JPH0714523A - Built-in element for electron tube and manufacture thereof - Google Patents

Built-in element for electron tube and manufacture thereof

Info

Publication number
JPH0714523A
JPH0714523A JP5156830A JP15683093A JPH0714523A JP H0714523 A JPH0714523 A JP H0714523A JP 5156830 A JP5156830 A JP 5156830A JP 15683093 A JP15683093 A JP 15683093A JP H0714523 A JPH0714523 A JP H0714523A
Authority
JP
Japan
Prior art keywords
conductor layer
resistance
layer
weight
metal terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5156830A
Other languages
Japanese (ja)
Inventor
Yoshinori Hayakawa
義則 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP5156830A priority Critical patent/JPH0714523A/en
Publication of JPH0714523A publication Critical patent/JPH0714523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Details Of Resistors (AREA)

Abstract

PURPOSE:To provide built-in elements of an electron tube and their manufacture not abruptly deteriorated with the mechanical strength of metal terminals during use over a long period by specifying the composition of connecting conductor layers formed on a ceramic insulating substrate mainly made of an aluminum oxide and the metal terminals connected to them. CONSTITUTION:A resistive layer 12 is formed on an insulating substrate 11, and metal terminals 16 are electrically connected to the resistive layer 12 via connecting conductor layers 13. The connecting conductor layers 13 are made of a mixed sintered layer containing palladium, silicon, and titanium, and the metal terminals 16 are made of nickel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えばカラーブラウ
ン管等に使用して好適な電子管の内蔵素子及びその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron tube built-in element suitable for use in, for example, a color cathode ray tube and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、電子管例えばカラ−テレビジョン
受像機に用いられるカラ−ブラウン管は、図2及び図3
に示すように構成され、図2は全体を示し、図3は電子
銃付近を示している。即ち、ガラス製真空外囲器21の
パネル内面に、蛍光面22が形成されている。一方、ネ
ック23の内部には電子ビ−ムを放出する電子銃24が
配設され、コ−ン部に装着された偏向ヨ−ク28により
電子ビ−ムを偏向走査して、蛍光面22に所望の画像を
表示している。電子銃24は、電子ビ−ムを発生する陰
極と、低電圧が印加され陰極からの電子ビ−ムの発生を
抑制する電極と、陰極から放出された電子ビ−ムを集束
し加速する電極などからなる複数の電極が、蛍光面22
方向に順次所定間隔で配設されている。
2. Description of the Related Art Conventionally, an electron tube, for example, a color cathode ray tube used in a color television receiver is shown in FIGS.
2 shows the whole, and FIG. 3 shows the vicinity of the electron gun. That is, the fluorescent surface 22 is formed on the inner surface of the panel of the glass vacuum envelope 21. On the other hand, an electron gun 24 which emits an electron beam is arranged inside the neck 23, and the electron beam is deflected and scanned by a deflection yoke 28 attached to the cone portion to obtain a fluorescent screen 22. The desired image is displayed on. The electron gun 24 includes a cathode that generates an electron beam, an electrode that applies a low voltage to suppress the generation of the electron beam from the cathode, and an electrode that focuses and accelerates the electron beam emitted from the cathode. A plurality of electrodes composed of
Are arranged at predetermined intervals in the direction.

【0003】一般に、電子ビ−ムを加速する電極には、
真空外囲器21のコ−ン部に設けられた高電圧供給ボタ
ン(陽極ボタン)25から内部導電膜26を介して高圧
の陽極電圧が印加されている。特にカラ−ブラウン管で
は、20〜35KV程度の高電圧が印加される。更に、
図3から明らかなように、ネック23内の電子銃24に
は内蔵素子例えば抵抗素子29が設けられているが、こ
の抵抗素子29は電圧分圧素子である。電子銃24に
は、電子ビ−ムの集束度を向上させるために、陽極電圧
以外にコンバ−ジェンス電極やフォ−カス電極等に高電
圧を供給する必要のあるものがある。このような場合、
カラ−ブラウン管のステム部27から高電圧を供給する
と、耐電圧の面から問題が生じるので、抵抗素子29に
より陽極電圧を分圧し、コンバ−ジェンス電極やフォ−
カス電極等に所定の高電圧を供給している。
Generally, an electrode for accelerating an electron beam is
A high-voltage anode voltage is applied from a high-voltage supply button (anode button) 25 provided in the cone portion of the vacuum envelope 21 through the internal conductive film 26. Particularly in a color cathode ray tube, a high voltage of about 20 to 35 KV is applied. Furthermore,
As is clear from FIG. 3, the electron gun 24 in the neck 23 is provided with a built-in element such as a resistance element 29, which is a voltage dividing element. In some electron guns 24, it is necessary to supply a high voltage to the convergence electrode, the focus electrode, etc. in addition to the anode voltage in order to improve the focusing degree of the electron beam. In such cases,
When a high voltage is supplied from the stem portion 27 of the color cathode ray tube, a problem occurs in terms of withstand voltage. Therefore, the anode voltage is divided by the resistance element 29, and the convergence electrode and the convergence electrode are divided.
A predetermined high voltage is supplied to the dust electrode and the like.

【0004】このようなカラ−ブラウン管に内蔵される
抵抗素子29は、従来、例えば図4の(a)、(b)、
(c)に示すように構成され、(a)は外表部を形成す
る絶縁被覆層上から透視した状態を示す平面図、(b)
は(a)のB−B′線に沿って切断し矢印方向に見た断
面図、(c)は(b)の要部を拡大して示す断面図であ
る。
A resistance element 29 built in such a color cathode ray tube has been conventionally used, for example, as shown in FIGS.
FIG. 2B is a plan view showing a state of being configured as shown in FIG. 3C, in which FIG. 3A is seen through from the insulating coating layer forming the outer surface portion.
6A is a cross-sectional view taken along line BB ′ of FIG. 7A and seen in the direction of the arrow, and FIG. 7C is a cross-sectional view showing an enlarged main part of FIG.

【0005】即ち、酸化アルミニウムを主成分とするセ
ラミックス製の絶縁基板31上には、所定のシ−ト抵抗
値を有するルテニウム酸鉛を含む金属酸化物と硼硅酸鉛
系のガラスよりなる抵抗材料をジグザグパタ−ンに印
刷,乾燥,焼成した抵抗層33が形成され、この抵抗層
33と電気的に一体の接合用導体層32と、この接合用
導体層32に接合された金属端子36とが設けられてい
る。更に、抵抗層33を覆うように絶縁被覆層34,3
5が形成されている。
That is, on a ceramic insulating substrate 31 whose main component is aluminum oxide, a resistor made of lead ruthenate oxide having a predetermined sheet resistance and lead borosilicate glass is used. A resistance layer 33 is formed by printing, drying, and firing a material in a zigzag pattern, and a conductor layer 32 for connection electrically integrated with the resistance layer 33 and a metal terminal 36 joined to the conductor layer 32 for connection are formed. Is provided. Further, the insulating coating layers 34 and 3 are formed so as to cover the resistance layer 33.
5 is formed.

【0006】さて次に、従来の抵抗素子の製造方法につ
いて述べることにする。先ず、酸化アルミニウムを主成
分とするセラミックス製絶縁基板31上の一方の面に、
接合用導体層32を形成する。この接合用導体層32
は、硼硅酸鉛系のガラスを含みニッケルを主成分とする
導体ペーストで形成する。この導体ペーストの組成は、
ニッケルが85〜97重量部と硼硅酸鉛ガラスが3〜1
5重量部と有機ビヒクルが5〜10重量部よりなる。こ
れをスクリーン印刷法により所定の形状及び乾燥膜厚で
60〜70μmとなるように印刷し、120〜150℃
で10〜20分間乾燥してペースト中の溶剤成分を除去
する。
Next, a conventional method of manufacturing a resistance element will be described. First, on one surface of the ceramic insulating substrate 31 containing aluminum oxide as a main component,
The conductor layer 32 for joining is formed. This bonding conductor layer 32
Is formed of a conductor paste containing lead borosilicate glass and containing nickel as a main component. The composition of this conductor paste is
85 to 97 parts by weight of nickel and 3 to 1 of lead borosilicate glass
5 parts by weight and 5 to 10 parts by weight of the organic vehicle. This is printed by a screen printing method so as to have a predetermined shape and a dry film thickness of 60 to 70 μm, and 120 to 150 ° C.
To dry for 10 to 20 minutes to remove the solvent component in the paste.

【0007】次いで、絶縁基板31上の接合用導体層3
2と同一の面に、抵抗層33を形成する。抵抗層33
は、ルテニウム酸鉛を含む金属酸化物と硼硅酸鉛系のガ
ラスをよりなる抵抗材料であり、シート抵抗値が106
〜107 Ω/□程度の抵抗ペーストを用い形成したもの
である。これをスクリーン印刷法により所定の形状に印
刷し、120〜150℃で10〜20分間乾燥してペー
スト中の溶剤成分を除去する。この時、抵抗素子として
所定の全抵抗値が得られるように、106 Ω/□と10
7 Ω/□の抵抗ペーストを混合して抵抗材料のシート抵
抗値を調整する。又、抵抗層33の印刷パターンは、各
電極部で所定の抵抗分割比率が得られるようなジグザグ
状のパターン形状である。 次いで、840〜860
℃、空気雰囲気中で約8〜10分間加熱処理して接合用
導体層32と抵抗層33中の有機成分の除去、及び無機
成分を焼成する。こうして得られた抵抗層33は、全抵
抗値で2×109 〜3×109 Ωの抵抗値を有する。こ
の時、各金属端子36での抵抗分割比率が所定の範囲内
でない場合は、トリミング工程により各分割抵抗部の抵
抗値を修正し、所定の抵抗分割比率に調整する。
Next, the conductor layer 3 for bonding on the insulating substrate 31.
A resistance layer 33 is formed on the same surface as 2. Resistance layer 33
Is a resistance material composed of lead ruthenate metal oxide and lead borosilicate glass, and has a sheet resistance value of 10 6
It is formed by using a resistance paste of about 10 7 Ω / □. This is printed in a predetermined shape by a screen printing method and dried at 120 to 150 ° C. for 10 to 20 minutes to remove the solvent component in the paste. At this time, in order to obtain a predetermined total resistance value as the resistance element, 10 6 Ω / □ and 10
Adjust the sheet resistance value of the resistance material by mixing 7 Ω / □ resistance paste. Further, the printed pattern of the resistance layer 33 has a zigzag pattern shape so that a predetermined resistance division ratio can be obtained in each electrode portion. Then 840-860
C., heat treatment is performed in an air atmosphere for about 8 to 10 minutes to remove the organic components in the bonding conductor layer 32 and the resistance layer 33, and burn the inorganic components. The resistance layer 33 thus obtained has a total resistance value of 2 × 10 9 to 3 × 10 9 Ω. At this time, if the resistance division ratio of each metal terminal 36 is not within the predetermined range, the resistance value of each division resistor portion is corrected by the trimming process to adjust the resistance division ratio to the predetermined resistance division ratio.

【0008】次いで、絶縁基板31の両方の面に、それ
ぞれ絶縁被覆層34を形成する。硼硅酸鉛系のガラスを
主成分とし酸化鉄、酸化クロム、酸化ニッケル等の遷移
金属酸化物を含むガラスペーストを用いる。これをスク
リーン印刷法により所定の形状に印刷し、120〜15
0℃で10〜20分間乾燥してペースト中の溶剤成分を
除去する。この時、絶縁被覆層34として所定の耐電圧
特性を得るために、接合用導体層32及び抵抗層33を
有する面は、焼成後の膜厚で200〜500μmとなる
ように印刷する。又、もう一方の面は焼成後の膜厚で5
0〜200μmとなるように印刷する。
Next, the insulating coating layers 34 are formed on both surfaces of the insulating substrate 31, respectively. A glass paste containing lead borosilicate glass as a main component and a transition metal oxide such as iron oxide, chromium oxide, or nickel oxide is used. This is printed in a predetermined shape by a screen printing method, and 120 to 15
The solvent component in the paste is removed by drying at 0 ° C. for 10 to 20 minutes. At this time, in order to obtain a predetermined withstand voltage characteristic as the insulating coating layer 34, the surface having the bonding conductor layer 32 and the resistance layer 33 is printed so as to have a film thickness of 200 to 500 μm after firing. On the other side, the film thickness after firing is 5
Printing is performed so as to be 0 to 200 μm.

【0009】次いで、570〜630℃、空気雰囲気中
で約8〜10分間加熱処理して絶縁被覆層34中の有機
成分の除去及び無機成分を焼成する。次いで、絶縁基板
31の側面を被覆する絶縁被覆層35を形成する。これ
は、絶縁被覆ガラス層に比べ2次電子放出比の高いセラ
ミックス露出部分の被覆を行ない不要な放電現象を防止
するためのものである。硼硅酸鉛系のガラスを主成分と
して酸化鉄、酸化クロム、酸化ニッケル等の遷移金属酸
化物を含むガラスペーストを用いる。これをディスペン
サー法により所定の部分にガラスペーストを塗布し、1
20〜150℃で10〜20分間乾燥してペースト中の
溶剤成分を除去する。
Next, heat treatment is performed in an air atmosphere at 570 to 630 ° C. for about 8 to 10 minutes to remove the organic components and sinter the inorganic components in the insulating coating layer 34. Next, the insulating coating layer 35 that covers the side surface of the insulating substrate 31 is formed. This is to prevent the unnecessary discharge phenomenon by covering the exposed ceramics portion having a higher secondary electron emission ratio than the insulating coating glass layer. A glass paste containing lead borosilicate glass as a main component and a transition metal oxide such as iron oxide, chromium oxide, or nickel oxide is used. Glass paste is applied to a predetermined part of this by a dispenser method, and 1
The solvent component in the paste is removed by drying at 20 to 150 ° C. for 10 to 20 minutes.

【0010】次いで、570〜630℃、空気雰囲気中
で約8〜10分間加熱処理して絶縁被覆層35中の有機
成分の除去及び無機成分を焼成する。次いで、接合用導
体層32に金属端子36を固着する。金属端子36はF
eを主成分としNi−Crを含むステンレス系の金属材
料からなっており、厚さ20〜200μmで、幅は1.
0〜1.2mmのリボン材である。この金属端子36を
レーザー溶接法により接合用導体層32に溶融接合す
る。
Next, heat treatment is carried out in an air atmosphere at 570 to 630 ° C. for about 8 to 10 minutes to remove the organic components and sinter the inorganic components in the insulating coating layer 35. Then, the metal terminal 36 is fixed to the joining conductor layer 32. Metal terminal 36 is F
e is a main component and is made of a stainless steel-based metal material containing Ni—Cr, and has a thickness of 20 to 200 μm and a width of 1.
It is a ribbon material of 0 to 1.2 mm. The metal terminal 36 is melt-bonded to the bonding conductor layer 32 by laser welding.

【0011】以上のようにして得られた抵抗素子は金属
端子36の機械的強度が高く、実使用条件の3〜4倍の
電圧を50時間印加して高負荷試験を実施したところ、
抵抗値及び分圧比率の変化は±0.2%以内と極めて良
好な結果が得られた。
In the resistance element obtained as described above, the metal terminal 36 has a high mechanical strength, and a high load test was carried out by applying a voltage 3 to 4 times the actual use condition for 50 hours.
Very good results were obtained, with changes in resistance and partial pressure ratio within ± 0.2%.

【0012】[0012]

【発明が解決しようとする課題】既述のように、従来の
抵抗素子における金属端子36の接合方法では、初期の
機械的強度は抜群であるが、長期に渡る使用において、
特に5000時間以上の使用において金属端子36の機
械的強度が急激に劣化する。そのため金属端子36の接
合がはずれ、電子銃24の電極に所定の電圧を供給出来
なくなるという問題が発生し、早急な対策が望まれてい
た。
As described above, in the conventional method of joining the metal terminals 36 in the resistance element, the initial mechanical strength is excellent, but in the long-term use,
In particular, the mechanical strength of the metal terminal 36 is rapidly deteriorated when it is used for 5000 hours or more. For this reason, the metal terminal 36 is disconnected, and a problem that a predetermined voltage cannot be supplied to the electrode of the electron gun 24 occurs, and an urgent countermeasure is desired.

【0013】この発明は、上記事情に鑑みなされたもの
で、酸化アルミニウムを主成分とするセラミックス製絶
縁基板上に形成された接合用導体層ならびに、これに接
合される金属端子の組成を特定することで、長期の使用
においても金属端子の機械的強度が急激に劣化すること
のない電子管の内蔵素子及びその製造方法を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and specifies the composition of a bonding conductor layer formed on a ceramic insulating substrate containing aluminum oxide as a main component and the composition of a metal terminal to be bonded thereto. Therefore, it is an object of the present invention to provide a built-in element for an electron tube in which the mechanical strength of a metal terminal does not suddenly deteriorate even during long-term use and a method for manufacturing the same.

【0014】[0014]

【課題を解決する手段】この発明は、絶縁基板上に抵抗
層が形成され、この抵抗層に接合用導体層を介して金属
端子が電気的に接続され、且つ接合用導体層は、パラジ
ウム,硅素,及びチタンを含む混合焼結層からなり、金
属端子はニッケルからなる電子管の内蔵素子である。
According to the present invention, a resistance layer is formed on an insulating substrate, a metal terminal is electrically connected to the resistance layer through a bonding conductor layer, and the bonding conductor layer is palladium. It is composed of a mixed sintered layer containing silicon and titanium, and the metal terminal is a built-in element of an electron tube made of nickel.

【0015】又、この発明は、絶縁基板上に抵抗層を形
成し、この抵抗層に接合用導体層を介して金属端子を電
気的に接続する場合、接合用導体層は、平均粒径0.2
乃至1μmのパラジウム粉末が60乃至85重量%,平
均粒径1乃至5μmの硅素粉末が5乃至10重量%,平
均粒径3乃至5μmの水素化チタン粉末が10乃至30
重量%を含む無機粉体が85重量部と、有機ビヒクルが
15重量部とを混練した導体ペーストを絶縁基板上に印
刷した後、焼成し、金属端子は、純度99.8%以上の
ニッケルよりなる厚さ30乃至60μmにして、この金
属端子を接合用導体層に接合する電子管の内蔵素子の製
造方法である。
Further, according to the present invention, when the resistance layer is formed on the insulating substrate and the metal terminal is electrically connected to the resistance layer through the bonding conductor layer, the bonding conductor layer has an average grain size of 0. .2
60 to 85% by weight of palladium powder having an average particle size of 1 to 5 μm, 5 to 10% by weight of silicon powder having an average particle size of 1 to 5 μm, and 10 to 30 titanium hydride powder having an average particle size of 3 to 5 μm.
A conductive paste prepared by kneading 85 parts by weight of inorganic powder containing 15% by weight of organic powder and 15 parts by weight of organic vehicle is printed on an insulating substrate and then fired. The metal terminal is made of nickel having a purity of 99.8% or more. And a thickness of 30 to 60 μm, the metal terminal is bonded to the bonding conductor layer.

【0016】[0016]

【作用】この発明によれば、長期、特に5000時間以
上を越える長期の使用においても金属端子の機械的強度
が急激に劣化することがない。そのため、金属端子の接
合がはずれて電子管内の電極に所定の電圧を供給できな
くなるという問題も生じることなく、非常に高信頼性な
電子管の内蔵素子及びその製造方法を得ることが出来
る。
According to the present invention, the mechanical strength of the metal terminal does not suddenly deteriorate even when it is used for a long time, particularly for a long time exceeding 5000 hours. Therefore, it is possible to obtain an extremely highly reliable built-in element of an electron tube and a method for manufacturing the same, without causing a problem that a predetermined voltage cannot be supplied to the electrodes in the electron tube due to the disconnection of the metal terminals.

【0017】[0017]

【実施例】以下、図面を参照して、この発明の一実施例
を詳細に説明する。この発明による電子管の内蔵素子例
えば抵抗素子は、図1の(a)、(b)、(c)に示す
ように構成され、(a)は外表部を形成する絶縁被覆層
上から透視した状態を示す平面図、(b)は(a)のA
−A′線に沿って切断し矢印方向に見た断面図、(c)
は(b)の要部を拡大して示す断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. A built-in element such as a resistance element of the electron tube according to the present invention is configured as shown in FIGS. 1A, 1B, and 1C, and FIG. 1A is a state seen through from an insulating coating layer forming an outer surface portion. Is a plan view showing (A) in (a).
A sectional view taken along line -A 'and viewed in the direction of the arrow, (c)
FIG. 7B is a cross-sectional view showing an enlarged main part of FIG.

【0018】即ち、酸化アルミニウムを主成分とするセ
ラミックス製の絶縁基板11上には、所定のシ−ト抵抗
値を有するルテニウム酸鉛を含む金属酸化物と硼硅酸鉛
系のガラスよりなる抵抗材料をジグザグパタ−ンに印
刷,乾燥,焼成した抵抗層12が形成されている。更
に、この抵抗層12と電気的に一体の接合用導体層13
と、この接合用導体層13に接合された金属端子16と
が設けられている。又、抵抗層12を覆うように絶縁被
覆層14,15が形成されている。
That is, on a ceramic insulating substrate 11 containing aluminum oxide as a main component, a resistor made of lead ruthenate metal oxide having a predetermined sheet resistance value and lead borosilicate glass. A resistance layer 12 is formed by printing the material in a zigzag pattern, drying and firing. Furthermore, the conductor layer 13 for connection electrically integrated with the resistance layer 12 is formed.
And a metal terminal 16 joined to the joining conductor layer 13. Insulating coating layers 14 and 15 are formed so as to cover the resistance layer 12.

【0019】この場合、接合用導体層13は、平均粒径
0.2乃至1μmのパラジウム粉末が60乃至85重量
%,平均粒径1乃至5μmの硅素粉末が5乃至10重量
%,平均粒径3乃至5μmの水素化チタン粉末が10乃
至30重量%を含む無機粉体が85重量部と、有機ビヒ
クルが15重量部とを混練した導体ペーストを絶縁基板
11上に印刷した後、焼成した混合焼結層からなってい
る。
In this case, the bonding conductor layer 13 comprises 60 to 85% by weight of palladium powder having an average particle size of 0.2 to 1 μm, 5 to 10% by weight of silicon powder having an average particle size of 1 to 5 μm, and an average particle size of 85 parts by weight of inorganic powder containing 10 to 30% by weight of titanium hydride powder of 3 to 5 μm and 15 parts by weight of organic vehicle are kneaded, printed on the insulating substrate 11, and then baked and mixed. It consists of a sintered layer.

【0020】又、金属端子16は、純度99.8%以上
のニッケルよりなる厚さ30乃至60μmにして、この
金属端子16が接合用導体層13に溶融接合されてい
る。さて次に、上記の抵抗素子の製造方法について述べ
ることにする。先ず、酸化アルミニウムを主成分とする
セラミックス製の絶縁基板11上の一方の面に、抵抗ペ
ーストを用いスクリーン印刷法により抵抗パターンを印
刷する。その後、120〜150℃で10〜20分間乾
燥してペースト中の溶剤を除去し、抵抗層12を形成す
る。この時、抵抗ペーストはルテニウム酸鉛を含む金属
酸化物と硼硅酸鉛系のガラスよりなる材料であり、シー
ト抵抗値が106 〜107Ω/□程度を有する。又、印
刷パターンは各金属端子16で所定の分圧比率が得られ
るような所定のジグザグ状パターンである。
The metal terminal 16 is made of nickel having a purity of 99.8% or more and has a thickness of 30 to 60 μm, and the metal terminal 16 is melt-bonded to the bonding conductor layer 13. Next, a method of manufacturing the above resistance element will be described. First, a resistance pattern is printed by a screen printing method using a resistance paste on one surface of an insulating substrate 11 made of ceramics containing aluminum oxide as a main component. Then, the solvent in the paste is removed by drying at 120 to 150 ° C. for 10 to 20 minutes to form the resistance layer 12. At this time, the resistance paste is a material composed of a metal oxide containing lead ruthenate and lead borosilicate glass, and has a sheet resistance value of about 10 6 to 10 7 Ω / □. Further, the print pattern is a predetermined zigzag pattern so that a predetermined voltage division ratio can be obtained at each metal terminal 16.

【0021】次いで、絶縁基板11上の抵抗層12と同
一の面に、導体ペーストを印刷する。その後、120〜
150℃で10〜20分間乾燥してペースト中の溶剤を
除去し、接合用導体層13を形成する。この時、導体ペ
ーストは平均粒径0.2〜1μmのパラジウム粉末が6
0〜85重量%、より好ましい範囲は65〜75重量%
と平均粒径1〜5μmの硅素粉末が5〜10重量%、よ
り好ましい範囲は8〜10重量%と平均粒径3〜5μm
の水素化チタンが10〜30重量%、より好ましい範囲
は15〜25重量%である。これらよりなる無機粉体が
85重量部と、エチルセルロース、α−テルピネオール
等よりなる有機ビヒクルが15重量部とを混練してなる
導体ペーストである。印刷パターンは上記の抵抗パター
ンと接するような所定の形状に印刷されている。又、印
刷膜厚は焼成後の膜厚として40〜60μmとなるよう
に印刷されている。これは後述の金属端子16のレーザ
ー溶接時に膜が昇華せず、良好に溶接を実施するためで
ある。
Next, a conductor paste is printed on the same surface as the resistance layer 12 on the insulating substrate 11. After that, 120 ~
By drying at 150 ° C. for 10 to 20 minutes to remove the solvent in the paste, the bonding conductor layer 13 is formed. At this time, the conductive paste contains 6 parts of palladium powder having an average particle size of 0.2 to 1 μm.
0 to 85% by weight, more preferably 65 to 75% by weight
And 5 to 10% by weight of silicon powder having an average particle size of 1 to 5 μm, more preferably 8 to 10% by weight and an average particle size of 3 to 5 μm.
10 to 30% by weight, and a more preferable range is 15 to 25% by weight. This is a conductor paste obtained by kneading 85 parts by weight of an inorganic powder made of these and 15 parts by weight of an organic vehicle made of ethyl cellulose, α-terpineol or the like. The print pattern is printed in a predetermined shape so as to come into contact with the resistance pattern. Further, the printed film thickness is printed such that the film thickness after firing is 40 to 60 μm. This is because the film does not sublime during the laser welding of the metal terminal 16 described later, and the welding is performed well.

【0022】次いで、840〜860C゜、空気雰囲気
中で約8〜10分間加熱して抵抗層12及び接合用導体
層13を焼成する。こうして得られた抵抗層12は全抵
抗値で2×109 〜3×109 Ωの抵抗値を有する。こ
の時、各金属端子16での分圧比率が所定の範囲内では
ない時には、抵抗層12の各抵抗部に設けられている抵
抗値修正用の抵抗層をサンドブラスト法等により削り、
各分圧比率が所定の範囲内となるように修正する。
Next, the resistance layer 12 and the bonding conductor layer 13 are fired by heating in an air atmosphere at 840 to 860 ° C. for about 8 to 10 minutes. The resistance layer 12 thus obtained has a total resistance value of 2 × 10 9 to 3 × 10 9 Ω. At this time, when the voltage division ratio at each metal terminal 16 is not within the predetermined range, the resistance layer for resistance value correction provided in each resistance portion of the resistance layer 12 is ground by a sandblast method or the like,
It is corrected so that each partial pressure ratio is within a predetermined range.

【0023】次いで、絶縁基板11の両面の所定の部分
に絶縁被覆用のガラスペーストを印刷する。その後、1
20〜150℃で10〜20分間乾燥してペースト中の
溶剤を除去し、絶縁被覆層14を形成する。この時、ガ
ラスペーストは硼硅酸鉛ガラスを主成分とし酸化鉄,酸
化クロム,酸化ニッケル等の遷移金属酸化物と有機ビヒ
クルの混合材料よりなるペーストである。又、絶縁被覆
層14として所定の耐電圧特性を得るために、所定の膜
厚となるように印刷されている。焼成後の膜厚で抵抗層
12のある表面側は200〜500μm、もう一方の両
側は50〜200μmとしている。
Next, a glass paste for insulation coating is printed on predetermined portions of both surfaces of the insulating substrate 11. Then 1
The solvent in the paste is removed by drying at 20 to 150 ° C. for 10 to 20 minutes to form the insulating coating layer 14. At this time, the glass paste is a paste containing lead borosilicate glass as a main component and a mixed material of a transition metal oxide such as iron oxide, chromium oxide and nickel oxide and an organic vehicle. Further, the insulating coating layer 14 is printed so as to have a predetermined film thickness in order to obtain a predetermined withstand voltage characteristic. The film thickness after firing is 200 to 500 μm on the surface side having the resistance layer 12, and 50 to 200 μm on the other both sides.

【0024】次いで、570〜630C゜、空気雰囲気
中で約8〜10分間加熱して絶縁被覆層14を焼成す
る。次いで、絶縁基板11の側面を被覆する絶縁被覆層
15を形成する。これは、絶縁被覆ガラス層に比べ2次
電子放出比の高いセラミックス露出部分の被覆を行な
い、不要な放電現象を防止するためのものである。硼硅
酸鉛系のガラスを主成分とし酸化鉄,酸化クロム,酸化
ニッケル等の遷移金属酸化物を含むガラスペーストを用
いる。これをディスペンサー法により所定の部分にガラ
スペーストを塗布し、120〜150℃で10〜20分
間乾燥してペースト中の溶剤成分を除去する。
Next, the insulating coating layer 14 is baked by heating at 570 to 630 ° C. in an air atmosphere for about 8 to 10 minutes. Next, the insulating coating layer 15 that covers the side surface of the insulating substrate 11 is formed. This is to prevent the unnecessary discharge phenomenon by covering the exposed ceramics portion having a higher secondary electron emission ratio than the insulating coating glass layer. A glass paste containing lead borosilicate-based glass as a main component and a transition metal oxide such as iron oxide, chromium oxide, or nickel oxide is used. A glass paste is applied to a predetermined portion of the paste by a dispenser method and dried at 120 to 150 ° C. for 10 to 20 minutes to remove the solvent component in the paste.

【0025】次いで、570〜630C゜、空気雰囲気
中で約8〜10分間加熱処理して絶縁被覆層15中の有
機成分の除去及び無機成分を焼成する。次いで、金属製
のリボン材をレーザー溶接法によって接合用導体層13
に接合し、金属端子16を形成する。この金属端子16
は純度99.8%以上のニッケルよりなり、幅1.0〜
1.5mm、厚さ30〜60μmのリボン材を使用して
いる。
Then, heat treatment is performed in an air atmosphere at 570 to 630 ° C. for about 8 to 10 minutes to remove the organic components and sinter the inorganic components in the insulating coating layer 15. Then, the metal ribbon material is bonded by a laser welding method to the conductor layer 13 for joining.
To form the metal terminal 16. This metal terminal 16
Is made of nickel with a purity of 99.8% or more and has a width of 1.0 to
A ribbon material having a thickness of 1.5 mm and a thickness of 30 to 60 μm is used.

【0026】接合時の材料供給はリボン材のまま実施し
ており、接合用導体層13へ接合後レーザー光線にて所
定の長さに切断している。このようにリボン材で供給し
ているため、所定の長さに加工された金属製の小部品を
実装する必要がなく、長さの異なる金属端子16にも柔
軟に対応できるため、非常に生産性に優れている。
The ribbon material is supplied as it is at the time of joining, and after being joined to the joining conductor layer 13, it is cut into a predetermined length by a laser beam. Since the ribbon material is supplied in this way, it is not necessary to mount small metal parts machined to a predetermined length, and it is possible to flexibly cope with metal terminals 16 having different lengths. It has excellent properties.

【0027】金属製リボンの材質については純度99.
8%以上のニッケルに限定されるものではなく、接合用
導体層13に使用されている導電材料と溶融、拡散し接
合し得る材料であれば良い。他にNi−Co−Fe合金
やNi−Fe合金やFe−Ni−Cr合金等が上げられ
る。金属製リボンの厚さについては30〜60μmが好
ましい。30μm以下では金属製リボンの機械的強度が
不足し電子管への抵抗素子の固着強度が十分にとれな
い。又、60μmを越える厚さではリボンを溶融させる
ため、よりレーザー光線の出力を大きくする必要があ
り、接合用導体層13へのダメージが大きくなる。その
ため、接合用導体層13の剥離が発生する場合が生じ
る。
Regarding the material of the metallic ribbon, the purity is 99.
The material is not limited to nickel of 8% or more, and any material that can be melted, diffused, and bonded to the conductive material used in the bonding conductor layer 13 may be used. Other examples include Ni-Co-Fe alloy, Ni-Fe alloy, Fe-Ni-Cr alloy and the like. The thickness of the metal ribbon is preferably 30 to 60 μm. If the thickness is 30 μm or less, the mechanical strength of the metallic ribbon is insufficient, and the resistance of the resistance element to the electron tube cannot be sufficiently secured. Further, if the thickness exceeds 60 μm, the ribbon is melted, so that it is necessary to increase the output of the laser beam, and the damage to the bonding conductor layer 13 becomes large. Therefore, peeling of the bonding conductor layer 13 may occur.

【0028】この実施例で使用したレーザー溶接条件を
表1に示す。又、この実施例では表1の条件によるレー
ザー溶接法を用いたが、接合用導体層13と金属端子1
6を溶融接合出来る方法であれば、条件及び手段はこれ
に限定するものではない。
The laser welding conditions used in this example are shown in Table 1. Further, in this embodiment, the laser welding method under the conditions shown in Table 1 was used, but the joining conductor layer 13 and the metal terminal 1 were used.
The conditions and means are not limited to these as long as it is a method capable of melt-bonding No. 6.

【0029】[0029]

【表1】 [Table 1]

【0030】以下、従来の抵抗素子の製造工程と同一で
ある。以上のようにして作られた抵抗素子の金属端子1
6は引っ張り試験にて1.5〜2.5kgと十分な接合
強度を持つ。又、10000時間におよぶ実動作試験後
においても、接合強度については全く劣化は見られなか
った。
Hereinafter, the manufacturing process of the conventional resistance element is the same. Metal terminal 1 of the resistance element made as described above
No. 6 has a sufficient joint strength of 1.5 to 2.5 kg in the tensile test. In addition, no deterioration was observed in the bonding strength even after the actual operation test for 10,000 hours.

【0031】尚、付記すれば、導体ペーストの主成分で
あるパラジウムは、酸化雰囲気中での焼成であっても8
50℃程度の温度では酸化し難い。逆に、この温度域で
は還元し酸素を放出するため、導電性が維持される。そ
のため、パラジウムにより構成される導体層は十分な導
電性が得られる。しかし、パラジウム単体ではコストが
高い。又、十分な接合強度を得るために溶融し、緻密な
膜を作るためには焼成温度を1300℃以上にする必要
がある。そこで、パラジウムの融点を下げるために硅素
を添加、共晶合金化して融点を下げている。パラジウム
と硅素は、約850℃付近に共晶点を持つ。そのため、
厚膜抵抗の標準的な焼成温度である850℃での焼成が
可能である。又、パラジウムと硅素が容易に溶融して緻
密な導体層を形成することが出来るようにそれぞれ粒径
を特定している。パラジウムは0.2〜5μmの粒径が
好ましい。より好ましくは0.2〜1μmの粒径であ
る。粒径が0.2μmより小さい場合は2次凝集が起こ
り易く、逆に見かけ上粒子径が大きくなってしまい溶融
温度にばらつきが生じる。又、粒径が1μmを越える場
合は粒子が十分に溶融し焼結するために、反応時間を長
くする必要があり製造上好ましくない。硅素は1〜10
μmの粒径が好ましい。より好ましくは1〜5μmの粒
径である。硅素は粉砕により粉末化しているため、粒径
を1μm以下とする場合、粉砕時に酸化し不純物を含み
易い。又、異形状になり易くなるため焼結性のばらつき
が生じる。粒径が5μmを越える場合は、パラジウムと
同様に粒子が十分に溶融し焼結するために、反応時間を
長くする必要があり製造上好ましくない。
It should be noted that palladium, which is the main component of the conductor paste, is 8% even if fired in an oxidizing atmosphere.
It is difficult to oxidize at a temperature of about 50 ° C. On the contrary, in this temperature range, conductivity is maintained because the oxygen is reduced and oxygen is released. Therefore, the conductor layer made of palladium has sufficient conductivity. However, the cost of palladium alone is high. Further, in order to obtain a sufficient bonding strength, the film is melted and the firing temperature must be 1300 ° C. or higher in order to form a dense film. Therefore, in order to lower the melting point of palladium, silicon is added to form a eutectic alloy to lower the melting point. Palladium and silicon have a eutectic point around 850 ° C. for that reason,
Firing at 850 ° C., which is the standard firing temperature for thick film resistors, is possible. Further, the particle diameters are specified so that palladium and silicon can be easily melted to form a dense conductor layer. Palladium preferably has a particle size of 0.2 to 5 μm. The particle size is more preferably 0.2 to 1 μm. When the particle size is smaller than 0.2 μm, secondary agglomeration is likely to occur, and on the contrary, the particle size becomes apparently large, and the melting temperature varies. On the other hand, if the particle size exceeds 1 μm, the particles are sufficiently melted and sintered, so that it is necessary to prolong the reaction time, which is not preferable in manufacturing. 1 to 10 for silicon
A particle size of μm is preferred. The particle size is more preferably 1 to 5 μm. Since silicon is pulverized into powder, if the particle size is 1 μm or less, it tends to be oxidized during pulverization to contain impurities. Further, since the shape tends to be irregular, the sinterability varies. When the particle size is more than 5 μm, the particles are sufficiently melted and sintered similarly to palladium, so that the reaction time needs to be lengthened, which is not preferable in production.

【0032】水素化チタンは、接合用導体層と基板間の
付着力を向上させる。これは水素化チタン中のチタンと
基板中の酸化アルミニウムとが反応し、接合用導体層と
セラミックス製の絶縁基板の界面にチタンアルミネイト
層を生成し強固に付着する。チタンは水素化チタンの状
態で添加することで、焼成時に水素ガスを放出し、チタ
ンと酸化性雰囲気との接触を抑制する。更に、水素化チ
タンは脱バインダー温度領域より高い温度領域で水素を
放出するため、脱バインダー温度領域では水素化チタン
の状態であるため、脱バインダー時に発生するカーボン
との反応が少なく、チタンと雰囲気中のチタンとの反応
抑制効果も高い。そのため、絶縁基板中の酸化アルミニ
ウムとチタンが十分に反応し、チタンアルミネイトを生
成することが出来る。このため、接合用導体層に十分な
付着強度を持たせることが出来る。
Titanium hydride improves the adhesion between the bonding conductor layer and the substrate. This is because titanium in titanium hydride reacts with aluminum oxide in the substrate to form a titanium aluminate layer at the interface between the bonding conductor layer and the insulating substrate made of ceramics and firmly adheres to it. By adding titanium in the state of titanium hydride, hydrogen gas is released during firing, and contact between titanium and the oxidizing atmosphere is suppressed. Furthermore, since titanium hydride releases hydrogen in a temperature range higher than the debinding temperature range, it is in the titanium hydride state in the debinding temperature range, so there is little reaction with carbon generated during debinding, and titanium and the atmosphere The effect of suppressing the reaction with the titanium inside is also high. Therefore, aluminum oxide and titanium in the insulating substrate can sufficiently react with each other to form titanium aluminate. Therefore, the bonding conductor layer can have sufficient adhesion strength.

【0033】金属端子は、既述のように厚さは30〜6
0μmで純度99.8%以上のニッケルよりなってい
る。そのため、溶融接合時には接合用導体層中の比較的
表面層に近い部分に存在するチタン成分ならびにパラジ
ウムと相互に拡散し合金化する。その結果、接合強度が
従来より大幅に向上し、長時間に渡り十分な接合強度を
維持することが出来る。
The metal terminal has a thickness of 30 to 6 as described above.
It is made of nickel having a purity of 99.8% or more at 0 μm. Therefore, at the time of fusion bonding, the titanium component and the palladium existing in a portion relatively close to the surface layer in the bonding conductor layer are mutually diffused and alloyed. As a result, the bonding strength is significantly improved as compared with the conventional one, and the sufficient bonding strength can be maintained for a long time.

【0034】又、上記実施例では、電子管の内蔵素子と
して抵抗素子を例に挙げたが、内蔵素子は抵抗素子に限
定されず、コンデンサ、その他の能動あるいは受動素子
にも、この発明は適用される。
In the above embodiment, the resistance element is taken as an example of the built-in element of the electron tube, but the built-in element is not limited to the resistance element, and the present invention can be applied to a capacitor and other active or passive elements. It

【0035】[0035]

【発明の効果】この発明によれば、接合用導体層は、パ
ラジウム,硅素,及び水素化チタンを含む混合焼結層か
らなり、金属端子はニッケルからなっているので、長期
の使用においても、接合用導体層と金属端子との機械的
接合強度が急激に劣化することがない。そのため、非常
に信頼性の高い電子管の内蔵素子を提供することが出来
る。
According to the present invention, the conductor layer for joining is made of a mixed sintered layer containing palladium, silicon and titanium hydride, and the metal terminal is made of nickel. The mechanical joining strength between the joining conductor layer and the metal terminal does not suddenly deteriorate. Therefore, it is possible to provide a highly reliable built-in element of the electron tube.

【0036】又、この発明の製造方法によれば、焼成温
度を低くしながら、膜収縮のクラックによる膜強度低下
を防止することが出来る。又、水素化チタン粉体を混合
したペ−ストにて製造することによって、焼成時に酸化
性雰囲気及びカ−ボンとチタンの反応を効果的に抑制
し、基板と導体膜の付着力を向上させることが出来る。
Further, according to the manufacturing method of the present invention, it is possible to prevent the film strength from being lowered due to the film shrinkage cracks while lowering the firing temperature. Further, by producing the paste by mixing titanium hydride powder, it is possible to effectively suppress the oxidizing atmosphere and the reaction between carbon and titanium during firing, and improve the adhesion between the substrate and the conductor film. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)、(b)、(c)はこの発明の一実施例
に係る電子管の内蔵素子を示し、(a)は外表部を形成
する絶縁被覆層上から透視した状態を示す平面図、
(b)は(a)のA−A′線に沿って切断し矢印方向に
見た断面図、(c)は(b)の要部を拡大して示す断面
図。
1 (a), (b) and (c) show a built-in element of an electron tube according to an embodiment of the present invention, and (a) shows a state seen through from an insulating coating layer forming an outer surface portion. Plan view,
(B) is a cross-sectional view taken along the line AA 'of (a) and viewed in the direction of the arrow, and (c) is a cross-sectional view showing an enlarged main part of (b).

【図2】一般的なカラ−ブラウン管の全体を示す概略断
面図。
FIG. 2 is a schematic cross-sectional view showing the whole of a general color CRT.

【図3】図2のカラ−ブラウン管の要部(電子銃構体付
近)を拡大して示す断面図。
FIG. 3 is an enlarged cross-sectional view showing a main part (near the electron gun structure) of the color cathode ray tube in FIG.

【図4】(a)、(b)、(c)は従来の電子管の内蔵
素子を示し、(a)は外表部を形成する絶縁被覆層上か
ら透視した状態を示す平面図、(b)は(a)のB−
B′線に沿って切断し矢印方向に見た断面図、(c)は
(b)の要部を拡大して示す断面図。
4 (a), (b), (c) show a built-in element of a conventional electron tube, (a) is a plan view showing a state seen through from an insulating coating layer forming an outer surface portion, (b). Is B- in (a)
Sectional drawing which cut | disconnected along the B'line and was seen in the arrow direction, (c) is sectional drawing which expands and shows the principal part of (b).

【符号の説明】[Explanation of symbols]

11…絶縁基板、12…抵抗層、13…接合用導体層、
14,15…絶縁被覆層、16…金属端子。
11 ... Insulating substrate, 12 ... Resistance layer, 13 ... Bonding conductor layer,
14, 15 ... Insulating coating layer, 16 ... Metal terminals.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板上に抵抗層が形成され、この抵
抗層に接合用導体層を介して金属端子が電気的に接続さ
れてなる電子管の内蔵素子において、 上記接合用導体層は、パラジウム,硅素,及びチタンを
含む混合焼結層からなり、上記金属端子はニッケルから
なることを特徴とする電子管の内蔵素子。
1. A built-in element for an electron tube, comprising a resistance layer formed on an insulating substrate, and a metal terminal electrically connected to the resistance layer via a bonding conductor layer, wherein the bonding conductor layer is palladium. An electron tube built-in element comprising a mixed sintered layer containing silicon, titanium, and titanium, and the metal terminal made of nickel.
【請求項2】 絶縁基板上に抵抗層を形成し、この抵抗
層に接合用導体層を介して金属端子を電気的に接続する
電子管の内蔵素子の製造方法において、 上記接合用導体層は、平均粒径0.2乃至1μmのパラ
ジウム粉末が60乃至85重量%,平均粒径1乃至5μ
mの硅素粉末が5乃至10重量%,平均粒径3乃至5μ
mの水素化チタン粉末が10乃至30重量%を含む無機
粉体が85重量部と、有機ビヒクルが15重量部とを混
練した導体ペーストを上記絶縁基板上に印刷した後、焼
成し、 上記金属端子は、純度99.8%以上のニッケルよりな
る厚さ30乃至60μmにして、この金属端子を上記接
合用導体層に接合することを特徴とする電子管の内蔵素
子の製造方法。
2. A method of manufacturing a built-in element for an electron tube, comprising forming a resistance layer on an insulating substrate and electrically connecting a metal terminal to the resistance layer via a bonding conductor layer, wherein the bonding conductor layer comprises: 60 to 85% by weight of palladium powder having an average particle size of 0.2 to 1 μm, and an average particle size of 1 to 5 μm
5 to 10% by weight of silicon powder having an average particle size of 3 to 5 μm
The inorganic paste containing 10 to 30% by weight of titanium hydride powder of m and 85 parts by weight of the organic vehicle and 15 parts by weight of the organic vehicle are kneaded and printed on the insulating substrate, and then baked to obtain the above metal. A method for manufacturing a built-in element for an electron tube, characterized in that the terminal is made of nickel having a purity of 99.8% or more and has a thickness of 30 to 60 μm, and the metal terminal is bonded to the bonding conductor layer.
JP5156830A 1993-06-28 1993-06-28 Built-in element for electron tube and manufacture thereof Pending JPH0714523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5156830A JPH0714523A (en) 1993-06-28 1993-06-28 Built-in element for electron tube and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5156830A JPH0714523A (en) 1993-06-28 1993-06-28 Built-in element for electron tube and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0714523A true JPH0714523A (en) 1995-01-17

Family

ID=15636287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5156830A Pending JPH0714523A (en) 1993-06-28 1993-06-28 Built-in element for electron tube and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0714523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019316A1 (en) * 1996-10-30 1998-05-07 Philips Electronics N.V. Method of securing an electric contact to a ceramic layer as well as a resistance element thus manufactured

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019316A1 (en) * 1996-10-30 1998-05-07 Philips Electronics N.V. Method of securing an electric contact to a ceramic layer as well as a resistance element thus manufactured

Similar Documents

Publication Publication Date Title
JPS6217347B2 (en)
US5573173A (en) Vacuum tube comprising a ceramic element and a method of interconnecting a ceramic element and a conductive element
JPH0714523A (en) Built-in element for electron tube and manufacture thereof
US20050121500A1 (en) Method for producing a soldered joint between a substrate and a contact element of a fuel cell unit
JPH0714524A (en) Built-in element for electron tube and manufacture thereof
JPH0682540B2 (en) Thick film resistance element and electron tube incorporating the same
JPH07134952A (en) Built-in element of electron tube and manufacture of element thereof
KR20010088790A (en) Internal resistor of cathode-ray tube
JP3720913B2 (en) Impregnated cathode structure, cathode substrate used therefor, and electron tube using the same
US4825535A (en) Method of manufacturing a resistor element
EP3751958B1 (en) Surface type heating element and manufacturing method thereof
US20020074949A1 (en) Method for producing a resistor
JPH11213911A (en) Electron gun structure and electron tube
JP3380916B2 (en) Method of joining cathode ray tube built-in resistor and fixture and cathode ray tube
US20050067471A1 (en) Method for producing a soldered joint between a substrate and a contact element of a fuel cell unit
JP3303429B2 (en) Resistor with built-in cathode ray tube and method of manufacturing the same
JPS58102445A (en) Voltage dividing resistor in electron gun structure
JPH0740295Y2 (en) Cathode ray tube
JPH06275211A (en) Electron gun of cathode-ray tube, its manufacture, and cathode-ray tube
US20020074950A1 (en) Field emission display including a resistor
JPH05242951A (en) Sealed electrode and surge absorber therewith
JPH11213859A (en) Negative electrode structure, electron gun structure and electron tube
JPH0553204U (en) In-pipe resistance
KR900005805B1 (en) Cathode electrode and manufacture method
JPH0479097B2 (en)