are far apart, the unnecessary scanning trajectory causes a waste of scanning time. The triangular wave scanning trajectory in the second figure (b) passes through the sample 111 and covers all areas of the sample 111. The scanning trajectory of the area outside the sample 111 is also superfluous, which also causes waste of scanning time.

有鑑於此,本發明提出一種新的掃描樣本的方法,可免除多餘的掃描軌跡,節省掃描時間而可加快掃描速度。本發明先使用光學顯微鏡來輔助AFM之掃描,在AFM對樣本進行細部的掃描之前,光學顯微鏡先搜集樣本在掃描平台上的位置資訊來規劃在樣本之間的路徑掃描,以及蒐集涵蓋每一單一樣本的範圍的資訊,以決定每一樣本的掃描起始點以及掃描結束點。在樣本之間的掃描路徑規畫完後,再對每一樣本進一步做掃描。在掃描之前,樣本的形狀之細節資訊並未得知,在進一步對每一樣本掃描時,掃描中心軌跡與振幅可適應性地根據實際偵測到的樣本的形狀而改變,此可節省不必要的掃描軌跡,增進掃描的效率。 In view of this, the present invention proposes a new method for scanning samples, which can eliminate unnecessary scanning trajectories, save scanning time and speed up scanning. The invention first uses an optical microscope to assist in the scanning of the AFM. Before the AFM scans the sample in detail, the optical microscope first collects the position information of the sample on the scanning platform to plan the path scan between the samples, and collects each single. Information on the range of samples to determine the scan start point and scan end point for each sample. After the scan path between the samples is drawn, each sample is further scanned. Prior to scanning, the details of the shape of the sample are not known. When further scanning for each sample, the scan center trajectory and amplitude can be adaptively changed according to the shape of the actually detected sample, which saves unnecessary The scanning trajectory improves the efficiency of scanning.

依據上述構想,本發明提供一種用於一光學輔助原子力顯微鏡系統的掃描方法,該光學輔助原子力顯微鏡包含一掃描平台以及一探測器,該方法包含下列步驟:於該掃描平台上提供一第一樣本與一第二樣本。決定該第一樣本的一第一掃描區域以及該第二樣本的一第二掃描區域,該第一掃描區域具有一第一掃描起始點以及一第一掃描結束點,該第二掃描區域具有一第二掃描起始點以及一第二掃描結束點。將該探測器移動至該第一掃描起始點、或移動該掃描平台而使該第一掃描起始點到達該探測器的垂直投影位置,以對該第一樣本進行掃描,其中該第一掃描起始點至該探測器的距離小於或等於該第二掃描起始點至該探測器的距離,該探測器與該第一掃描起始點相距一第一距離,該第一距離為該探測器與該第一掃描區域之間的最短距離。在掃描完該第一樣本後,將該探測器自該第一掃描結束點移動至該第二掃描起始點、或移動該掃描平台而使該第二掃描起 始點到達該探測器的垂直投影位置,以對該第二樣本進行掃描,其中該第一掃描結束點與該第二掃描起始點相距一第二距離,該第二距離為該第一掃描結束點與該第二掃描區域之間的最短距離。 In accordance with the above concept, the present invention provides a scanning method for an optically assisted atomic force microscope system, the optical assisted atomic force microscope comprising a scanning platform and a detector, the method comprising the steps of: providing a first Ben and a second sample. Determining a first scan area of the first sample and a second scan area of the second sample, the first scan area having a first scan start point and a first scan end point, the second scan area There is a second scan start point and a second scan end point. Moving the detector to the first scan start point, or moving the scan platform to cause the first scan start point to reach a vertical projection position of the detector to scan the first sample, wherein the first sample The distance from the start of the scan to the detector is less than or equal to the distance from the second scan start point to the detector, and the detector is at a first distance from the first scan start point, and the first distance is The shortest distance between the detector and the first scanning area. After scanning the first sample, moving the detector from the first scanning end point to the second scanning starting point, or moving the scanning platform to make the second scanning The starting point reaches a vertical projection position of the detector to scan the second sample, wherein the first scanning end point is at a second distance from the second scanning starting point, and the second distance is the first scanning The shortest distance between the end point and the second scan area.

依據上述構想,本發明提出一種掃描裝置,包含一掃描平台、一光學輔助顯微鏡、以及一探測器。該掃描平台承載一第一樣本以及一第二樣本。該光學輔助顯微鏡蒐集一探測點、該第一樣本的一第一區域、以及該第二樣本的一第二區域的資訊,其中該第一區域具有一第一掃描起始點和一第一掃描結束點,該第二區域具有一第二掃描起始點和一第二掃描結束點。該探測器自該探測點移動至該第一掃描起始點或移動該掃描平台而使該第一掃描起始點到達該探測點以對該第一樣本進行掃描,其中該探測點至該第一掃描起始點的一第一距離為該探測點至該第一區域之間的最短距離,在掃描完該第一樣本後,該探測器自該第一掃描結束點移動至該第二掃描起始點或移動該掃描平台而使該第二掃描起始點到達該探測點以對該第二樣本進行掃描,其中該第一掃描結束點至該第二掃描起始點的一第二距離為該第一掃描結束點至該第二區域之間的最短距離。 In accordance with the above concept, the present invention provides a scanning device comprising a scanning platform, an optical auxiliary microscope, and a detector. The scanning platform carries a first sample and a second sample. The optical auxiliary microscope collects information of a detection point, a first area of the first sample, and a second area of the second sample, wherein the first area has a first scan start point and a first At the scan end point, the second area has a second scan start point and a second scan end point. Moving the probe from the detection point to the first scan start point or moving the scan platform to cause the first scan start point to reach the probe point to scan the first sample, wherein the probe point is to the a first distance from the first scanning start point is a shortest distance between the detection point and the first area, and after scanning the first sample, the detector moves from the first scanning end point to the first Scanning the scanning platform or moving the scanning platform to cause the second scanning starting point to reach the detecting point to scan the second sample, wherein the first scanning end point to the second scanning starting point The two distances are the shortest distance between the first scanning end point and the second area.

依據上述構想,本發明提出一種決定邊界點之掃描方法,該方法包含下列步驟:決定一第一掃描軌跡,該第一掃描軌跡包含一第一取樣點以及一第二取樣點。擷取該第一取樣點的一第一x軸座標與一第一z軸座標、以及該第二取樣點的一第二x軸座標與一第二z軸座標。當該第一斜率的絕對值大於或等於一門檻值時,判定包含該第一取樣點與該第二取樣點之間存在該第一掃描軌跡上的一第一邊界點。 According to the above concept, the present invention provides a scanning method for determining a boundary point, the method comprising the steps of: determining a first scanning track, the first scanning track comprising a first sampling point and a second sampling point. A first x-axis coordinate of the first sampling point and a first z-axis coordinate, and a second x-axis coordinate and a second z-axis coordinate of the second sampling point are captured. When the absolute value of the first slope is greater than or equal to a threshold, it is determined that a first boundary point on the first scan track exists between the first sampling point and the second sampling point.

依據上述構想,本發明提出一種掃描一樣本的方法,該方法 包含下列步驟:以一第一弦波軌跡掃描該樣本之一第一區域。自該第一弦波軌跡掃描該第一區域之一實際路徑與該樣本之關係,而獲得一第一區域參數。以該第一區域參數預測掃描該樣本之一第二區域之一第二弦波軌跡。以該第二弦波軌跡掃描該第二區域。 According to the above concept, the present invention proposes a method of scanning the same, the method The method includes the steps of: scanning a first region of the sample with a first chord trajectory. A first region parameter is obtained by scanning the relationship between the actual path of the first region and the sample from the first sine wave trajectory. A second chord trajectory of one of the second regions of the sample is predicted by the first region parameter prediction. The second region is scanned with the second chord trajectory.

依據上述構想,本發明提出一種掃描一樣本的裝置,其中該樣本包含N個區域,該裝置包含一探測器、一控制器、以及一處理單元。該控制器控制該探測器以N個弦波軌跡分別掃描該N個區域,並獲得分別對應該N個區域中一第一區域以後之N-1個區域參數。該處理單元電連接於該控制器,並分別根據該N-1個區域參數而決定N-1個弦波軌跡以分別掃描該樣本的含一第二區域以後之該N-1個區域。 In accordance with the above teachings, the present invention provides a scanning device in which the sample contains N regions, the device comprising a detector, a controller, and a processing unit. The controller controls the detector to scan the N regions respectively with N chord trajectories, and obtain N-1 region parameters corresponding to a first region of the N regions respectively. The processing unit is electrically connected to the controller, and respectively determines N-1 sine wave trajectories according to the N-1 regional parameters to respectively scan the N-1 regions of the sample after the second region.

10‧‧‧習用AFM系統 10‧‧‧Used AFM system

101‧‧‧xy軸平台 101‧‧‧xy axis platform

102‧‧‧z軸平台 102‧‧‧z axis platform

103,110,111,25,27,29‧‧‧樣本 103,110,111,25,27,29‧‧‧ samples

104‧‧‧探測器 104‧‧‧ detector

1041‧‧‧懸臂 1041‧‧‧cantilever

105‧‧‧雷射源裝置 105‧‧‧Laser source device

1042‧‧‧探針 1042‧‧‧Probe

106‧‧‧光學感測器 106‧‧‧ Optical Sensor

107‧‧‧xy軸控制器 107‧‧‧xy axis controller

108‧‧‧z軸控制器 108‧‧‧z axis controller

109,21‧‧‧掃描平台 109, 21‧‧‧ scan platform

20‧‧‧本發明AFM系統 20‧‧‧AFM system of the invention

22‧‧‧測量系統 22‧‧‧Measurement system

23‧‧‧平台控制系統 23‧‧‧ Platform Control System

24‧‧‧處理單元 24‧‧‧Processing unit

211‧‧‧xy平面電磁掃描平台 211‧‧‧xy plane electromagnetic scanning platform

212‧‧‧xy平面壓電掃描平台 212‧‧‧xy plane piezoelectric scanning platform

213‧‧‧z軸壓電掃描平台 213‧‧‧z-axis piezoelectric scanning platform

221‧‧‧量測單元 221‧‧‧Measurement unit

222‧‧‧調整單元 222‧‧‧Adjustment unit

231,232,233‧‧‧平台控制器 231,232,233‧‧‧ platform controller

204‧‧‧雷射干涉計 204‧‧‧Laser Interferometer

205‧‧‧壓力計 205‧‧‧ pressure gauge

203‧‧‧探測控制單元 203‧‧‧Detection Control Unit

206‧‧‧鎖定控制單元 206‧‧‧Lock control unit

201‧‧‧光學輔助顯微鏡 201‧‧‧Optical auxiliary microscope

P‧‧‧柵欄間距 P‧‧‧Fence spacing

P1‧‧‧第一中心點 P1‧‧‧ first central point

P2‧‧‧第二中心點 P2‧‧‧ second central point

P3‧‧‧第三中心點 P3‧‧‧ third central point

d1‧‧‧第一距離 D1‧‧‧first distance

26‧‧‧第一區域 26‧‧‧First area

d2‧‧‧第二距離 D2‧‧‧Second distance

28‧‧‧第二區域 28‧‧‧Second area

260‧‧‧第一矩形掃描區域 260‧‧‧First rectangular scanning area

261‧‧‧第一邊緣 261‧‧‧ first edge

280‧‧‧第二矩形掃描區域 280‧‧‧Second rectangular scanning area

262‧‧‧第二邊緣 262‧‧‧ second edge

263‧‧‧第三邊緣 263‧‧‧ third edge

264‧‧‧第四邊緣 264‧‧‧ fourth edge

281‧‧‧第五邊緣 281‧‧‧ fifth edge

282‧‧‧第六邊緣 282‧‧‧ sixth edge

283‧‧‧第七邊緣 283‧‧‧ seventh edge

284‧‧‧第八邊緣 284‧‧‧ eighth edge

260W‧‧‧第一矩形寬度 260W‧‧‧first rectangular width

280W‧‧‧第二矩形寬度 280W‧‧‧second rectangular width

260L‧‧‧第一矩形長度 260L‧‧‧first rectangular length

280L‧‧‧第二矩形長度 280L‧‧‧second rectangular length

P1X1‧‧‧第一中點 P1X1‧‧‧ first midpoint

P1Y1‧‧‧第一掃描起始點 P1Y1‧‧‧ first scan starting point

P1X1‧‧‧第二掃描起始點 P1X1‧‧‧second scan starting point

P1Y2‧‧‧第一掃描結束點 P1Y2‧‧‧First scan end point

P2X2‧‧‧第二掃描結束點 P2X2‧‧‧ second scan end point

31‧‧‧第一掃描軌跡 31‧‧‧First scan track

33‧‧‧第二掃描軌跡 33‧‧‧Second scan track

34‧‧‧第三掃描軌跡 34‧‧‧ Third scan track

35‧‧‧第四掃描軌跡 35‧‧‧ Fourth scan track

X1‧‧‧第一取樣點 X1‧‧‧ first sampling point

X2‧‧‧第二取樣點 X2‧‧‧Second sampling point

X3‧‧‧第三取樣點 X3‧‧‧ third sampling point

X4‧‧‧第四取樣點 X4‧‧‧ fourth sampling point

PB1‧‧‧第一邊界點 PB1‧‧‧ first boundary point

PB2‧‧‧第二邊界點 PB2‧‧‧ second boundary point

PB3‧‧‧第三邊界點 PB3‧‧‧ third boundary point

PB4‧‧‧第四邊界點 PB4‧‧‧ fourth boundary point

32‧‧‧z軸方向掃描軌跡 32‧‧‧z-axis scan track

PBC1‧‧‧第一中心點 PBC1‧‧‧ first central point

Sin1‧‧‧第一弦波軌跡 Sin1‧‧‧first chord trajectory

PBC2‧‧‧第二中心點 PBC2‧‧‧ second central point

Sin2‧‧‧第二弦波軌跡 Sin2‧‧‧Second chord trajectory

Pth1‧‧‧第一中心路徑 Pth1‧‧‧ first central path

Pth3‧‧‧第三中心路徑 Pth3‧‧‧ third central path

Pth2‧‧‧第二中心路徑 Pth2‧‧‧Second Central Path

Reg1‧‧‧第一區域 Reg1‧‧‧ first area

Reg2‧‧‧第二區域 Reg2‧‧‧Second area

PT1‧‧‧第一弦波軌跡的結束點 End point of PT1‧‧‧ first chord trajectory

PT2‧‧‧第二弦波軌跡的結束點 End point of PT2‧‧‧ second chord trajectory

OFS1‧‧‧偏移值 OFS1‧‧‧ offset value

36,37‧‧‧掃描軌跡 36, 37‧‧‧ scan track

Amp1‧‧‧第一振幅 Amp1‧‧‧ first amplitude

Amp2‧‧‧第二振幅 Amp2‧‧‧ second amplitude

第一圖:習用的AFM系統。 First picture: A conventional AFM system.

第二圖(a):xy軸的水平面上的柵欄式掃描軌跡的示意圖。 Figure 2 (a): Schematic diagram of a fence-type scanning trajectory on the horizontal plane of the xy axis.

第二圖(b):三角波掃描軌跡的示意圖。 Figure 2 (b): Schematic diagram of the triangular wave scanning trajectory.

第三圖:本發明AFM系統的示意圖。 Third Figure: Schematic representation of the AFM system of the present invention.

第四圖(a):本發明第一較佳實施例掃描路徑規畫的示意圖。 Fourth Diagram (a): Schematic diagram of the scan path specification of the first preferred embodiment of the present invention.

第四圖(b):本發明第一較佳實施例掃描路徑規畫的示意圖。 Fourth Diagram (b): Schematic diagram of the scan path specification of the first preferred embodiment of the present invention.

第五圖:本發明第一較佳實施例用於光學輔助AFM系統的掃描方法。 Fifth Figure: A scanning method for an optically assisted AFM system in accordance with a first preferred embodiment of the present invention.

第六圖:偵測樣本的邊界點的示意圖。 Figure 6: Schematic diagram of the boundary points of the detected samples.

第七圖:本發明第二較佳實施例決定邊界點的掃描方法的示意圖。 Seventh Embodiment: A schematic diagram of a scanning method for determining a boundary point in a second preferred embodiment of the present invention.

第八圖:本發明第三較佳實施例預測掃描路徑與掃描振幅的示意圖。 Eighth: Schematic diagram of predicting a scan path and a scan amplitude in accordance with a third preferred embodiment of the present invention.

第九圖:本發明第三較佳實施例掃描一樣本的方法的示意圖。 Figure 9 is a schematic view showing a method of scanning the same according to a third preferred embodiment of the present invention.

請參閱第三圖,其為本發明AFM系統20的示意圖。本發明AFM系統20包含一掃描平台21、一測量系統22、一平台控制系統23、一處理單元24、一光學輔助顯微鏡201、一探測器202、一探測控制單元203、一雷射干涉計204、一壓力計205、以及一鎖定控制單元206。該探測器202包含一懸臂2021以及一探針2022。該鎖定控制單元206例如為一放大器,其接收測量系統22在探測器202的z軸上的回授資訊FB6,用以維持樣本25與探針2022之間的距離,探測控制單元203可控制探測器的移動,並將探測器202的狀態回饋給鎖定控制單元206。該掃描平台21包含一xy平面電磁掃描平台211、一xy平面壓電掃描平台212、以及一z軸壓電掃描平台213。該平台控制系統23包含一平台控制器231,232,233分別控制該xy平面電磁掃描平台211、該xy平面壓電掃描平台212、以及該z軸壓電掃描平台213,用以控制該掃描平台21的xy軸平面方向以及z軸方向的移動軌跡。該量測單元221用以量測該探測器202的x軸、y軸、以及z軸的座標位置,該調整單元222可對該量測單元221校正。 Please refer to the third figure, which is a schematic diagram of the AFM system 20 of the present invention. The AFM system 20 of the present invention comprises a scanning platform 21, a measuring system 22, a platform control system 23, a processing unit 24, an optical auxiliary microscope 201, a detector 202, a detection control unit 203, and a laser interferometer 204. A pressure gauge 205 and a lock control unit 206. The detector 202 includes a cantilever 2021 and a probe 2022. The lock control unit 206 is, for example, an amplifier that receives the feedback information FB6 of the measurement system 22 on the z-axis of the detector 202 to maintain the distance between the sample 25 and the probe 2022, and the detection control unit 203 can control the detection. The movement of the device returns the status of the detector 202 to the lock control unit 206. The scanning platform 21 includes an xy plane electromagnetic scanning platform 211, an xy plane piezoelectric scanning platform 212, and a z-axis piezoelectric scanning platform 213. The platform control system 23 includes a platform controller 231, 232, 233 for controlling the xy plane electromagnetic scanning platform 211, the xy plane piezoelectric scanning platform 212, and the z-axis piezoelectric scanning platform 213, respectively, for controlling the xy axis of the scanning platform 21. The movement direction of the plane direction and the z-axis direction. The measuring unit 221 is configured to measure the coordinate positions of the x-axis, the y-axis, and the z-axis of the detector 202, and the adjusting unit 222 can correct the measuring unit 221.

在第三圖中,該處理單元24根據參考振幅資訊241以及回授資訊FB4來傳送控制資訊Info3至該平台控制器233,該平台控制器233接收該控制資訊Info3而發出控制訊號CTRL3以控制該z軸壓電掃描平台213。該處理單元24根據弦波軌跡資訊242以及回授資訊FB3來傳送控制資訊Info2至該平台控制器232,該平台控制器232接收該控制資訊Info2而發出控制訊號CTRL2以控制該xy平面壓電掃描平台212。該處理單元24根據參考軌跡資訊 241以及回授資訊FB5來傳送控制資訊Info1至該平台控制器231,該平台控制器231接收該控制資訊Info1而發出控制訊號CTRL1以控制該xy平面電磁掃描平台211。參考振幅資訊243是相關於樣本25在z軸方向上的振盪振幅,弦波軌跡資訊242以及參考軌跡資訊241是相關於樣本25在xy平面上的軌跡資訊。雷射干涉計204與壓力計205分別響應回授資訊FB7,FB8而分別產生回授資訊FB5,FB3。 In the third figure, the processing unit 24 transmits control information Info3 to the platform controller 233 according to the reference amplitude information 241 and the feedback information FB4. The platform controller 233 receives the control information Info3 and issues a control signal CTRL3 to control the Z-axis piezoelectric scanning platform 213. The processing unit 24 transmits the control information Info2 to the platform controller 232 according to the sine wave trajectory information 242 and the feedback information FB3. The platform controller 232 receives the control information Info2 and sends a control signal CTRL2 to control the xy plane piezoelectric scan. Platform 212. The processing unit 24 according to the reference trajectory information 241 and the feedback information FB5 are sent to the control information Info1 to the platform controller 231. The platform controller 231 receives the control information Info1 and issues a control signal CTRL1 to control the xy plane electromagnetic scanning platform 211. The reference amplitude information 243 is related to the oscillation amplitude of the sample 25 in the z-axis direction, and the chord trajectory information 242 and the reference trajectory information 241 are trajectory information related to the sample 25 on the xy plane. The laser interferometer 204 and the pressure gauge 205 respectively generate feedback information FB5, FB3 in response to the feedback information FB7, FB8.

本發明第一較佳實施例是藉由該光學輔助顯微鏡201來規劃掃描平台21上的複數個樣本25,27,29的掃描路徑。請參閱第四圖(a)與(b),其為本發明第一較佳實施例掃描路徑規畫的示意圖。在掃描平台21上包含一第一樣本25、一第二樣本27、一第三樣本29,第一樣本25與第二樣本27分別具有一第一區域26與一第二區域28。該掃描平台21承載第一樣本25、第二樣本27、以及第三樣本29,該光學輔助顯微鏡201蒐集一探測點PP、該第一樣本25的第一區域26、以及該第二樣本27的第二區域28的資訊,例如第一樣本25的一第一中心點P1的座標、第二樣本27的一第二中心點P2的座標、涵蓋第一樣本25的最小之第一區域26的資訊、以及涵蓋第二樣本27的最小之第二區域28的資訊,而該探測點PP的位置是位於該探測器202的垂直投影與該掃描平台21的交集上,其中該第一區域26具有一第一掃描起始點P1Y1和一第一掃描結束點P1Y2,該第二區域28具有一第二掃描起始點P2X1和一第二掃描結束點P2X2。該探測器202自該探測點PP移動至該第一掃描起始點P1Y1或移動該掃描平台21而使該第一掃描起始點P1Y1到達該探測點PP以對該第一樣本25進行掃描,其中該探測點PP至該第一掃描起始點P1Y1的一第一距離d1為該探測點PP至該第一區域26之間的最短距離。在掃描完 該第一樣本25後,該探測器202自該第一掃描結束點P1Y2移動至該第二掃描起始點P2X1或移動該掃描平台21而使該第二掃描起始點P2X2到達該探測點PP以對該第二樣本27進行掃描,其中該第一掃描結束點P1Y2至該第二掃描起始點P2X1的一第二距離d2為該第一掃描結束點P1Y2至該第二區域28之間的最短距離。 The first preferred embodiment of the present invention plans the scanning path of a plurality of samples 25, 27, 29 on the scanning platform 21 by the optical auxiliary microscope 201. Please refer to the fourth figures (a) and (b), which are schematic diagrams of the scanning path specification of the first preferred embodiment of the present invention. A first sample 25, a second sample 27, and a third sample 29 are included on the scanning platform 21. The first sample 25 and the second sample 27 have a first region 26 and a second region 28, respectively. The scanning platform 21 carries a first sample 25, a second sample 27, and a third sample 29, the optical auxiliary microscope 201 collecting a detection point PP, a first region 26 of the first sample 25, and the second sample The information of the second region 28 of 27, such as the coordinates of a first center point P1 of the first sample 25, the coordinates of a second center point P2 of the second sample 27, and the smallest first covering the first sample 25 The information of the area 26 and the information of the smallest second area 28 covering the second sample 27, and the position of the detection point PP is located at the intersection of the vertical projection of the detector 202 and the scanning platform 21, wherein the first The area 26 has a first scan start point P1Y1 and a first scan end point P1Y2, and the second area 28 has a second scan start point P2X1 and a second scan end point P2X2. The detector 202 moves from the probe point PP to the first scan start point P1Y1 or moves the scan platform 21 to cause the first scan start point P1Y1 to reach the probe point PP to scan the first sample 25 The first distance d1 of the probe point PP to the first scan start point P1Y1 is the shortest distance between the probe point PP and the first region 26. After scanning After the first sample 25, the detector 202 moves from the first scan end point P1Y2 to the second scan start point P2X1 or moves the scan platform 21 to cause the second scan start point P2X2 to reach the probe point. PP scans the second sample 27, wherein a second distance d2 from the first scan end point P1Y2 to the second scan start point P2X1 is between the first scan end point P1Y2 and the second area 28 The shortest distance.

請同時參閱第四圖(a)與(b),該光學輔助顯微鏡201蒐集該第一樣本25在該掃描平台21上的一第一中心位置P1以及決定該第二樣本27在該掃描平台21上的一第二中心位置P2,該第一中心位置P1具有一第一x座標P1XC和一第一y座標P1YC,該第二中心位置P2具有一第二x座標P2XC和一第二y座標P2YC。該處理單元24將該第一掃描區域26設定為一第一矩形掃描區域260,其中該第一矩形掃描區域260為涵蓋該第一樣本25的最小區域,並具有平行於y軸的一第一邊緣261和一第二邊緣262、以及平行於x軸的一第三邊緣263和一第四邊緣264,該第一邊緣261或該第二邊緣262的長度為該第一矩形掃描區域260的一第一矩形長度260L,該第三邊緣263或該第四邊緣264的長度為該第一矩形掃描區域260的一第一矩形寬度260W,該第一邊緣261、該第二邊緣262、該第三邊緣263、以及該第四邊緣264分別具有一第一中點P1X1、一第二中點P1X2、一第三中點P1Y1、以及一第四中點P1Y2,該第一中點P1X1、該第二中點P1X2、該第三中點P1Y1、以及該第四中點P1Y2的x座標分別為該第一x座標P1XC減去該第一矩形寬度260W的一半、該第一x座標P1XC加上該第一矩形寬度260W的一半、該第一x座標P1XC、以及該第一x座標P1XC,該第一中點P1X1、該第二中點P1X2、該第三中點P1Y1、以及該第四中點P1Y2的y座標分別為該第一y座標P1YC、 該第一y座標P1YC、該第一y座標P1YC減去該第一矩形長度260L的一半、以及該第一y座標P1YC加上該第一矩形長度260L的一半,該第一掃描起始點為該第一中點P1X1、該第二中點P1X2、該第三中點P1Y1、以及該第四中點P1Y4的其中之一,當該第一掃描起始點為該第一中點P1X1時,該第一掃描結束點預定為該第二中點P1X2,當該第一掃描起始點為該第二中點P1X2時,該第一掃描結束點預定為該第一中點P1X1,當該第一掃描起始點為該第三中點P1Y1時,該第一掃描結束點預定為該第四中點P1Y2,且當該第一掃描起始點為該第四中點P1Y2時,該第一掃描結束點預定為該第三中點P1Y1。 Referring to the fourth figures (a) and (b), the optical auxiliary microscope 201 collects a first central position P1 of the first sample 25 on the scanning platform 21 and determines the second sample 27 on the scanning platform. a second central position P2 on the 21, the first central position P1 having a first x coordinate P1XC and a first y coordinate P1YC, the second central position P2 having a second x coordinate P2XC and a second y coordinate P2YC. The processing unit 24 sets the first scanning area 26 as a first rectangular scanning area 260, wherein the first rectangular scanning area 260 is a minimum area covering the first sample 25, and has a first parallel to the y-axis An edge 261 and a second edge 262, and a third edge 263 and a fourth edge 264 parallel to the x-axis, the length of the first edge 261 or the second edge 262 being the first rectangular scanning area 260 a first rectangular length 260L, the length of the third edge 263 or the fourth edge 264 is a first rectangular width 260W of the first rectangular scanning area 260, the first edge 261, the second edge 262, the first The third edge 263 and the fourth edge 264 respectively have a first midpoint P1X1, a second midpoint P1X2, a third midpoint P1Y1, and a fourth midpoint P1Y2, the first midpoint P1X1, the first The x coordinates of the second midpoint P1X2, the third midpoint P1Y1, and the fourth midpoint P1Y2 are respectively the first x coordinate P1XC minus half of the first rectangular width 260W, and the first x coordinate P1XC plus the One half of the first rectangular width 260W, the first x coordinate P1XC, and the first x coordinate P1XC The first midpoint P1X1, the second midpoint P1X2, the third midpoint P1Y1, P1Y2 and the fourth midpoint y coordinate, respectively, for a first y coordinate P1YC, The first y coordinate P1YC, the first y coordinate P1YC minus half of the first rectangular length 260L, and the first y coordinate P1YC plus half of the first rectangular length 260L, the first scan starting point is One of the first midpoint P1X1, the second midpoint P1X2, the third midpoint P1Y1, and the fourth midpoint P1Y4, when the first scan starting point is the first midpoint P1X1, The first scan end point is predetermined as the second midpoint P1X2, and when the first scan start point is the second midpoint P1X2, the first scan end point is predetermined as the first midpoint P1X1, when the first When a scan start point is the third midpoint P1Y1, the first scan end point is predetermined as the fourth midpoint P1Y2, and when the first scan start point is the fourth midpoint P1Y2, the first The scan end point is predetermined to be the third midpoint P1Y1.

類似地,該處理單元24將該第二掃描區域28設定為一第二矩形掃描區域280,其中該第二矩形掃描區域280為涵蓋該第二樣本27的最小區域,並具有平行於y軸的一第五邊緣281和一第六邊緣282、以及平行於x軸的一第七邊緣283和一第八邊緣284,該第五邊緣281或該第六邊緣282的長度為該第二矩形掃描區域280的一第二矩形長度280L,該第七邊緣283或該第八邊緣284的長度為該第二矩形掃描區域280的一第二矩形寬度280W,該第五邊緣281、該第六邊緣282、該第七邊緣283、以及該第八邊緣284分別具有一第五中點P2X1、一第六中點P2X2、一第七中點P2Y1、以及一第八中點P2Y2,該第五中點P2X1、該第六中點P2X2、該第七中點P2Y1、以及該第八中點P2Y2的x座標分別為該第二x座標P2XC減去該第二矩形寬度280W的一半、該第二x座標P2XC加上該第二矩形寬度280W的一半、該第二x座標P2XC、以及該第二x座標P2XC,該第五中點P2X1、該第六中點P2X2、該第七中點P2Y1、以及該第八中點P2Y2的y座標分別為該第 二y座標P2YC、該第二y座標P2YC、該第二y座標P2YC減去該第二矩形長度280L的一半、以及該第二y座標P2YC加上該第二矩形長度280L的一半,該第二掃描起始點為該第五中點P2X1、該第六中點P2X2、該第七中點P2Y1、以及該第八中點P2Y2的其中之一,當該第二掃描起始點為該第五中點P2X1時,該第二掃描結束點預定為該第六中點P2X2,當該第二掃描起始點為該第六中點時P2X2,該第二掃描結束點預定為該第五中點P2X1,當該第二掃描起始點為該第七中點時P2Y1,該第二掃描結束點預定為該第八中點P2Y2,當該第二起始點為該第八中點P2Y2時,該第二結束點預定為該第七中點P2Y1。 Similarly, the processing unit 24 sets the second scan area 28 as a second rectangular scan area 280, wherein the second rectangular scan area 280 is the smallest area covering the second sample 27 and has a parallel to the y-axis. a fifth edge 281 and a sixth edge 282, and a seventh edge 283 and an eighth edge 284 parallel to the x-axis, the length of the fifth edge 281 or the sixth edge 282 being the second rectangular scanning area a second rectangular length 280L, the length of the seventh edge 283 or the eighth edge 284 is a second rectangular width 280W of the second rectangular scanning area 280, the fifth edge 281, the sixth edge 282, The seventh edge 283 and the eighth edge 284 respectively have a fifth midpoint P2X1, a sixth midpoint P2X2, a seventh midpoint P2Y1, and an eighth midpoint P2Y2, and the fifth midpoint P2X1. The x coordinates of the sixth midpoint P2X2, the seventh midpoint P2Y1, and the eighth midpoint P2Y2 are respectively the second x coordinate P2XC minus half of the second rectangular width 280W, and the second x coordinate P2XC plus One half of the second rectangular width 280W, the second x coordinate P2XC, and the second x a coordinate P2XC, the y coordinate of the fifth midpoint P2X1, the sixth midpoint P2X2, the seventh midpoint P2Y1, and the eighth midpoint P2Y2 are respectively a second y coordinate P2YC, the second y coordinate P2YC, the second y coordinate P2YC minus half of the second rectangular length 280L, and the second y coordinate P2YC plus half of the second rectangular length 280L, the second The scan start point is one of the fifth midpoint P2X1, the sixth midpoint P2X2, the seventh midpoint P2Y1, and the eighth midpoint P2Y2, when the second scan start point is the fifth At the midpoint P2X1, the second scan end point is predetermined as the sixth midpoint P2X2, and when the second scan start point is the sixth midpoint P2X2, the second scan end point is predetermined as the fifth midpoint P2X1, when the second scan start point is the seventh midpoint P2Y1, the second scan end point is predetermined as the eighth midpoint P2Y2, and when the second start point is the eighth midpoint P2Y2, The second end point is predetermined to be the seventh midpoint P2Y1.

請參閱第五圖,其為本發明第一較佳實施例用於光學輔助AFM系統的掃描方法。第三圖中的AFM系統20可為光學輔助AFM系統,其包含光學輔助顯微鏡201、掃描平台21以及探測器202。請同時參閱第三圖、第四圖(a)~(b)、以及第五圖,該方法包含下列步驟,在步驟S101中,於該掃描平台21上提供一第一樣本25與一第二樣本27。在步驟S102中,決定該第一樣本25的一第一掃描區域26以及該第二樣本27的一第二掃描區域28,該第一掃描區域26具有一第一掃描起始點P1Y1以及一第一掃描結束點P1Y2,該第二掃描區域28具有一第二掃描起始點P2X1以及一第二掃描結束點P2X2。在步驟S103中,將該探測器202移動至該第一掃描起始點P1Y1、或移動該掃描平台21而使該第一掃描起始點P1Y1到達該探測器202的垂直投影位置,以對該樣本25進行掃描,其中該第一掃描起始點P1Y1至該探測器202的距離小於或等於該第二掃描起始點P2X1至該探測器202的距離,該探測器202與該第一掃描起始點P1Y1相距一第一距離d1,該第一距離d1為該 探測器202與該第一掃描區域26之間的最短距離。在步驟S104中,在掃描完該第一樣本25後,將該探測器202自該第一掃描結束點P1Y2移動至該第二掃描起始點P2X1、或移動該掃描平台21而使該第二掃描起始點P2X1到達該探測器202的垂直投影位置,以對該第二27樣本進行掃描,其中該第一掃描結束點P1Y2與該第二掃描起始點P2X1相距一第二距離d2,該第二距離d2為該第一掃描結束點P1Y2與該第二掃描區域28之間的最短距離。 Please refer to the fifth figure, which is a scanning method for an optical auxiliary AFM system according to a first preferred embodiment of the present invention. The AFM system 20 in the third diagram can be an optically assisted AFM system that includes an optical auxiliary microscope 201, a scanning platform 21, and a detector 202. Please refer to the third figure, the fourth figure (a)-(b), and the fifth figure at the same time. The method includes the following steps. In step S101, a first sample 25 and a first page are provided on the scanning platform 21. Two samples of 27. In step S102, a first scan area 26 of the first sample 25 and a second scan area 28 of the second sample 27 are determined. The first scan area 26 has a first scan start point P1Y1 and a The first scan end point P1Y2 has a second scan start point P2X1 and a second scan end point P2X2. In step S103, the detector 202 is moved to the first scan start point P1Y1, or the scan platform 21 is moved to make the first scan start point P1Y1 reach the vertical projection position of the detector 202 to The sample 25 is scanned, wherein the distance from the first scan start point P1Y1 to the detector 202 is less than or equal to the distance from the second scan start point P2X1 to the detector 202, and the detector 202 and the first scan The starting point P1Y1 is separated by a first distance d1, and the first distance d1 is the The shortest distance between the detector 202 and the first scanning region 26. In step S104, after scanning the first sample 25, the detector 202 is moved from the first scanning end point P1Y2 to the second scanning starting point P2X1, or the scanning platform 21 is moved to make the first The second scanning start point P2X1 reaches the vertical projection position of the detector 202 to scan the second 27 samples, wherein the first scanning end point P1Y2 is separated from the second scanning starting point P2X1 by a second distance d2, The second distance d2 is the shortest distance between the first scanning end point P1Y2 and the second scanning area 28.

在第一較佳實施例中,第二樣本27至第三樣本29之間的路徑規畫也是取最短路徑,最短路徑規畫的方法可推廣到n個樣本。由於在第一樣本25、第二樣本27、以及第三樣本之間的掃描軌跡是樣本之間的最短直線,因此可免除任何曲線的掃描軌跡,故可加快掃描速度。在樣本之間的掃描路徑規劃號之後,便可依序對第一樣本25、第二樣本27、以及第三樣本29做進一步的掃描。在進一步掃描之前,光學輔助顯微鏡201只獲得樣本的所在位置資訊與樣本的區域大小之概略資訊,樣本的形狀之細節的資訊並未得知,為了要適應性地根據樣本的形狀來調整掃描軌跡的中心路徑與掃描軌跡的振幅,下面所描述的方法就是藉由偵測樣本的形狀或大小來預測掃描軌跡的中心路徑與掃描軌跡的振幅。 In the first preferred embodiment, the path plan between the second sample 27 and the third sample 29 is also taken as the shortest path, and the shortest path plan method can be extended to n samples. Since the scanning trajectory between the first sample 25, the second sample 27, and the third sample is the shortest straight line between the samples, the scanning trajectory of any curve can be eliminated, so that the scanning speed can be increased. After the scan path plan number between the samples, the first sample 25, the second sample 27, and the third sample 29 can be further scanned in sequence. Before further scanning, the optical auxiliary microscope 201 only obtains the general information of the position information of the sample and the size of the area of the sample, and the details of the shape of the sample are not known, in order to adaptively adjust the scanning trajectory according to the shape of the sample. The center path and the amplitude of the scan trajectory, the method described below predicts the center path of the scan trajectory and the amplitude of the scan trajectory by detecting the shape or size of the sample.

請參閱第六圖,其為偵測樣本的邊界點的示意圖。偵測樣本的邊界點之掃描設備同樣使用第三圖中的AFM系統20。在第六圖中,當一第一掃描軌跡31掃過第一樣本25時,在z軸方向上會形成z軸方向掃描軌跡32,探測器202感測到在掃描平台21上第一樣本25的第一區域26外的第一取樣點X1與在掃描平台21上第一樣本25的第一區域26內的第二取樣點X2的z軸座標有變化時,則處理單元24會判斷探測器202已經掃描到第一樣本25的 邊界點而準備掃描第一區域26。例如,在第六圖中第一取樣點X1在x軸與z軸方向上的座標為(x[1],z[1]),第二取樣點X2在x軸與z軸方向上的座標為(x[2],z[2]),第二取樣點X2與第一取樣點X1兩點所構成的直線之斜率m1=(z[2]-z[1])/(x[2]-x[1]),當斜率m1大於或等於一門檻值時,則處理單元24判斷包含第一取樣點X2與第二取樣點X1之間存在一第一邊界點PB1。同理,第三取樣點X3與第四取樣點X4的座標分別為(x[k],z[k]),(x[k+1],z[k+1]),其中k=1,2,...,n,當掃描同一個區段的取樣點愈多時n愈大,則取樣愈精密,邊界點的位置也愈精準。第三取樣點X3與第四取樣點X4所構成的直線之斜率m2=(z[k+1]-z[k])/(x[k+1]-x[k])的絕對值大於或等於該門檻值時,處理單元24亦可判斷包含第四取樣點X4與第三取樣點X3之間存在一第二邊界點PB2,而第一邊界點PB1與第二邊界點PB2的座標便可確定。 Please refer to the sixth figure, which is a schematic diagram of detecting the boundary points of the sample. The scanning device that detects the boundary points of the sample also uses the AFM system 20 in the third figure. In the sixth figure, when a first scan trajectory 31 sweeps over the first sample 25, a z-axis direction scan trajectory 32 is formed in the z-axis direction, and the detector 202 senses the same on the scan platform 21. When the first sampling point X1 outside the first region 26 of the present 25 and the z-axis coordinate of the second sampling point X2 in the first region 26 of the first sample 25 on the scanning platform 21 are changed, the processing unit 24 Determining that the detector 202 has scanned the first sample 25 The boundary area is ready to scan the first area 26. For example, in the sixth figure, the coordinates of the first sampling point X1 in the x-axis and z-axis directions are (x[1], z[1]), and the coordinates of the second sampling point X2 in the x-axis and z-axis directions. For (x[2], z[2]), the slope of the line formed by the two points of the second sampling point X2 and the first sampling point X1 is m1=(z[2]-z[1])/(x[2 ]-x[1]), when the slope m1 is greater than or equal to a threshold, the processing unit 24 determines that there is a first boundary point PB1 between the first sampling point X2 and the second sampling point X1. Similarly, the coordinates of the third sampling point X3 and the fourth sampling point X4 are (x[k], z[k]), (x[k+1], z[k+1]), respectively, where k=1 , 2,...,n, the more the sampling points of the same segment are scanned, the larger the n is, the more precise the sampling is, and the more precise the position of the boundary points. The slope of the straight line formed by the third sampling point X3 and the fourth sampling point X4 m2=(z[k+1]-z[k])/(x[k+1]-x[k]) has an absolute value greater than Or equal to the threshold value, the processing unit 24 may also determine that there is a second boundary point PB2 between the fourth sampling point X4 and the third sampling point X3, and the coordinates of the first boundary point PB1 and the second boundary point PB2 Can be determined.

在找到第一邊界點PB1與第二邊界點PB2的座標後,兩邊界點的第一中心點PBC1之座標就可以得知,兩邊界點PB1,PB2的距離DB1亦可得知,距離DB1的一半就是振幅,因此也可以得知第一樣本25實際上應該使用的掃描振幅為何,為了要預測下一個掃描軌跡的中心路徑與下一個週期的掃描軌跡的振幅,至少還須另一條實際的掃描線來偵測另外兩個邊界點。 After finding the coordinates of the first boundary point PB1 and the second boundary point PB2, the coordinates of the first center point PBC1 of the two boundary points can be known, and the distance DB1 of the two boundary points PB1, PB2 can also be known, and the distance DB1 is Half is the amplitude, so you can also know the scan amplitude that the first sample 25 should actually use. In order to predict the amplitude of the scan path of the next scan track and the next cycle, at least another actual Scan lines to detect the other two boundary points.

請參閱第七圖,其為本發明第二較佳實施例決定邊界點的掃描方法的示意圖。該方法包含下列步驟,在步驟S201中,決定一第一掃描軌跡31,該第一掃描軌跡31包含一第一取樣點X1以及一第二取樣點X2。在步驟S202中,擷取該第一取樣點X1的一第一x軸座標x[1]與一第一z軸座標z[1]、以及該第二取樣點X2的一第二x軸座標x[2]與一第二z軸座標z[2]。在 步驟S203中,將該第二z軸座標z[2]減去該第一z軸座標z[1]而得到一第一z軸變化量△z、將該第二x軸座標x[2]減去該第一x軸座標x[1]而得到一第一x軸變化量△x、並將該第一z軸變化量△z除以該第一x軸變化量△x而得到一第一斜率m1。在步驟S204中,當該第一斜率m1的絕對值大於或等於一門檻值時,判定包含該第一取樣點X1與該第二取樣點X2之間存在該第一掃描軌跡31上的一第一邊界點PB1。 Please refer to a seventh figure, which is a schematic diagram of a method for determining a boundary point according to a second preferred embodiment of the present invention. The method includes the following steps. In step S201, a first scan track 31 is determined. The first scan track 31 includes a first sample point X1 and a second sample point X2. In step S202, a first x-axis coordinate x[1] of the first sampling point X1 and a first z-axis coordinate z[1], and a second x-axis coordinate of the second sampling point X2 are extracted. x[2] and a second z-axis coordinate z[2]. in In step S203, the first z-axis coordinate z[1] is subtracted from the second z-axis coordinate z[2] to obtain a first z-axis variation Δz, and the second x-axis coordinate x[2] is obtained. Subtracting the first x-axis coordinate x[1] to obtain a first x-axis variation Δx, and dividing the first z-axis variation Δz by the first x-axis variation Δx to obtain a first A slope m1. In step S204, when the absolute value of the first slope m1 is greater than or equal to a threshold, it is determined that there is a first trace on the first scan trace 31 between the first sample point X1 and the second sample point X2. A boundary point PB1.

請參閱第八圖,其為本發明第三較佳實施例預測掃描路徑與掃描振幅的示意圖。在第八圖中,第一掃描軌跡31從第一掃描起始點P1Y1開始掃描,其通過第一樣本25的邊界點PB1,PB2,第一弦波軌跡Sin1包含第一掃描軌跡31、第二掃描軌跡33,以及第三掃描軌跡34。當該第二掃描軌跡33掃描通過第一樣本25時,探測器202可偵測到一第三邊界點PB3與一第四邊界點PB4的座標。處理器24會根據該第三邊界點PB3的座標與該第四邊界點PB4的座標來計算一第二中心點PBC2的座標、依據該第三邊界點PB3的座標與該第四邊界點PB4的座標來計算一第二中點PBC2的座標、依據該第一中點PBC1的座標和該第二中點PBC2的座標來預測掃描軌跡35,36,37。 Please refer to the eighth figure, which is a schematic diagram of predicting a scan path and a scan amplitude according to a third preferred embodiment of the present invention. In the eighth figure, the first scan track 31 is scanned from the first scan start point P1Y1, which passes through the boundary points PB1, PB2 of the first sample 25, and the first sine wave track Sin1 includes the first scan track 31, Two scan tracks 33, and a third scan track 34. When the second scan track 33 scans through the first sample 25, the detector 202 can detect the coordinates of a third boundary point PB3 and a fourth boundary point PB4. The processor 24 calculates a coordinate of the second center point PBC2 according to the coordinates of the third boundary point PB3 and the coordinates of the fourth boundary point PB4, the coordinates according to the third boundary point PB3, and the fourth boundary point PB4. The coordinates are used to calculate the coordinates of a second midpoint PBC2, and the scan trajectories 35, 36, 37 are predicted based on the coordinates of the first midpoint PBC1 and the coordinates of the second midpoint PBC2.

第三較佳實施例中所使用的掃描一樣本的裝置與第一較佳實施例的AFM系統相同,其包含探測器202、一平台控制系統23、以及處理單元24。例如平台控制系統23為一控制器。在第八圖中,第一掃描軌跡31與第二掃描軌跡33所形成的掃描軌跡為第一弦波軌跡Sin1的半波軌跡,其所掃描通過第一樣本25的區域為一第一區域Reg1,虛線的掃描軌跡35,36通過第一樣本25所形成的區域為一第二區域Reg2,依此類推而可將該第一樣本25分成N個區域。該控制器控制該探測器202以N個弦波軌跡分別掃描該N個 區域,並獲得分別對應該N個區域中一第一區域Reg1以後之N-1個區域參數。該處理單元24電連接於該控制器,並分別根據該N-1個區域參數而決定N-1個弦波軌跡以分別掃描該樣本的含一第二區域Reg2以後之該N-1個區域。 The scanning device used in the third preferred embodiment is identical to the AFM system of the first preferred embodiment, and includes a detector 202, a platform control system 23, and a processing unit 24. For example, platform control system 23 is a controller. In the eighth figure, the scan track formed by the first scan track 31 and the second scan track 33 is a half-wave track of the first sine wave track Sin1, and the area scanned by the first sample 25 is a first area. Reg1, the area formed by the dashed scan track 35, 36 through the first sample 25 is a second area Reg2, and so on, the first sample 25 can be divided into N regions. The controller controls the detector 202 to scan the N sine trajectories respectively The area is obtained, and N-1 area parameters corresponding to a first area Reg1 of the N areas are respectively obtained. The processing unit 24 is electrically connected to the controller, and respectively determines N-1 sine wave trajectories according to the N-1 regional parameters to respectively scan the N-1 regions of the sample including a second region Reg2 .

在第八圖中,第一中心點PBC1的座標以及第二中心點PBC1的座標可由第二較佳實施例的方法來求得,第一中心點PBC1的座標與第二中心點PBC2的座標是實際掃描後藉由偵測到的邊界點PB1,PB2,PB3,PB4座標來計算出來的,這些座標皆可稱為第一區域參數。在一較佳實施例中,第一中心點PBC1的x軸座標以及第二中心點PBC2的x軸座標分別為xc1[1]與xc2[1],其可預測一第二弦波軌跡Sin2的結束點PT2之x座標Pxc[2]=xc2[1]+ρ1×(xc2[1]-xc1[1]),其中參數ρ1與AFM系統20的規格以及使用者需求有關。第一弦波軌跡Sin1的結束點PT1與該第一掃描起始點P1Y1所連成的直線之路徑為第一弦波軌跡Sin1的一第一中心路徑Pth1,其中該第一弦波軌跡Sin1具有涵蓋第一樣本25的N個區域中最大區域的最小振福,其係為一第一振幅Amp1,也可以說是該第一振幅Amp1是掃描該樣本25的所有振幅中最大的,其中N為大於1的自然數。第二弦波軌跡Sin2的結束點PT2與該第一弦波軌跡Sin1結束點PT1所連成的直線之路徑為第二弦波軌跡Sin2的一第二中心路徑Pth2,其中該第二弦波軌跡Sin2具有涵蓋第二區域Reg2的最小振福,其係為一第二振幅Amp2。 In the eighth figure, the coordinates of the first center point PBC1 and the coordinates of the second center point PBC1 can be obtained by the method of the second preferred embodiment, and the coordinates of the coordinates of the first center point PBC1 and the second center point PBC2 are After the actual scan, the coordinates of the detected boundary points PB1, PB2, PB3, and PB4 are calculated, and these coordinates can be referred to as the first region parameters. In a preferred embodiment, the x-axis coordinate of the first center point PBC1 and the x-axis coordinate of the second center point PBC2 are xc1[1] and xc2[1], respectively, which predict a second sine wave trajectory Sin2 The x coordinate Pxc[2]=xc2[1]+ρ1×(xc2[1]−xc1[1]) of the end point PT2, wherein the parameter ρ1 is related to the specifications of the AFM system 20 and the user requirements. The path of the straight line connecting the end point PT1 of the first sine wave track Sin1 and the first scan start point P1Y1 is a first central path Pth1 of the first sine wave track Sin1, wherein the first sine wave track Sin1 has The minimum amplitude of the largest region among the N regions of the first sample 25 is covered, which is a first amplitude Amp1, which can also be said that the first amplitude Amp1 is the largest of all amplitudes of the scanned sample 25, where N Is a natural number greater than 1. The path of the straight line connecting the end point PT2 of the second sine wave track Sin2 and the end point PT1 of the first sine wave track Sin1 is a second center path Pth2 of the second sine wave track Sin2, wherein the second chord track Sin2 has a minimum jitter covering the second region Reg2, which is a second amplitude Amp2.

承上所述,第二弦波軌跡Sin2的結束點PT2之座標Pxc[2]可在獲得第一區域參數後估算得到,也就是說第二弦波軌跡Sin2的第二中心路徑Pth2可以被預測。同樣地,第二振幅Amp2的預測亦可由第一區域參數來 估算獲得,例如,根據實際掃描所偵測到的邊界點PB1,PB2來計算第一掃描軌跡31在第一區域Reg1的一第一截距線段長度,根據實際掃描所偵測到的邊界點PB3,PB4來計算第二掃描軌跡33在第一區域Reg1的一第二截距線段長度,然後將該第二截距線段長度減去該第一截距線段長度來求得其一第一截距線段長度變化量。在第八圖中,實際的弦波之中心路徑應該是第一中心點PBC1與第二中心點PBC2所連成的直線路徑稱為第三中心路徑Pth3來行進,而不是以第一中心路徑Pth1來行進,也就是說應該以第一中心點PBC1為弦波掃描的起始點,以該第一截距線段長度的一半做為振幅來開始掃描;或是以第二中心點PBC2為弦波掃描的起始點,以該第二截距線段長度的一半做為振幅來開始掃描,因此第一中心路徑Pth1必須有所修正成為第二中心路徑Pth2。既然第一中心路徑Pth1與應行進的第三中心路徑Pth3有所偏移,在第一弦波軌跡Sin1掃描至結束點PT1後,預定的第二弦波軌跡Sin2的振幅必須加上偏移值OFS1來修正。在一較佳實施例中,偏移值OFS1為第二中心點PBC2至第一中心路徑Pth1的垂直距離,經估算後可預測第二振幅Amp2=(1/2)×{該第二截距線段長度+ρ2×該第一截距線段長度變化量+偏移值OFS1的絕對值}+δ1,其中參數ρ2,δ1與與AFM系統20的規格以及使用者需求有關。 As described above, the coordinate Pxc[2] of the end point PT2 of the second sine wave trajectory Sin2 can be estimated after obtaining the first region parameter, that is, the second central path Pth2 of the second sine wave trajectory Sin2 can be predicted. . Similarly, the prediction of the second amplitude Amp2 can also be derived from the first region parameter. The estimation obtains, for example, the length of a first intercept line segment of the first scan track 31 in the first region Reg1 according to the boundary points PB1, PB2 detected by the actual scan, and the boundary point PB3 detected according to the actual scan. , PB4 calculates a second intercept line segment length of the second scan track 33 in the first region Reg1, and then subtracts the length of the second intercept line segment from the first intercept line segment length to obtain a first intercept. The amount of change in line length. In the eighth figure, the center path of the actual sine wave should be a straight path formed by the first center point PBC1 and the second center point PBC2, which is called the third center path Pth3, instead of the first center path Pth1. To travel, that is, the first center point PBC1 should be the starting point of the sine wave scanning, and the half of the length of the first intercept line segment should be used as the amplitude to start scanning; or the second center point PBC2 is the sine wave. The starting point of the scanning starts scanning with half of the length of the second intercept line segment as the amplitude, so the first central path Pth1 must be corrected to become the second central path Pth2. Since the first central path Pth1 is offset from the third central path Pth3 to be traveled, after the first sine wave trajectory Sin1 is scanned to the end point PT1, the amplitude of the predetermined second sine wave trajectory Sin2 must be added with an offset value. OFS1 to fix. In a preferred embodiment, the offset value OFS1 is a vertical distance from the second center point PBC2 to the first center path Pth1, and the second amplitude Amp2=(1/2)×{the second intercept can be predicted after estimation. The line segment length + ρ2 × the first intercept line segment length variation + the absolute value of the offset value OFS1} + δ1, wherein the parameters ρ2, δ1 are related to the specifications of the AFM system 20 and the user requirements.

在第三較佳實施例中,預測掃描中心路徑與掃描振幅整理如下。當第一掃描起始點P1Y1的x座標Pxc[1]=x0時,AFM系統20可預測第二弦波軌跡Sin2的結束點PT2之x座標Pxc[2]=xc2[1]+ρ1×(xc2[1]-xc1[1]),並可推廣預測第n弦波軌跡Sinn的結束點PTn之x座標Pxc[n]=xc2[n-1]+ρ1×(xc2[n-1]-xc1[n-1]),其中n為在2至N之間且包含2與N的自然 數。當第一弦波軌跡Sin1在x軸方向上的第一振幅Amp1為第一矩形寬度260W的一半時,AFM系統20可預測第二弦波軌跡Sin2在x軸方向上的第二振幅Amp2=(1/2)×{該第二截距線段長度+ρ2×該第一截距線段長度變化量+偏移值OFS1的絕對值}+δ1,並可推廣預測第n弦波軌跡Sinn在x軸方向上的第n振幅Ampn=(1/2)×{第n-1弦波軌跡的第(n-1)2截距線段長度+ρ2×第n-1截距線段長度變化量+偏移值OFSN的絕對值}+δn,其中該第n-1截距線段長度變化量=第n-1弦波軌跡的第(n-1)2截距線段長度-第n-1弦波軌跡的第(n-1)1截距線段長度。因此以x軸方向上的弦波來掃描第一樣本25之x軸方向的第n弦波軌跡方程式如下:xN(t)=Pxc[n-1]+Vx[n](t-tn-1)+Ampn*sin(2πf(t-tn-1))y軸方向的第n弦波軌跡方程式如下:yn(t)=y0+(P/T)*t其中y0代表第一掃描起始點P1Y1的y妯座標,T代表第n弦波軌跡的週期,f代表第n弦波軌跡的頻率,P代表第n弦波軌跡的結束點的x軸座標與第n-1弦波軌跡的結束點的x軸座標之偏移量,Vx[n]=(Pxc[n]-Pxc[n-1])/T,其中Vx[n]代表第N弦波的中心路徑在x軸方向上的偏移速率。在第三較佳實施例中,n個弦波軌跡的週期T以及頻率f都是固定的,若是有提高精密度的需求,頻率f亦可同時調變來掃描第一樣本25。 In the third preferred embodiment, the predicted scan center path and scan amplitude are organized as follows. When the x coordinate Pxc[1]=x0 of the first scan start point P1Y1, the AFM system 20 can predict the x coordinate Pxc[2]=xc2[1]+ρ1× of the end point PT2 of the second sine wave track Sin2. Xc2[1]-xc1[1]), and can generalize the x coordinate Pxc[n]=xc2[n-1]+ρ1×(xc2[n-1]- of the end point PTn of the nth sine wave track Sinn. Xc1[n-1]), where n is a natural number between 2 and N and containing 2 and N. When the first amplitude Amp1 of the first sine wave trajectory Sin1 in the x-axis direction is half of the first rectangular width 260W, the AFM system 20 can predict the second amplitude Amp2= of the second sine wave trajectory Sin2 in the x-axis direction=( 1/2)×{the length of the second intercept line segment +ρ2×the length of the first intercept line segment length +the absolute value of the offset value OFS1}+δ1, and can generalize the prediction of the nth sine wave trajectory Sinn on the x-axis n-amplitude Ampn direction = (1/2) × {n-1 first sinusoidal track section (n-1) 2 + ρ2 × intercept length of the line of the intercept length of the line n-1 + offset variation the absolute value OFSN} + δn, wherein the first n-1 = the intercept of the line length variation (n-1) 2 intercept length of the line segment sinusoidal track n-1 - a first sinusoidal track n-1 The length of the (n-1) 1 intercept line segment. Therefore, the n-th trajectory equation of the x-axis direction of the first sample 25 is scanned by the sine wave in the x-axis direction as follows: x N (t)=Pxc[n-1]+Vx[n](tt n- 1 ) +Ampn*sin(2πf(tt n-1 )) The n-th trajectory equation of the y-axis direction is as follows: y n (t)=y0+(P/T)*t where y0 represents the first scan start point y妯 coordinate of P1Y1, T represents the period of the nth sine wave trajectory, f represents the frequency of the nth sine wave trajectory, P represents the x-axis coordinate of the end point of the n-th sine wave trajectory and the end of the n-1th sine wave trajectory The offset of the x-axis coordinate of the point, Vx[n]=(Pxc[n]-Pxc[n-1])/T, where Vx[n] represents the central path of the N-th wave in the x-axis direction Offset rate. In the third preferred embodiment, the period T and the frequency f of the n sinusoidal trajectories are both fixed. If there is a need to improve the precision, the frequency f can be modulated at the same time to scan the first sample 25.

在第八圖中,弦波是在x軸方向上左右來回地掃描,弦波的中心路徑的行進則是在y軸方向上逐步修正,弦波的振幅則是在x軸方向上逐步修正以符合實際第一樣本25在x軸方向上的形狀。當然另一方面,弦波也可在y軸方向上上下來回地掃描,弦波的中心路徑的行進則是在x軸方向 上逐步修正,弦波的振幅則是在y軸方向上逐步修正以符合實際第一樣本25在y軸方向上的形狀。 In the eighth figure, the sine wave is scanned back and forth in the x-axis direction, and the center path of the sine wave is gradually corrected in the y-axis direction, and the amplitude of the sine wave is gradually corrected in the x-axis direction. The shape of the actual first sample 25 in the x-axis direction is met. On the other hand, on the other hand, the sine wave can also be scanned up and down in the y-axis direction, and the center path of the sine wave is in the x-axis direction. The stepwise correction is performed, and the amplitude of the sine wave is gradually corrected in the y-axis direction to conform to the shape of the actual first sample 25 in the y-axis direction.

請參閱第九圖,其為本發明第三較佳實施例掃描一樣本的方法的示意圖,該方法包含下列步驟。在步驟S301中,以一第一弦波軌跡Sin1掃描該樣本25之一第一區域Reg1。在步驟S302中,自該第一弦波軌跡Sin1掃描該第一區域Reg1之一實際路徑31,33與該樣本25之關係,而獲得一第一區域參數。在步驟S303中,以該第一區域參數預測掃描該樣本25之一第二區域Reg2之一第二弦波軌跡Sin2。在步驟S304中,以該第二弦波軌跡Sin2掃描該第二區域Reg2。 Please refer to the ninth figure, which is a schematic diagram of a method for scanning the same according to a third preferred embodiment of the present invention, the method comprising the following steps. In step S301, one of the first regions Reg1 of the sample 25 is scanned with a first sine wave trajectory Sin1. In step S302, a relationship between the actual path 31, 33 of the first region Reg1 and the sample 25 is scanned from the first sine wave track Sin1 to obtain a first region parameter. In step S303, a second sine wave trajectory Sin2 of one of the second regions Reg2 of the sample 25 is scanned with the first region parameter prediction. In step S304, the second region Reg2 is scanned with the second sine wave trajectory Sin2.

實施例 Example

1.一種用於一光學輔助原子力顯微鏡系統的掃描方法,該光學輔助原子力顯微鏡包含一掃描平台以及一探測器,該方法包含下列步驟:於該掃描平台上提供一第一樣本與一第二樣本。決定該第一樣本的一第一掃描區域以及該第二樣本的一第二掃描區域,該第一掃描區域具有一第一掃描起始點以及一第一掃描結束點,該第二掃描區域具有一第二掃描起始點以及一第二掃描結束點。將該探測器移動至該第一掃描起始點、或移動該掃描平台而使該第一掃描起始點到達該探測器的垂直投影位置,以對該第一樣本進行掃描,其中該第一掃描起始點至該探測器的距離小於或等於該第二掃描起始點至該探測器的距離,該探測器與該第一掃描起始點相距一第一距離,該第一距離為該探測器與該第一掃描區域之間的最短距離。在掃描完該第一樣本後,將該探測器自該第一掃描結束點移動至該第二掃描起始點、或移動該掃描平台而使該第二掃描起始點到達該探測器的 垂直投影位置,以對該第二樣本進行掃描,其中該第一掃描結束點與該第二掃描起始點相距一第二距離,該第二距離為該第一掃描結束點與該第二掃描區域之間的最短距離。 CLAIMS 1. A scanning method for an optically assisted atomic force microscope system, the optical assisted atomic force microscope comprising a scanning platform and a detector, the method comprising the steps of: providing a first sample and a second on the scanning platform sample. Determining a first scan area of the first sample and a second scan area of the second sample, the first scan area having a first scan start point and a first scan end point, the second scan area There is a second scan start point and a second scan end point. Moving the detector to the first scan start point, or moving the scan platform to cause the first scan start point to reach a vertical projection position of the detector to scan the first sample, wherein the first sample The distance from the start of the scan to the detector is less than or equal to the distance from the second scan start point to the detector, and the detector is at a first distance from the first scan start point, and the first distance is The shortest distance between the detector and the first scanning area. After scanning the first sample, moving the detector from the first scanning end point to the second scanning starting point, or moving the scanning platform to cause the second scanning starting point to reach the detector Vertically projecting position to scan the second sample, wherein the first scanning end point is separated from the second scanning starting point by a second distance, the second distance is the first scanning end point and the second scanning The shortest distance between the areas.

2.如實施例1所述的方法,更包含下列步驟:決定該第一樣本在該掃描平台上的一第一中心位置以及決定該第二樣本在該掃描平台上的一第二中心位置,該第一中心位置具有一第一x座標和一第一y座標,該第二中心位置具有一第二x座標和一第二y座標。將該第一掃描區域設定為一第一矩形掃描區域,其中該第一矩形掃描區域為涵蓋該第一樣本的最小區域,並具有平行於x軸的一第一邊緣和一第二邊緣、以及平行於y軸的一第三邊緣和一第四邊緣,該第一邊緣或該第二邊緣的長度為該第一矩形掃描區域的一第一矩形長度,該第三邊緣或該第四邊緣的長度為該第一矩形掃描區域的一第一矩形寬度,該第一邊緣、該第二邊緣、該第三邊緣、以及該第四邊緣分別具有一第一中點、一第二中點、一第三中點、以及一第四中點,該第一中點、該第二中點、該第三中點、以及該第四中點的x座標分別為該第一x座標減去該第一矩形寬度的一半、該第一x座標加上該第一矩形寬度的一半、該第一x座標、以及該第一x座標,該第一中點、該第二中點、該第三中點、以及該第四中點的y座標分別為該第一y座標、該第一y座標、該第一y座標減去該第一矩形長度的一半、以及該第一y座標加上該第一矩形長度的一半,該第一掃描起始點為該第一中點、該第二中點、該第三中點、以及該第四中點的其中之一,當該第一掃描起始點為該第一中點時,該第一掃描結束點預定為該第二中點,當該第一掃描起始點為該第二中點時,該第一掃描結束點預定為該第一中點,當該第一掃描起始點為 該第三中點時,該第一掃描結束點預定為該第四中點,且當該第一掃描起始點為該第四中點時,該第一掃描結束點預定為該第三中點。將該第二掃描區域設定為一第二矩形掃描區域,其中該第二矩形掃描區域為涵蓋該第二樣本的最小區域,並具有平行於x軸的一第五邊緣和一第六邊緣、以及平行於y軸的一第七邊緣和一第八邊緣,該第五邊緣或該第六邊緣的長度為該第二矩形掃描區域的一第二矩形長度,該第七邊緣或該第八邊緣的長度為該第二矩形掃描區域的一第二矩形寬度,該第五邊緣、該第六邊緣、該第七邊緣、以及該第八邊緣分別具有一第五中點、一第六中點、一第七中點、以及一第八中點,該第五中點、該第六中點、該第七中點、以及該第八中點的x座標分別為該第二x座標減去該第二矩形寬度的一半、該第二x座標加上該第二矩形寬度的一半、該第二x座標、以及該第二x座標,該第五中點、該第六中點、該第七中點、以及該第八中點的y座標分別為該第二y座標、該第二y座標、該第二y座標減去該第二矩形長度的一半、以及該第二y座標加上該第二矩形長度的一半,該第二掃描起始點為該第五中點、該第六中點、該第七中點、以及該第八中點的其中之一,當該第二掃描起始點為該第五中點時,該第二掃描結束點預定為該第六中點,當該第二掃描起始點為該第六中點時,該第二掃描結束點預定為該第五中點,當該第二掃描起始點為該第七中點時,該第二掃描結束點預定為該第八中點,且當該第二起始點為該第八中點時,該第二結束點預定為該第七中點。 2. The method of embodiment 1, further comprising the steps of: determining a first center position of the first sample on the scanning platform and determining a second center position of the second sample on the scanning platform The first center position has a first x coordinate and a first y coordinate, and the second center position has a second x coordinate and a second y coordinate. Setting the first scan area as a first rectangular scan area, wherein the first rectangular scan area is a minimum area covering the first sample, and has a first edge and a second edge parallel to the x-axis, And a third edge and a fourth edge parallel to the y-axis, the length of the first edge or the second edge being a first rectangular length of the first rectangular scanning area, the third edge or the fourth edge The length of the first rectangular scan area is a first rectangular width, and the first edge, the second edge, the third edge, and the fourth edge respectively have a first midpoint and a second midpoint. a third midpoint, and a fourth midpoint, wherein the first midpoint, the second midpoint, the third midpoint, and the x coordinate of the fourth midpoint are respectively the first x coordinate minus the One half of the width of the first rectangle, the first x coordinate plus half of the width of the first rectangle, the first x coordinate, and the first x coordinate, the first midpoint, the second midpoint, the third The midpoint and the y coordinate of the fourth midpoint are respectively the first y coordinate, the first y coordinate, The first y coordinate minus half of the length of the first rectangle, and the first y coordinate plus half of the length of the first rectangle, the first scan starting point being the first midpoint and the second midpoint One of the third midpoint and the fourth midpoint, when the first scan start point is the first midpoint, the first scan end point is predetermined as the second midpoint, when When the first scan start point is the second midpoint, the first scan end point is predetermined as the first midpoint, and when the first scan start point is At the third midpoint, the first scan end point is predetermined as the fourth midpoint, and when the first scan start point is the fourth midpoint, the first scan end point is predetermined to be the third middle point point. Setting the second scan area as a second rectangular scan area, wherein the second rectangular scan area is a minimum area covering the second sample, and has a fifth edge and a sixth edge parallel to the x-axis, and a seventh edge parallel to the y-axis and an eighth edge, the length of the fifth edge or the sixth edge being a second rectangular length of the second rectangular scanning area, the seventh edge or the eighth edge The length is a second rectangular width of the second rectangular scanning area, and the fifth edge, the sixth edge, the seventh edge, and the eighth edge respectively have a fifth midpoint, a sixth midpoint, and a a seventh midpoint, and an eighth midpoint, wherein the fifth midpoint, the sixth midpoint, the seventh midpoint, and the xth coordinate of the eighth midpoint are respectively the second x coordinate minus the first One half of the width of the rectangle, the second x coordinate plus half of the width of the second rectangle, the second x coordinate, and the second x coordinate, the fifth midpoint, the sixth midpoint, the seventh middle The point and the y coordinate of the eighth midpoint are the second y coordinate and the second y coordinate, respectively. The second y coordinate minus half of the length of the second rectangle, and the second y coordinate plus half of the length of the second rectangle, the second scan starting point being the fifth midpoint, the sixth midpoint One of the seventh midpoint and the eighth midpoint, when the second scan start point is the fifth midpoint, the second scan end point is predetermined as the sixth midpoint, when When the second scan start point is the sixth midpoint, the second scan end point is predetermined as the fifth midpoint, and when the second scan start point is the seventh midpoint, the second scan end point The eighth midpoint is predetermined, and when the second starting point is the eighth midpoint, the second ending point is predetermined as the seventh midpoint.

3.一種掃描裝置,包含一掃描平台、一光學輔助顯微鏡、以及一探測器。該掃描平台承載一第一樣本以及一第二樣本。該光學輔助顯微鏡蒐集一探測點、該第一樣本的一第一區域、以及該第二樣本的一第 二區域的資訊,其中該第一區域具有一第一掃描起始點和一第一掃描結束點,該第二區域具有一第二掃描起始點和一第二掃描結束點。該探測器自該探測點移動至該第一掃描起始點或移動該掃描平台而使該第一掃描起始點到達該探測點以對該第一樣本進行掃描,其中該探測點至該第一掃描起始點的一第一距離為該探測點至該第一區域之間的最短距離,在掃描完該第一樣本後,該探測器自該第一掃描結束點移動至該第二掃描起始點或移動該掃描平台而使該第二掃描起始點到達該探測點以對該第二樣本進行掃描,其中該第一掃描結束點至該第二掃描起始點的一第二距離為該第一掃描結束點至該第二區域之間的最短距離。 3. A scanning device comprising a scanning platform, an optical auxiliary microscope, and a detector. The scanning platform carries a first sample and a second sample. The optical auxiliary microscope collects a detection point, a first area of the first sample, and a first part of the second sample The information of the two areas, wherein the first area has a first scan start point and a first scan end point, and the second area has a second scan start point and a second scan end point. Moving the probe from the detection point to the first scan start point or moving the scan platform to cause the first scan start point to reach the probe point to scan the first sample, wherein the probe point is to the a first distance from the first scanning start point is a shortest distance between the detection point and the first area, and after scanning the first sample, the detector moves from the first scanning end point to the first Scanning the scanning platform or moving the scanning platform to cause the second scanning starting point to reach the detecting point to scan the second sample, wherein the first scanning end point to the second scanning starting point The two distances are the shortest distance between the first scanning end point and the second area.

4.如申實施例3所述的掃描裝置,其中該掃描裝置用以規劃該第一掃描結束點至該第二掃描起始點之間的路徑。該光學輔助顯微鏡蒐集該第一樣本在該掃描平台上的一第一中心位置以及決定該第二樣本在該掃描平台上的一第二中心位置,該第一中心位置具有一第一x座標和一第一y座標,該第二中心位置具有一第二x座標和一第二y座標。該掃描裝置更包含一處理單元,該處理單元將該第一掃描區域設定為一第一矩形掃描區域,其中該第一矩形掃描區域為涵蓋該第一樣本的最小區域,並具有平行於y軸的一第一邊緣和一第二邊緣、以及平行於x軸的一第三邊緣和一第四邊緣,該第一邊緣或該第二邊緣的長度為該第一矩形掃描區域的一第一矩形長度,該第三邊緣或該第四邊緣的長度為該第一矩形掃描區域的一第一矩形寬度,該第一邊緣、該第二邊緣、該第三邊緣、以及該第四邊緣分別具有一第一中點、一第二中點、一第三中點、以及一第四中點,該第一中點、該第二中點、該第三中點、以及該第四中點的x座標分別為該第一x座 標減去該第一矩形寬度的一半、該第一x座標加上該第一矩形寬度的一半、該第一x座標、以及該第一x座標,該第一中點、該第二中點、該第三中點、以及該第四中點的y座標分別為該第一y座標、該第一y座標、該第一y座標減去該第一矩形長度的一半、以及該第一y座標加上該第一矩形長度的一半,該第一掃描起始點為該第一中點、該第二中點、該第三中點、以及該第四中點的其中之一,當該第一掃描起始點為該第一中點時,該第一掃描結束點預定為該第二中點,當該第一掃描起始點為該第二中點時,該第一掃描結束點預定為該第一中點,當該第一掃描起始點為該第三中點時,該第一掃描結束點預定為該第四中點,且當該第一掃描起始點為該第四中點時,該第一掃描結束點預定為該第三中點。該處理單元將該第二掃描區域設定為一第二矩形掃描區域,其中該第二矩形掃描區域為涵蓋該第二樣本的最小區域,並具有平行於y軸的一第五邊緣和一第六邊緣、以及平行於x軸的一第七邊緣和一第八邊緣,該第五邊緣或該第六邊緣的長度為該第二矩形掃描區域的一第二矩形長度,該第七邊緣或該第八邊緣的長度為該第二矩形掃描區域的一第二矩形寬度,該第五邊緣、該第六邊緣、該第七邊緣、以及該第八邊緣分別具有一第五中點、一第六中點、一第七中點、以及一第八中點,該第五中點、該第六中點、該第七中點、以及該第八中點的x座標分別為該第二x座標減去該第二矩形寬度的一半、該第二x座標加上該第二矩形寬度的一半、該第二x座標、以及該第二x座標,該第五中點、該第六中點、該第七中點、以及該第八中點的y座標分別為該第二y座標、該第二y座標、該第二y座標減去該第二矩形長度的一半、以及該第二y座標加上該第二矩形長度的一半,該第二掃描起始點為該第五中點、該第六中 點、該第七中點、以及該第八中點的其中之一,當該第二掃描起始點為該第五中點時,該第二掃描結束點預定為該第六中點,當該第二掃描起始點為該第六中點時,該第二掃描結束點預定為該第五中點,當該第二掃描起始點為該第七中點時,該第二掃描結束點預定為該第八中點,當該第二起始點為該第八中點時,該第二結束點預定為該第七中點。 4. The scanning device of embodiment 3, wherein the scanning device is configured to plan a path between the first scanning end point and the second scanning starting point. The optical auxiliary microscope collects a first central position of the first sample on the scanning platform and determines a second central position of the second sample on the scanning platform, the first central position having a first x coordinate And a first y coordinate having a second x coordinate and a second y coordinate. The scanning device further includes a processing unit, the processing unit sets the first scanning area as a first rectangular scanning area, wherein the first rectangular scanning area is a minimum area covering the first sample, and has a parallel to y a first edge and a second edge of the shaft, and a third edge and a fourth edge parallel to the x-axis, the length of the first edge or the second edge being a first of the first rectangular scanning area a length of the rectangle, the length of the third edge or the fourth edge is a first rectangular width of the first rectangular scanning area, and the first edge, the second edge, the third edge, and the fourth edge respectively have a first midpoint, a second midpoint, a third midpoint, and a fourth midpoint, the first midpoint, the second midpoint, the third midpoint, and the fourth midpoint The x coordinates are the first x seat Subtracting half of the width of the first rectangle, the first x coordinate plus half of the width of the first rectangle, the first x coordinate, and the first x coordinate, the first midpoint, the second midpoint The third midpoint, and the y coordinate of the fourth midpoint are respectively the first y coordinate, the first y coordinate, the first y coordinate minus half of the length of the first rectangle, and the first y The coordinate is added to one half of the length of the first rectangle, and the first scan starting point is one of the first midpoint, the second midpoint, the third midpoint, and the fourth midpoint. When the first scan start point is the first midpoint, the first scan end point is predetermined as the second midpoint, and when the first scan start point is the second midpoint, the first scan end point Predetermined as the first midpoint, when the first scan start point is the third midpoint, the first scan end point is predetermined as the fourth midpoint, and when the first scan start point is the first At the four midpoints, the first scan end point is predetermined to be the third midpoint. The processing unit sets the second scan area as a second rectangular scan area, wherein the second rectangular scan area is a minimum area covering the second sample, and has a fifth edge and a sixth parallel to the y-axis An edge, and a seventh edge and an eighth edge parallel to the x-axis, the length of the fifth edge or the sixth edge being a second rectangular length of the second rectangular scanning area, the seventh edge or the first The length of the eight edges is a second rectangular width of the second rectangular scanning area, and the fifth edge, the sixth edge, the seventh edge, and the eighth edge respectively have a fifth midpoint and a sixth middle a point, a seventh midpoint, and an eighth midpoint, wherein the fifth midpoint, the sixth midpoint, the seventh midpoint, and the x coordinate of the eighth midpoint are respectively the second x coordinate minus Going to half of the width of the second rectangle, the second x coordinate plus half of the width of the second rectangle, the second x coordinate, and the second x coordinate, the fifth midpoint, the sixth midpoint, the The seventh midpoint and the y coordinate of the eighth midpoint are respectively the second y coordinate, and the a second y coordinate, the second y coordinate minus half of the length of the second rectangle, and the second y coordinate plus half of the length of the second rectangle, the second scan starting point being the fifth midpoint, the Sixth a point, the seventh midpoint, and one of the eighth midpoints, when the second scan start point is the fifth midpoint, the second scan end point is predetermined to be the sixth midpoint, when When the second scan start point is the sixth midpoint, the second scan end point is predetermined as the fifth midpoint, and when the second scan start point is the seventh midpoint, the second scan ends. The point is predetermined as the eighth midpoint, and when the second starting point is the eighth midpoint, the second ending point is predetermined as the seventh midpoint.

5.一種決定邊界點之掃描方法,該方法包含下列步驟:決定一第一掃描軌跡,該第一掃描軌跡包含一第一取樣點以及一第二取樣點。擷取該第一取樣點的一第一x軸座標與一第一z軸座標、以及該第二取樣點的一第二x軸座標與一第二z軸座標。當該第一斜率的絕對值大於或等於一門檻值時,判定包含該第一取樣點與該第二取樣點之間存在該第一掃描軌跡上的一第一邊界點。 5. A scanning method for determining a boundary point, the method comprising the steps of: determining a first scanning trajectory comprising a first sampling point and a second sampling point. A first x-axis coordinate of the first sampling point and a first z-axis coordinate, and a second x-axis coordinate and a second z-axis coordinate of the second sampling point are captured. When the absolute value of the first slope is greater than or equal to a threshold, it is determined that a first boundary point on the first scan track exists between the first sampling point and the second sampling point.

6.如實施例5所述的方法,更包含下列步驟:擷取一第三取樣點的一第三x軸座標與一第三z軸座標,以及一第四取樣點的一第四x軸座標與一第四z軸座標,其中該第一掃描軌跡包含該第三取樣點與該第四取樣點。將該第四z軸座標減去該第三z軸座標而得到一第二z軸變化量、將該第四x軸座標減去該第三x軸座標而得到一第二x軸變化量、並將該第二z軸變化量除以該第二x軸變化量而得到一第二斜率。當該第二斜率的絕對值大於或等於該門檻值時,判定包含該第四取樣點與該第三取樣點之間為該第一掃描軌跡上的一第二邊界點,其中該第一邊界點與該第二邊界點為一樣本在該第一掃描軌跡的邊界點。依據該第一邊界點的該第一x軸座標與該第二邊界點的該第四x軸座標來計算一第一中點座標。決定一第二掃描軌跡,以偵測得到一第三邊界點和一第四邊界點的座標。依據該第三邊界點的座標與 該第四邊界點的座標來計算一第二中點座標。依據該第一中點座標和該第二中點座標來預測一第三掃描軌跡。 6. The method of embodiment 5, further comprising the steps of: capturing a third x-axis coordinate of a third sampling point and a third z-axis coordinate, and a fourth x-axis of a fourth sampling point The coordinate and a fourth z-axis coordinate, wherein the first scan track includes the third sampling point and the fourth sampling point. Subtracting the third z-axis coordinate from the fourth z-axis coordinate to obtain a second z-axis variation, subtracting the third x-axis coordinate from the fourth x-axis coordinate to obtain a second x-axis variation, And dividing the second z-axis variation by the second x-axis variation to obtain a second slope. Determining, between the fourth sampling point and the third sampling point, a second boundary point on the first scanning track, where the absolute value of the second slope is greater than or equal to the threshold value, wherein the first boundary The point is the same as the second boundary point at the boundary point of the first scanning track. A first midpoint coordinate is calculated according to the first x-axis coordinate of the first boundary point and the fourth x-axis coordinate of the second boundary point. A second scan trajectory is determined to detect coordinates of a third boundary point and a fourth boundary point. According to the coordinates of the third boundary point The coordinates of the fourth boundary point are used to calculate a second midpoint coordinate. A third scan trajectory is predicted according to the first midpoint coordinate and the second midpoint coordinate.

7.一種掃描一樣本的方法,該方法包含下列步驟:以一第一弦波軌跡掃描該樣本之一第一區域。自該第一弦波軌跡掃描該第一區域之一實際路徑與該樣本之關係,而獲得一第一區域參數。以該第一區域參數預測掃描該樣本之一第二區域之一第二弦波軌跡。以該第二弦波軌跡掃描該第二區域。 7. A method of scanning the same, the method comprising the steps of scanning a first region of the sample with a first chord trace. A first region parameter is obtained by scanning the relationship between the actual path of the first region and the sample from the first sine wave trajectory. A second chord trajectory of one of the second regions of the sample is predicted by the first region parameter prediction. The second region is scanned with the second chord trajectory.

8.如申實施例7所述的方法,其中該第一弦波軌跡具有一第一振幅以及一第一中心路徑。該實際路徑與該樣本之關係包含該實際路徑與該樣本交集所形成的複數邊界點之關係。該方法更包含:依序偵測該第一區域的一第一邊界點、一第二邊界點、一第三邊界點、以及一第四邊界點。依據該第一邊界點的座標與該第二邊界點的座標來計算一第一中心點座標和一第一截距線段長度,並依據該第三邊界點的座標與該第四邊界點的座標來計算一第二中心點座標和一第二截距線段長度。依據該第一中心點座標和該第二中心點座標來估計一第二弦波軌跡的一第二中心路徑,並依據該第一截距長度、該第二截距長度、以及該第二中點座標和該第一中心路徑的垂直距離來估計該第二弦波軌跡的一第二振福,以掃描該樣本的一第二區域,並修正該第一中心路徑至該第二中心路徑。該第一區域參數包含該複數邊界點的座標、該第一中心點座標、該第二中心點座標、該第二中心點座標與該第一中心路徑的垂直距離、該第一截距線段長度、該第二截距線段長度、以及該第一振幅。該第一振幅為涵蓋該樣本的所有區域中最大區域的最小振幅。該第一中心路徑為自該第一弦波軌跡的起始點至 該第一弦波軌跡的結束點的一第一直線路徑,該第二中心路徑為自該第二弦波軌跡的起始點至該第二弦波軌跡的結束點的一第二直線路徑。該第一中心路徑為自該第一弦波軌跡的起始點至該第一弦波軌跡的結束點的一第一直線路徑,該第二中心路徑為自該第二弦波軌跡的起始點至該第二弦波軌跡的結束點的一第二直線路徑。 8. The method of embodiment 7, wherein the first chord trajectory has a first amplitude and a first central path. The relationship of the actual path to the sample includes the relationship of the actual path to the complex boundary points formed by the intersection of the samples. The method further includes: sequentially detecting a first boundary point, a second boundary point, a third boundary point, and a fourth boundary point of the first area. Calculating a first center point coordinate and a first intercept line length according to the coordinates of the first boundary point and the coordinates of the second boundary point, and according to the coordinates of the third boundary point and the coordinates of the fourth boundary point To calculate a second center point coordinate and a second intercept line length. Estimating a second central path of the second chord trajectory according to the first center point coordinate and the second center point coordinate, and according to the first intercept length, the second intercept length, and the second middle A vertical distance of the point coordinate and the first central path is used to estimate a second vibration of the second chord trajectory to scan a second region of the sample and correct the first central path to the second central path. The first region parameter includes a coordinate of the complex boundary point, the first center point coordinate, the second center point coordinate, a vertical distance between the second center point coordinate and the first center path, and a length of the first intercept line segment The length of the second intercept line segment and the first amplitude. The first amplitude is the smallest amplitude that covers the largest region of all regions of the sample. The first central path is from a starting point of the first sine wave trajectory to a first straight path of the end point of the first sine wave trajectory, the second central path being a second straight path from a starting point of the second sine wave trajectory to an ending point of the second sine wave trajectory. The first central path is a first straight path from a starting point of the first sine wave trajectory to an ending point of the first sine wave trajectory, and the second central path is a starting point from the second sine wave trajectory a second straight path to the end point of the second chord trajectory.

9.一種掃描一樣本的裝置,其中該樣本包含N個區域,該裝置包含一探測器、一控制器、以及一處理單元。該控制器控制該探測器以N個弦波軌跡分別掃描該N個區域,並獲得分別對應該N個區域中一第一區域以後之N-1個區域參數。該處理單元電連接於該控制器,並分別根據該N-1個區域參數而決定N-1個弦波軌跡以分別掃描該樣本的含一第二區域以後之該N-1個區域。 9. A device for scanning a plasma, wherein the sample comprises N regions, the device comprising a detector, a controller, and a processing unit. The controller controls the detector to scan the N regions respectively with N chord trajectories, and obtain N-1 region parameters corresponding to a first region of the N regions respectively. The processing unit is electrically connected to the controller, and respectively determines N-1 sine wave trajectories according to the N-1 regional parameters to respectively scan the N-1 regions of the sample after the second region.

10.如實施例9所述的裝置,其中該處理單元係決定該N-1個弦波軌跡的振幅及/或頻率,其中N為大於1的自然數。該N個弦波軌跡中的一第n弦波軌跡係由該N個區域中一第n-1區域參數所預測,其中n為在2至N之間且包含2與N的自然數。該處理單元決定該第n-1區域的複數邊界點,並依據該複數邊界點的座標來預測該N個弦波軌跡中的一第n弦波軌跡,以掃描該樣本的該N個區域中的一第n區域。該第一弦波軌跡具有一第一振幅以及一第一中心路徑,該第二弦波軌跡具有一第二振幅以及一第二中心路徑。該複數邊界點包含一第一邊界點、一第二邊界點、一第三邊界點、以及一第四邊界點,該第一弦波軌跡與該第一邊界點和該第二邊界點相交而形成一第一截距線段,該第二弦波軌跡與該第三邊界點和該第四邊界點相交而形成一第二截距線段。該第一邊界點的座標與該第二邊界點的座標用 以計算一第一中心點座標,該第三邊界點的座標與該第四邊界點的座標用以計算一第二中心點座標。該第一中心點座標和該第二中心點座標用以估計該第二弦波軌跡之該第二中心路徑,該第一截距線段的長度、該第二截距線段的長度、以及該第二中心點座標和該第一中心路徑的垂直距離用以估計該第二弦波軌跡的該第二振幅,以修正該第一中心路徑至該第二中心路徑。該第一振幅為涵蓋該樣本的所有區域中最大區域的最小振幅。該第一中心路徑為自該第一弦波軌跡的起始點至該第一弦波軌跡的結束點的一第一直線路徑,該第二中心路徑為自該第二弦波軌跡的起始點至該第二弦波軌跡的結束點的一第二直線路徑。該第n弦波軌跡的結束點之x座標等於一第n-1之x座標加上一第n-1截距變化量和一第一估計參數的乘積,其中該第n-1截距長度變化量等於第n-1弦波軌跡中的一第(n-1)2截距長度與一第(n-1)1截距長度的變化量。該第n弦波軌跡的一第n振幅等於(1/2)×{第n-1弦波軌跡的第二截距線段長度+ρ2×該第n-1截距線段長度變化量+一偏移值的絕對值}+δn,ρ2與δn分別為一第二估計參數和一第三估計參數。 10. The apparatus of embodiment 9, wherein the processing unit determines an amplitude and/or frequency of the N-1 chord trajectories, wherein N is a natural number greater than one. An n-th chord trajectory of the N chord trajectories is predicted by an n-1th region parameter of the N regions, where n is a natural number between 2 and N and containing 2 and N. The processing unit determines a complex boundary point of the n-1th region, and predicts a nth sine wave trajectory of the N sine wave trajectories according to coordinates of the complex boundary point to scan the N regions of the sample An nth area. The first sine wave trajectory has a first amplitude and a first central path, the second sine wave trajectory having a second amplitude and a second central path. The complex boundary point includes a first boundary point, a second boundary point, a third boundary point, and a fourth boundary point, the first sine wave trajectory intersecting the first boundary point and the second boundary point Forming a first intercept line segment, the second sine wave trajectory intersecting the third boundary point and the fourth boundary point to form a second intercept line segment. The coordinates of the first boundary point and the coordinates of the second boundary point are used to calculate a first center point coordinate, and the coordinates of the third boundary point and the coordinates of the fourth boundary point are used to calculate a second center point coordinate. The first center point coordinate and the second center point coordinate are used to estimate the second center path of the second chord track, the length of the first intercept line segment, the length of the second intercept line segment, and the first The vertical distance between the two center point coordinates and the first center path is used to estimate the second amplitude of the second chord trajectory to correct the first center path to the second center path. The first amplitude is the smallest amplitude that covers the largest region of all regions of the sample. The first central path is a first straight path from a starting point of the first sine wave trajectory to an ending point of the first sine wave trajectory, and the second central path is a starting point from the second sine wave trajectory a second straight path to the end point of the second chord trajectory. The x coordinate of the end point of the nth chord trajectory is equal to the product of an xth nth coordinate plus an n-1th intercept variation and a first estimated parameter, wherein the n-1th intercept length the amount of change is equal to n-1 in a second sinusoidal track (n-1) 2 with an intercept length of (n-1) 1 intercept length variation amount. An nth amplitude of the nth sine wave trajectory is equal to (1/2)×{the second intercept line segment length of the n-1th chord trajectory+ρ2×the n-1th intercept line length change amount+one bias The absolute value of the shift value}+δn, ρ2 and δn are a second estimation parameter and a third estimation parameter, respectively.

PB1‧‧‧第一邊界點 PB1‧‧‧ first boundary point

PB2‧‧‧第二邊界點 PB2‧‧‧ second boundary point

PB3‧‧‧第三邊界點 PB3‧‧‧ third boundary point

PB4‧‧‧第四邊界點 PB4‧‧‧ fourth boundary point

P1Y1‧‧‧第一掃描起始點 P1Y1‧‧‧ first scan starting point

PBC1‧‧‧第一中心點 PBC1‧‧‧ first central point

Sin1‧‧‧第一弦波軌跡 Sin1‧‧‧first chord trajectory

PBC2‧‧‧第二中心點 PBC2‧‧‧ second central point

Sin2‧‧‧第二弦波軌跡 Sin2‧‧‧Second chord trajectory

Pth1‧‧‧第一中心路徑 Pth1‧‧‧ first central path

Pth3‧‧‧第三中心路徑 Pth3‧‧‧ third central path

Pth2‧‧‧第二中心路徑 Pth2‧‧‧Second Central Path

Reg1‧‧‧第一區域 Reg1‧‧‧ first area

Reg2‧‧‧第二區域 Reg2‧‧‧Second area

PT1‧‧‧第一弦波軌跡的結束點 End point of PT1‧‧‧ first chord trajectory

PT2‧‧‧第二弦波軌跡的結束點 End point of PT2‧‧‧ second chord trajectory

OFS1‧‧‧偏移值 OFS1‧‧‧ offset value

36,37‧‧‧掃描軌跡 36, 37‧‧‧ scan track

Amp1‧‧‧第一振幅 Amp1‧‧‧ first amplitude

Amp2‧‧‧第二振幅 Amp2‧‧‧ second amplitude

31‧‧‧第一掃描軌跡 31‧‧‧First scan track

33‧‧‧第二掃描軌跡 33‧‧‧Second scan track

34‧‧‧第三掃描軌跡 34‧‧‧ Third scan track

35‧‧‧第四掃描軌跡 35‧‧‧ Fourth scan track

Claims (10)

一種用於一光學輔助原子力顯微鏡系統的掃描樣本的方法,該光學輔助原子力顯微鏡包含一掃描平台以及一探測器,該方法包含下列步驟:於該掃描平台上提供一第一樣本與一第二樣本;決定該第一樣本的一第一掃描區域以及該第二樣本的一第二掃描區域,該第一掃描區域具有一第一掃描起始點以及一第一掃描結束點,該第二掃描區域具有一第二掃描起始點以及一第二掃描結束點;將該探測器移動至該第一掃描起始點、或移動該掃描平台而使該第一掃描起始點到達該探測器的垂直投影位置,以對該第一樣本進行掃描,其中該第一掃描起始點至該探測器的距離小於或等於該第二掃描起始點至該探測器的距離,該探測器與該第一掃描起始點相距一第一距離,該第一距離為該探測器與該第一掃描區域之間的最短距離;以及在掃描完該第一樣本後,將該探測器自該第一掃描結束點移動至該第二掃描起始點、或移動該掃描平台而使該第二掃描起始點到達該探測器的垂直投影位置,以對該第二樣本進行掃描,其中該第一掃描結束點與該第二掃描起始點相距一第二距離,該第二距離為該第一掃描結束點與該第二掃描區域之間的最短距離。 A method for scanning a sample of an optically assisted atomic force microscope system, the optical assisted atomic force microscope comprising a scanning platform and a detector, the method comprising the steps of: providing a first sample and a second on the scanning platform Determining a first scan area of the first sample and a second scan area of the second sample, the first scan area having a first scan start point and a first scan end point, the second The scan area has a second scan start point and a second scan end point; moving the detector to the first scan start point, or moving the scan platform to cause the first scan start point to reach the detector a vertical projection position to scan the first sample, wherein a distance from the first scan start point to the detector is less than or equal to a distance from the second scan start point to the detector, the detector The first scanning starting point is separated by a first distance, the first distance is a shortest distance between the detector and the first scanning area; and after scanning the first sample, the detecting Moving from the first scanning end point to the second scanning starting point, or moving the scanning platform to cause the second scanning starting point to reach the vertical projection position of the detector to scan the second sample, The first scanning end point is spaced apart from the second scanning starting point by a second distance, and the second distance is a shortest distance between the first scanning end point and the second scanning area. 如申請專利範圍第1項所述的方法,更包含下列步驟:決定該第一樣本在該掃描平台上的一第一中心位置以及決定該第二樣本在該掃描平台上的一第二中心位置,該第一中心位置具有一第一x座標和一第一y座標,該第二中心位置具有一第二x座標和一第二y座標;將該第一掃描區域設定為一第一矩形掃描區域,其中該第一矩形掃 描區域為涵蓋該第一樣本的最小區域,並具有平行於x軸的一第一邊緣和一第二邊緣、以及平行於y軸的一第三邊緣和一第四邊緣,該第一邊緣或該第二邊緣的長度為該第一矩形掃描區域的一第一矩形長度,該第三邊緣或該第四邊緣的長度為該第一矩形掃描區域的一第一矩形寬度,該第一邊緣、該第二邊緣、該第三邊緣、以及該第四邊緣分別具有一第一中點、一第二中點、一第三中點、以及一第四中點,該第一中點、該第二中點、該第三中點、以及該第四中點的x座標分別為該第一x座標減去該第一矩形寬度的一半、該第一x座標加上該第一矩形寬度的一半、該第一x座標、以及該第一x座標,該第一中點、該第二中點、該第三中點、以及該第四中點的y座標分別為該第一y座標、該第一y座標、該第一y座標減去該第一矩形長度的一半、以及該第一y座標加上該第一矩形長度的一半,該第一掃描起始點為該第一中點、該第二中點、該第三中點、以及該第四中點的其中之一,當該第一掃描起始點為該第一中點時,該第一掃描結束點預定為該第二中點,當該第一掃描起始點為該第二中點時,該第一掃描結束點預定為該第一中點,當該第一掃描起始點為該第三中點時,該第一掃描結束點預定為該第四中點,且當該第一掃描起始點為該第四中點時,該第一掃描結束點預定為該第三中點;以及將該第二掃描區域設定為一第二矩形掃描區域,其中該第二矩形掃描區域為涵蓋該第二樣本的最小區域,並具有平行於x軸的一第五邊緣和一第六邊緣、以及平行於y軸的一第七邊緣和一第八邊緣,該第五邊緣或該第六邊緣的長度為該第二矩形掃描區域的一第二矩形長度,該第七邊緣或該第八邊緣的長度為該第二矩形掃描區域的一第二矩形寬度,該第五邊緣、 該第六邊緣、該第七邊緣、以及該第八邊緣分別具有一第五中點、一第六中點、一第七中點、以及一第八中點,該第五中點、該第六中點、該第七中點、以及該第八中點的x座標分別為該第二x座標減去該第二矩形寬度的一半、該第二x座標加上該第二矩形寬度的一半、該第二x座標、以及該第二x座標,該第五中點、該第六中點、該第七中點、以及該第八中點的y座標分別為該第二y座標、該第二y座標、該第二y座標減去該第二矩形長度的一半、以及該第二y座標加上該第二矩形長度的一半,該第二掃描起始點為該第五中點、該第六中點、該第七中點、以及該第八中點的其中之一,當該第二掃描起始點為該第五中點時,該第二掃描結束點預定為該第六中點,當該第二掃描起始點為該第六中點時,該第二掃描結束點預定為該第五中點,當該第二掃描起始點為該第七中點時,該第二掃描結束點預定為該第八中點,且當該第二起始點為該第八中點時,該第二結束點預定為該第七中點。 The method of claim 1, further comprising the steps of: determining a first center position of the first sample on the scanning platform and determining a second center of the second sample on the scanning platform; a first central position having a first x coordinate and a first y coordinate, the second central position having a second x coordinate and a second y coordinate; setting the first scanning area to a first rectangle Scanning area, where the first rectangular sweep The drawing area is a smallest area covering the first sample, and has a first edge and a second edge parallel to the x-axis, and a third edge and a fourth edge parallel to the y-axis, the first edge Or the length of the second edge is a first rectangular length of the first rectangular scanning area, and the length of the third edge or the fourth edge is a first rectangular width of the first rectangular scanning area, the first edge The second edge, the third edge, and the fourth edge respectively have a first midpoint, a second midpoint, a third midpoint, and a fourth midpoint, the first midpoint, the first The second midpoint, the third midpoint, and the x coordinate of the fourth midpoint are respectively the first x coordinate minus half of the first rectangle width, and the first x coordinate plus the first rectangle width Half, the first x coordinate, and the first x coordinate, the first midpoint, the second midpoint, the third midpoint, and the y coordinate of the fourth midpoint are respectively the first y coordinate, The first y coordinate, the first y coordinate minus half of the length of the first rectangle, and the first y coordinate plus the a half of a length of the rectangle, the first scan start point being one of the first midpoint, the second midpoint, the third midpoint, and the fourth midpoint, when the first scan start When the point is the first midpoint, the first scan end point is predetermined as the second midpoint, and when the first scan start point is the second midpoint, the first scan end point is predetermined as the first a midpoint, when the first scan start point is the third midpoint, the first scan end point is predetermined as the fourth midpoint, and when the first scan start point is the fourth midpoint, The first scan end point is predetermined as the third midpoint; and the second scan area is set as a second rectangular scan area, wherein the second rectangular scan area is a minimum area covering the second sample, and has parallel a fifth edge and a sixth edge on the x-axis, and a seventh edge and an eighth edge parallel to the y-axis, the length of the fifth edge or the sixth edge being one of the second rectangular scanning regions a second rectangular length, the length of the seventh edge or the eighth edge being one of the second rectangular scanning areas Second rectangle width, the fifth edge, The sixth edge, the seventh edge, and the eighth edge respectively have a fifth midpoint, a sixth midpoint, a seventh midpoint, and an eighth midpoint, the fifth midpoint, the first The sixth midpoint, the seventh midpoint, and the x coordinate of the eighth midpoint are respectively the second x coordinate minus half of the width of the second rectangle, and the second x coordinate plus half of the width of the second rectangle The second x coordinate, and the second x coordinate, the fifth midpoint, the sixth midpoint, the seventh midpoint, and the y coordinate of the eighth midpoint are respectively the second y coordinate, the a second y coordinate, the second y coordinate minus half of the length of the second rectangle, and the second y coordinate plus half of the length of the second rectangle, the second scan starting point being the fifth midpoint, One of the sixth midpoint, the seventh midpoint, and the eighth midpoint, when the second scan start point is the fifth midpoint, the second scan end point is predetermined to be the sixth a midpoint, when the second scan start point is the sixth midpoint, the second scan end point is predetermined as the fifth midpoint, and when the second scan start point is At the seventh midpoint, the second scan end point is predetermined to be the eighth midpoint, and when the second start point is the eighth midpoint, the second end point is predetermined to be the seventh midpoint. 如申請專利範圍第2項所述的方法,更包含下列步驟:決定樣本邊界點之掃描步驟;決定一第一掃描軌跡,該第一掃描軌跡包含一第一取樣點以及一第二取樣點;擷取該第一取樣點的一第一x軸座標與一第一z軸座標、以及該第二取樣點的一第二x軸座標與一第二z軸座標;將該第二z軸座標減去該第一z軸座標而得到一第一z軸變化量、將該第二x軸座標減去該第一x軸座標而得到一第一x軸變化量、並將該第一z 軸變化量除以該第一x軸變化量而得到一第一斜率;以及當該第一斜率的絕對值大於或等於一門檻值時,判定包含該第一取樣點與該第二取樣點之間存在該第一掃描軌跡上的一第一邊界點。 The method of claim 2, further comprising the steps of: determining a scanning step of the sample boundary point; determining a first scanning track, the first scanning track comprising a first sampling point and a second sampling point; Extracting a first x-axis coordinate of the first sampling point and a first z-axis coordinate, and a second x-axis coordinate of the second sampling point and a second z-axis coordinate; the second z-axis coordinate Subtracting the first z-axis coordinate to obtain a first z-axis variation, subtracting the first x-axis coordinate from the second x-axis coordinate to obtain a first x-axis variation, and the first z-axis And dividing a first change amount by the first x-axis to obtain a first slope; and when the absolute value of the first slope is greater than or equal to a threshold, determining to include the first sampling point and the second sampling point There is a first boundary point on the first scan track. 如申請專利範圍第3項所述的方法,更包含下列步驟:擷取一第三取樣點的一第三x軸座標與一第三z軸座標,以及一第四取樣點的一第四x軸座標與一第四z軸座標,其中該第一掃描軌跡包含該第三取樣點與該第四取樣點;將該第四z軸座標減去該第三z軸座標而得到一第二z軸變化量、將該第四x軸座標減去該第三x軸座標而得到一第二x軸變化量、並將該第二z軸變化量除以該第二x軸變化量而得到一第二斜率;當該第二斜率的絕對值大於或等於該門檻值時,判定包含該第四取樣點與該第三取樣點之間為該第一掃描軌跡上的一第二邊界點,其中該第一邊界點與該第二邊界點為一樣本在該第一掃描軌跡的邊界點;依據該第一邊界點的該第一x軸座標與該第二邊界點的該第四x軸座標來計算一第一中點座標;決定一第二掃描軌跡,以偵測得到一第三邊界點和一第四邊界點的座標;依據該第三邊界點的座標與該第四邊界點的座標來計算一第二中點座標;以及依據該第一中點座標和該第二中點座標來預測一第三掃描軌跡。 The method of claim 3, further comprising the steps of: capturing a third x-axis coordinate of a third sampling point and a third z-axis coordinate, and a fourth x of the fourth sampling point. a shaft coordinate and a fourth z-axis coordinate, wherein the first scan track includes the third sampling point and the fourth sampling point; subtracting the third z-axis coordinate from the fourth z-axis coordinate to obtain a second z Amount of the axis change, subtracting the third x-axis coordinate from the fourth x-axis coordinate to obtain a second x-axis change amount, and dividing the second z-axis change amount by the second x-axis change amount to obtain a a second slope; when the absolute value of the second slope is greater than or equal to the threshold value, determining that a second boundary point on the first scanning track is included between the fourth sampling point and the third sampling point, wherein The first boundary point is the same as the second boundary point and is at a boundary point of the first scan track; the first x-axis coordinate according to the first boundary point and the fourth x-axis coordinate of the second boundary point Calculating a first midpoint coordinate; determining a second scan trajectory to detect a third boundary point and a fourth side a coordinate of the point; calculating a second midpoint coordinate according to the coordinate of the third boundary point and the coordinate of the fourth boundary point; and predicting a third scan according to the first midpoint coordinate and the second midpoint coordinate Track. 如申請專利範圍第4項所述的方法,更包含下列步驟:以一第一弦波軌跡掃描該樣本之一第一區域; 自該第一弦波軌跡掃描該第一區域之一實際路徑與該樣本之關係,而獲得一第一區域參數;以該第一區域參數預測掃描該樣本之一第二區域之一第二弦波軌跡;以及以該第二弦波軌跡掃描該第二區域。 The method of claim 4, further comprising the steps of: scanning a first region of the sample with a first sine wave trajectory; Scanning a relationship between the actual path of the first region and the sample from the first sine wave trajectory to obtain a first region parameter; and scanning, by using the first region parameter, one of the second regions of the second region of the sample a wave trajectory; and scanning the second region with the second chord trajectory. 如申請專利範圍第5項所述的方法,其中:該第一弦波軌跡具有一第一振幅以及一第一中心路徑;該實際路徑與該樣本之關係包含該實際路徑與該樣本交集所形成的複數邊界點之關係;該方法更包含:依序偵測該第一區域的一第一邊界點、一第二邊界點、一第三邊界點、以及一第四邊界點;依據該第一邊界點的座標與該第二邊界點的座標來計算一第一中心點座標和一第一截距線段長度,並依據該第三邊界點的座標與該第四邊界點的座標來計算一第二中心點座標和一第二截距線段長度;以及依據該第一中心點座標和該第二中心點座標來估計一第二弦波軌跡的一第二中心路徑,並依據該第一截距長度、該第二截距長度、以及該第二中點座標和該第一中心路徑的垂直距離來估計該第二弦波軌跡的一第二振福,以掃描該樣本的一第二區域,並修正該第一中心路徑至該第二中心路徑; 該第一區域參數包含該複數邊界點的座標、該第一中心點座標、該第二中心點座標、該第二中心點座標與該第一中心路徑的垂直距離、該第一截距線段長度、該第二截距線段長度、以及該第一振幅;該第一振幅為涵蓋該樣本的所有區域中最大區域的最小振幅;該第一中心路徑為自該第一弦波軌跡的起始點至該第一弦波軌跡的結束點的一第一直線路徑,該第二中心路徑為自該第二弦波軌跡的起始點至該第二弦波軌跡的結束點的一第二直線路徑;該第一中心路徑為自該第一弦波軌跡的起始點至該第一弦波軌跡的結束點的一第一直線路徑,該第二中心路徑為自該第二弦波軌跡的起始點至該第二弦波軌跡的結束點的一第二直線路徑。 The method of claim 5, wherein: the first sine wave trajectory has a first amplitude and a first central path; the relationship between the actual path and the sample comprises the intersection of the actual path and the sample intersection The method further includes: sequentially detecting a first boundary point, a second boundary point, a third boundary point, and a fourth boundary point of the first area; a coordinate of the boundary point and a coordinate of the second boundary point to calculate a first center point coordinate and a first intercept line length, and calculate a first according to a coordinate of the third boundary point and a coordinate of the fourth boundary point a second center point coordinate and a second intercept line segment length; and a second center path for estimating a second chord wave trajectory according to the first center point coordinate and the second center point coordinate, and according to the first intercept Length, the second intercept length, and a vertical distance between the second midpoint coordinate and the first central path to estimate a second vibration of the second chord trajectory to scan a second region of the sample, And amend the first center a path to the second central path; The first region parameter includes a coordinate of the complex boundary point, the first center point coordinate, the second center point coordinate, a vertical distance between the second center point coordinate and the first center path, and a length of the first intercept line segment a length of the second intercept line segment, and the first amplitude; the first amplitude is a minimum amplitude of a largest region of all regions covering the sample; the first central path is a starting point from the first chord trajectory a first straight path to an end point of the first sine wave trajectory, the second central path being a second straight path from a starting point of the second sine wave trajectory to an ending point of the second sine wave trajectory; The first central path is a first straight path from a starting point of the first sine wave trajectory to an ending point of the first sine wave trajectory, and the second central path is a starting point from the second sine wave trajectory a second straight path to the end point of the second chord trajectory. 一種光學輔助掃描樣本的裝置,包含:一掃描平台,承載一第一樣本以及一第二樣本;一光學輔助顯微鏡,蒐集一探測點、該第一樣本的一第一區域、以及該第二樣本的一第二區域的資訊,其中該第一區域具有一第一掃描起始點和一第一掃描結束點,該第二區域具有一第二掃描起始點和一第二掃描結束點;以及一探測器,自該探測點移動至該第一掃描起始點或移動該掃描平台而使該第一掃描起始點到達該探測點以對該第一樣本進行掃描,其中該探測點至該第一掃描起始點的一第一距離為該探測點至該第一區域之間的最短距離,在掃描完該第一樣本後,該探測器自該第一掃描結束點移動至該第二掃描起始點或移動該掃描平台而使該第二掃描起始點到達該探測點以對該第二樣本進行掃描,其中該第一掃描結束點至該第二掃描起始點的一 第二距離為該第一掃描結束點至該第二區域之間的最短距離。 An apparatus for optically assisting scanning a sample, comprising: a scanning platform carrying a first sample and a second sample; an optical auxiliary microscope, collecting a detecting point, a first area of the first sample, and the first Information of a second region of the second sample, wherein the first region has a first scan start point and a first scan end point, the second region having a second scan start point and a second scan end point And a detector moving from the probe point to the first scan start point or moving the scan platform to cause the first scan start point to reach the probe point to scan the first sample, wherein the probe a first distance from the first scanning start point is a shortest distance between the detection point and the first area, and after scanning the first sample, the detector moves from the first scanning end point Up to the second scan start point or moving the scan platform to cause the second scan start point to reach the probe point to scan the second sample, wherein the first scan end point to the second scan start point one of The second distance is the shortest distance between the first scan end point and the second area. 如申請專利範圍第7項所述的裝置,其中:該掃描裝置用以規劃該第一掃描結束點至該第二掃描起始點之間的路徑;該光學輔助顯微鏡蒐集該第一樣本在該掃描平台上的一第一中心位置以及決定該第二樣本在該掃描平台上的一第二中心位置,該第一中心位置具有一第一x座標和一第一y座標,該第二中心位置具有一第二x座標和一第二y座標;該掃描裝置更包含一處理單元,該處理單元將該第一掃描區域設定為一第一矩形掃描區域,其中該第一矩形掃描區域為涵蓋該第一樣本的最小區域,並具有平行於y軸的一第一邊緣和一第二邊緣、以及平行於x軸的一第三邊緣和一第四邊緣,該第一邊緣或該第二邊緣的長度為該第一矩形掃描區域的一第一矩形長度,該第三邊緣或該第四邊緣的長度為該第一矩形掃描區域的一第一矩形寬度,該第一邊緣、該第二邊緣、該第三邊緣、以及該第四邊緣分別具有一第一中點、一第二中點、一第三中點、以及一第四中點,該第一中點、該第二中點、該第三中點、以及該第四中點的x座標分別為該第一x座標減去該第一矩形寬度的一半、該第一x座標加上該第一矩形寬度的一半、該第一x座標、以及該第一x座標,該第一中點、該第二中點、該第三中點、以及該第四中點的y座標分別為該第一y座標、該第一y座標、該第一y座標減去該第一矩形長度的一半、以及該第一y座標加上該第一矩形長度的一半,該第一掃描起始點為該第一中點、該第二中點、該第三中點、以及該第四中點的其中之一,當該第一掃描起始點為該 第一中點時,該第一掃描結束點預定為該第二中點,當該第一掃描起始點為該第二中點時,該第一掃描結束點預定為該第一中點,當該第一掃描起始點為該第三中點時,該第一掃描結束點預定為該第四中點,且當該第一掃描起始點為該第四中點時,該第一掃描結束點預定為該第三中點;以及該處理單元將該第二掃描區域設定為一第二矩形掃描區域,其中該第二矩形掃描區域為涵蓋該第二樣本的最小區域,並具有平行於y軸的一第五邊緣和一第六邊緣、以及平行於x軸的一第七邊緣和一第八邊緣,該第五邊緣或該第六邊緣的長度為該第二矩形掃描區域的一第二矩形長度,該第七邊緣或該第八邊緣的長度為該第二矩形掃描區域的一第二矩形寬度,該第五邊緣、該第六邊緣、該第七邊緣、以及該第八邊緣分別具有一第五中點、一第六中點、一第七中點、以及一第八中點,該第五中點、該第六中點、該第七中點、以及該第八中點的x座標分別為該第二x座標減去該第二矩形寬度的一半、該第二x座標加上該第二矩形寬度的一半、該第二x座標、以及該第二x座標,該第五中點、該第六中點、該第七中點、以及該第八中點的y座標分別為該第二y座標、該第二y座標、該第二y座標減去該第二矩形長度的一半、以及該第二y座標加上該第二矩形長度的一半,該第二掃描起始點為該第五中點、該第六中點、該第七中點、以及該第八中點的其中之一,當該第二掃描起始點為該第五中點時,該第二掃描結束點預定為該第六中點,當該第二掃描起始點為該第六中點時,該第二掃描結束點預定為該第五中點,當該第二掃描起始點為該第七中點時,該第二掃描結束點預定為該第八中點,當該第二起始點為該第八中點時,該第二結束點預定為該第七中點。 The device of claim 7, wherein: the scanning device is configured to plan a path between the first scanning end point and the second scanning starting point; the optical auxiliary microscope collects the first sample a first central location on the scanning platform and a second central location on the scanning platform, the first central location having a first x coordinate and a first y coordinate, the second center The position has a second x coordinate and a second y coordinate; the scanning device further includes a processing unit, the processing unit sets the first scanning area as a first rectangular scanning area, wherein the first rectangular scanning area is covered a minimum area of the first sample, and having a first edge and a second edge parallel to the y-axis, and a third edge and a fourth edge parallel to the x-axis, the first edge or the second The length of the edge is a first rectangular length of the first rectangular scanning area, and the length of the third edge or the fourth edge is a first rectangular width of the first rectangular scanning area, the first edge, the second Edge, the first The three edges, and the fourth edge respectively have a first midpoint, a second midpoint, a third midpoint, and a fourth midpoint, the first midpoint, the second midpoint, and the third The midpoint, and the x coordinate of the fourth midpoint are respectively the first x coordinate minus half of the width of the first rectangle, the first x coordinate plus half of the width of the first rectangle, the first x coordinate, And the first x coordinate, the first midpoint, the second midpoint, the third midpoint, and the y coordinate of the fourth midpoint are respectively the first y coordinate, the first y coordinate, the first One y coordinate minus half of the length of the first rectangle, and the first y coordinate plus half of the length of the first rectangle, the first scan starting point being the first midpoint, the second midpoint, the a third midpoint, and one of the fourth midpoints, when the first scan start point is At the first midpoint, the first scan end point is predetermined as the second midpoint, and when the first scan start point is the second midpoint, the first scan end point is predetermined as the first midpoint, When the first scan start point is the third midpoint, the first scan end point is predetermined as the fourth midpoint, and when the first scan start point is the fourth midpoint, the first The scan end point is predetermined as the third midpoint; and the processing unit sets the second scan area as a second rectangular scan area, wherein the second rectangular scan area is the smallest area covering the second sample and has parallel a fifth edge and a sixth edge on the y-axis, and a seventh edge and an eighth edge parallel to the x-axis, the length of the fifth edge or the sixth edge being one of the second rectangular scanning regions a second rectangular length, the length of the seventh edge or the eighth edge being a second rectangular width of the second rectangular scanning area, the fifth edge, the sixth edge, the seventh edge, and the eighth edge Have a fifth midpoint, a sixth midpoint, a seventh midpoint, respectively An eighth midpoint, the fifth midpoint, the seventh midpoint, and the x coordinate of the eighth midpoint are respectively the second x coordinate minus half of the width of the second rectangle, The second x coordinate plus half of the width of the second rectangle, the second x coordinate, and the second x coordinate, the fifth midpoint, the sixth midpoint, the seventh midpoint, and the eighth The y coordinate of the midpoint is the second y coordinate, the second y coordinate, the second y coordinate minus half of the length of the second rectangle, and the second y coordinate plus half of the length of the second rectangle. The second scan start point is one of the fifth midpoint, the sixth midpoint, the seventh midpoint, and the eighth midpoint, and the second scan start point is the fifth middle When the point is, the second scan end point is predetermined as the sixth midpoint, and when the second scan start point is the sixth midpoint, the second scan end point is predetermined as the fifth midpoint, when the first When the second scan start point is the seventh midpoint, the second scan end point is predetermined as the eighth midpoint, and when the second start point is the eighth midpoint, the second knot Point scheduled for the seventh midpoint. 如申請專利範圍第8項所述的裝置,其中:一控制器,控制該探測器以N個弦波軌跡分別掃描該N個區域,並獲得分別對應該N個區域中一第一區域以後之N-1個區域參數;以及一處理單元,電連接於該控制器,並分別根據該N-1個區域參數而決定N-1個弦波軌跡以分別掃描該樣本的含一第二區域以後之該N-1個區域。 The device of claim 8, wherein: the controller controls the detector to scan the N regions by N chord trajectories respectively, and obtains corresponding to a first region of the N regions respectively. N-1 regional parameters; and a processing unit electrically connected to the controller, and respectively determining N-1 sine wave trajectories according to the N-1 regional parameters to respectively scan a second region of the sample The N-1 areas. 如申請專利範圍第9項所述的裝置,其中:該處理單元係決定該N-1個弦波軌跡的振幅及/或頻率,其中N為大於1的自然數;該N個弦波軌跡中的一第n弦波軌跡係由該N個區域中一第n-1區域參數所預測,其中n為在2至N之間且包含2與N的自然數;該處理單元決定該第n-1區域的複數邊界點,並依據該複數邊界點的座標來預測該N個弦波軌跡中的一第n弦波軌跡,以掃描該樣本的該N個區域中的一第n區域;該第一弦波軌跡具有一第一振幅以及一第一中心路徑,該第二弦波軌跡具有一第二振幅以及一第二中心路徑;該複數邊界點包含一第一邊界點、一第二邊界點、一第三邊界點、以及一第四邊界點,該第一弦波軌跡與該第一邊界點和該第二邊界點相交而形成一第一截距線段,該第二弦波軌跡與該第三邊界點和該第四邊界點相交而形成一第二截距線段;該第一邊界點的座標與該第二邊界點的座標用以計算一第一中心點座標,該第三邊界點的座標與該第四邊界點的座標用以計算一第二中心點 座標;該第一中心點座標和該第二中心點座標用以估計該第二弦波軌跡之該第二中心路徑,該第一截距線段的長度、該第二截距線段的長度、以及該第二中心點座標和該第一中心路徑的垂直距離用以估計該第二弦波軌跡的該第二振幅,以修正該第一中心路徑至該第二中心路徑;該第一振幅為涵蓋該樣本的所有區域中最大區域的最小振幅;該第一中心路徑為自該第一弦波軌跡的起始點至該第一弦波軌跡的結束點的一第一直線路徑,該第二中心路徑為自該第二弦波軌跡的起始點至該第二弦波軌跡的結束點的一第二直線路徑;該第n弦波軌跡的結束點之x座標等於一第n-1之x座標加上一第n-1截距變化量和一第一估計參數的乘積,其中該第n-1截距長度變化量等於第n-1弦波軌跡中的一第(n-1)2截距長度與一第(n-1)1截距長度的變化量;以及該第n弦波軌跡的一第n振幅等於(1/2)×{第n-1弦波軌跡的第二截距線段長度+ρ2×該第n-1截距線段長度變化量+一偏移值的絕對值}+δn,ρ2與δn分別為一第二估計參數和一第三估計參數。 The apparatus of claim 9, wherein: the processing unit determines an amplitude and/or a frequency of the N-1 sine wave trajectories, wherein N is a natural number greater than 1; and the N sine wave trajectories An nth-wave trajectory is predicted by an n-1th region parameter of the N regions, where n is a natural number between 2 and N and containing 2 and N; the processing unit determines the n-th a complex boundary point of the region, and predicting a nth sine wave trajectory of the N chord trajectories according to coordinates of the complex boundary point to scan an nth region of the N regions of the sample; The chord trajectory has a first amplitude and a first central path, the second sine wave trajectory has a second amplitude and a second central path; the complex boundary point includes a first boundary point and a second boundary point a third boundary point, and a fourth boundary point, the first sine wave trajectory intersecting the first boundary point and the second boundary point to form a first intercept line segment, the second sine wave trajectory and the The third boundary point intersects the fourth boundary point to form a second intercept line segment; the first boundary point seat The coordinates of the second boundary point are used to calculate a first center point coordinate, and the coordinates of the third boundary point and the coordinates of the fourth boundary point are used to calculate a second center point coordinate; the first center point coordinate And the second center point coordinate is used to estimate the second center path of the second chord trajectory, the length of the first intercept line segment, the length of the second intercept line segment, and the second center point coordinate and the The vertical distance of the first central path is used to estimate the second amplitude of the second chord trajectory to correct the first central path to the second central path; the first amplitude is the largest of all regions covering the sample a minimum amplitude; the first central path is a first straight path from a starting point of the first sine wave trajectory to an ending point of the first sine wave trajectory, and the second central path is from the second sine wave trajectory a second straight path from the starting point to the end point of the second sine wave trajectory; the x coordinate of the end point of the nth sine wave trajectory is equal to an xth xth coordinate plus an n-1th a product of the amount of change from a first estimated parameter, wherein the n-1th From a length change amount is equal to n-1 of the first sinusoidal trajectory (n-1) 2 with a length of the intercept of the amount of change (n-1). 1 intercept length; and the n-th track a sinusoidal The nth amplitude is equal to (1/2) × {the length of the second intercept line segment of the n-1th chord trajectory + ρ2 × the length change of the n-1th intercept line segment + the absolute value of an offset value} + δn , ρ2 and δn are a second estimation parameter and a third estimation parameter, respectively.
TW102142894A 2013-11-25 2013-11-25 Method of scanning sample for atom force microscope system and method of determining boundary point and device thereof TWI519791B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102142894A TWI519791B (en) 2013-11-25 2013-11-25 Method of scanning sample for atom force microscope system and method of determining boundary point and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102142894A TWI519791B (en) 2013-11-25 2013-11-25 Method of scanning sample for atom force microscope system and method of determining boundary point and device thereof

Publications (2)

Publication Number Publication Date
TW201520557A TW201520557A (en) 2015-06-01
TWI519791B true TWI519791B (en) 2016-02-01

Family

ID=53934939

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102142894A TWI519791B (en) 2013-11-25 2013-11-25 Method of scanning sample for atom force microscope system and method of determining boundary point and device thereof

Country Status (1)

Country Link
TW (1) TWI519791B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830288B (en) * 2020-07-22 2023-02-28 合肥工业大学 Path planning method for AFM low-drift large-range scanning measurement

Also Published As

Publication number Publication date
TW201520557A (en) 2015-06-01

Similar Documents

Publication Publication Date Title
US7318285B2 (en) Surface profile measuring instrument
EP3111235B1 (en) Probe actuation system with feedback controller
CN101083151A (en) Probe position control system and method
CN203310858U (en) Measuring system based on detection of reference model having nanometer surface microstructure
JP2009025024A (en) Shape measuring device and method
CN103852048A (en) Shape measurement method and shape measurement device
KR102473562B1 (en) Precise probe placement in automated scanning probe microscopy systems
JP5759811B2 (en) Position correcting apparatus and laser processing machine
US20180194056A1 (en) Print bed levelling system and methods for additive manufacturing
TWI519791B (en) Method of scanning sample for atom force microscope system and method of determining boundary point and device thereof
JP6135820B2 (en) Scanning probe microscope
Ito et al. Uncertainty analysis of slot die coater gap width measurement by using a shear mode micro-probing system
JP4378532B2 (en) Comb-shaped probe driving apparatus, atomic force microscope apparatus, and displacement measuring method
US10191081B2 (en) Measuring method for atomic force microscope
US9335151B2 (en) Film measurement
JP2017096906A (en) Method of measuring topographic profile and/or topographic image
CN105675922A (en) Method and system for correcting scanning range of piezoelectric ceramic tube scanner
JP2013003639A (en) Electrostatic input device
KR102102637B1 (en) Topography signal and option signal acquisition apparatus, method and atomic force microscope having the same
RU2439487C2 (en) Device and method for noncontact measurement of curvature of long object
JP2009288058A (en) Device for detecting position variation of stage and conveyor provided with it
Jin et al. Pitch measurement of 150 nm 1D-grating Standards Using an Nano-metrological Atomic force Microscope
TWI521188B (en) Error Correction Method for Position Detector
JPH07146125A (en) Straightness measuring apparatus
US9541575B2 (en) Exploitation of second-order effects in atomic force microscopy

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees