JPH05242951A - Sealed electrode and surge absorber therewith - Google Patents

Sealed electrode and surge absorber therewith

Info

Publication number
JPH05242951A
JPH05242951A JP7635792A JP7635792A JPH05242951A JP H05242951 A JPH05242951 A JP H05242951A JP 7635792 A JP7635792 A JP 7635792A JP 7635792 A JP7635792 A JP 7635792A JP H05242951 A JPH05242951 A JP H05242951A
Authority
JP
Japan
Prior art keywords
glass tube
electrode
thin film
copper thin
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7635792A
Other languages
Japanese (ja)
Other versions
JP2541069B2 (en
Inventor
Yoshiyuki Tanaka
芳幸 田中
Takaaki Ito
隆明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP4076357A priority Critical patent/JP2541069B2/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to US08/140,028 priority patent/US5506071A/en
Priority to KR1019930703228A priority patent/KR0139509B1/en
Priority to DE4390682T priority patent/DE4390682T1/en
Priority to PCT/JP1993/000234 priority patent/WO1993017475A1/en
Priority to DE4390682A priority patent/DE4390682C2/en
Priority to GB9321710A priority patent/GB2272329B/en
Priority to CA002107679A priority patent/CA2107679A1/en
Priority to TW082101956A priority patent/TW219403B/zh
Publication of JPH05242951A publication Critical patent/JPH05242951A/en
Application granted granted Critical
Publication of JP2541069B2 publication Critical patent/JP2541069B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To provide sealed electrodes capable of being sealed in the inert gas atmosphere and having good sealing property to a glass tube and an electron emission accelerating action and to provide a surge absorber hardly deteriorated with a conducting film and a micro-gap at the time of sealing and an arc discharge and having high surge resistance and a long life by using the sealed electrodes. CONSTITUTION:A surge absorbing element 13 and inert gas 14 are put in a glass tube 10, and the glass tube 10 is sealed by sealed electrodes 11, 12 to form a surge absorber 20. The sealed electrode 11 is constituted of an electrode element body 11a made of an alloy containing iron and nickel, a copper thin film 11b formed on the surface of the element body 11a kept in contact with the glass tube 10 and the surface of the element body 11a faced to the inside of the glass tube 10 respectively and having the preset thickness, and a Cu2O film 11c formed on the surface of the copper thin film 11b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガラス管に封着される封
止電極及びこれを用いたサージアブソーバに関する。更
に詳しくはマイクロギャップ式サージ吸収素子をガラス
管内にハーメチックシール(hermetic seal)したサー
ジアブソーバに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealing electrode sealed to a glass tube and a surge absorber using the sealing electrode. More specifically, it relates to a surge absorber in which a micro gap type surge absorbing element is hermetically sealed in a glass tube.

【0002】[0002]

【従来の技術】この種のサージアブソーバは、電話機、
ファクシミリ、電話交換機、モデム等の通信機器の電子
部品を雷サージから保護するために使用される。このサ
ージアブソーバは、マイクロギャップ式サージ吸収素子
を収容したガラス管の両端に封止電極を取付け、ガラス
管内に希ガス、窒素ガス等の不活性ガスを封入した後、
カーボンヒータのような加熱装置で高温度で加熱して封
止電極をガラス管に封着して作られる。一般に封止電極
は、封着時のガラス管の熱収縮によるクラックの発生を
防止するためにその素体にガラスと熱膨張係数のほぼ等
しい金属を用い、しかも封着時のガラスに対する濡れ性
を良くするためにガラス管と接触する部分の素体表面に
酸化膜を設けている。封止電極を高温で加熱すると電極
素体である金属が酸化膜を介してガラスになじみ、封止
電極が封着されてガラス管内を気密にする。従来、封止
電極の素体には鉄−ニッケル合金、鉄−ニッケル−クロ
ム合金、ジュメット線(Dumet wire)等が多用されてい
る。
2. Description of the Related Art This type of surge absorber is used for telephones,
Used to protect electronic components of communication equipment such as facsimiles, telephone exchanges, and modems from lightning surges. This surge absorber has sealing electrodes attached to both ends of a glass tube containing a microgap type surge absorbing element, and a rare gas, an inert gas such as nitrogen gas is sealed in the glass tube,
It is made by heating at a high temperature with a heating device such as a carbon heater and sealing the sealed electrode in a glass tube. In general, a sealing electrode uses a metal whose coefficient of thermal expansion is almost equal to that of glass in its element body in order to prevent the occurrence of cracks due to thermal contraction of the glass tube during sealing, and further, the wettability to glass during sealing is ensured. An oxide film is provided on the surface of the element body in contact with the glass tube to improve the quality. When the sealed electrode is heated at a high temperature, the metal that is the electrode body fits into the glass through the oxide film, and the sealed electrode is sealed to make the inside of the glass tube airtight. Conventionally, iron-nickel alloys, iron-nickel-chromium alloys, Dumet wires, and the like have been widely used as the body of the sealing electrode.

【0003】[0003]

【発明が解決しようとする課題】鉄−ニッケル合金は比
較的容易に酸化されるため、予め酸化膜を形成してから
封着した場合には封着時の酸化作用も加わって膜厚が大
きくなり、酸化膜の鉄−ニッケル合金に対する付着強度
が低下し易い。これを回避するため鉄−ニッケル合金を
封止電極の素体にする場合には、素体のままガラス管に
取付け、ガスバーナの炎等により酸化膜を形成しながら
封止電極を封着している。この結果、鉄−ニッケル合金
は不活性ガス雰囲気中のカーボンヒータの加熱により封
着されるサージアブソーバの封止電極には適しない。鉄
−ニッケル−クロム合金は鉄−ニッケル合金と異なり、
予め酸化膜を形成してから封着しても適度の膜厚になる
ため、合金に対するその付着強度は低下しない。しかし
この酸化膜中のCr23はガラスに対する濡れ性に劣る
ため、封着温度を非常に高くしないと良好な封着効果が
得られない。ジュメット線は鉄−ニッケル合金の表面を
銅で被覆した線であるため、サージアブソーバの封止電
極に適した形状に加工することが困難である上、低仕事
関数の電子放射促進物質をガラス管内部に向けて設ける
ことが極めて難しい。
Since the iron-nickel alloy is relatively easily oxidized, when the oxide film is formed in advance and then sealed, the oxidation action at the time of sealing is also added to increase the film thickness. Therefore, the adhesion strength of the oxide film to the iron-nickel alloy is likely to decrease. To avoid this, when using an iron-nickel alloy as the body of the sealing electrode, attach the body as it is to a glass tube and seal the sealing electrode while forming an oxide film by the flame of a gas burner or the like. There is. As a result, the iron-nickel alloy is not suitable for the sealing electrode of the surge absorber that is sealed by heating the carbon heater in the inert gas atmosphere. Iron-nickel-chromium alloy is different from iron-nickel alloy
Even if the oxide film is formed in advance and then the film is sealed, the film has an appropriate film thickness, and therefore the adhesive strength to the alloy does not decrease. However, since Cr 2 O 3 in this oxide film is inferior in wettability to glass, a good sealing effect cannot be obtained unless the sealing temperature is made extremely high. Since the Dumet wire is a wire in which the surface of an iron-nickel alloy is coated with copper, it is difficult to process it into a shape suitable for the sealing electrode of a surge absorber, and a glass tube containing an electron emission promoting substance with a low work function is used. It is extremely difficult to install it inside.

【0004】一方、従来のマイクロギャップ式サージ吸
収素子をガラス管内に気密に収容したサージアブソーバ
では、封止電極に電子放射促進作用がないため、動作時
のアーク放電がセラミックス素体表面の導電性皮膜及び
マイクロギャップ上を通過した後、封止電極まで達しに
くい。このためマイクロギャップの近傍でアーク放電が
形成される時間が長くなり、アーク放電により導電性皮
膜及びマイクロギャップが劣化して、サージアブソーバ
の特性に悪影響を与えている。
On the other hand, in the surge absorber in which the conventional microgap type surge absorbing element is hermetically housed in the glass tube, since the sealing electrode has no electron emission promoting action, the arc discharge during operation is electrically conductive on the surface of the ceramic body. After passing over the film and the microgap, it is difficult to reach the sealing electrode. For this reason, the time during which arc discharge is formed in the vicinity of the micro gap becomes long, and the conductive coating and the micro gap are deteriorated by the arc discharge, which adversely affects the characteristics of the surge absorber.

【0005】本発明の目的は、不活性ガス雰囲気中で封
着でき、ガラス管への封着性が良く、しかも電子放射促
進作用のある封止電極を提供することにある。また本発
明の別の目的は、封着時及びアーク放電時の導電性皮膜
及びマイクロギャップが劣化しにくく、サージ耐量が高
く、寿命の長いサージアブソーバを提供することにあ
る。
An object of the present invention is to provide a sealed electrode which can be sealed in an inert gas atmosphere, has a good sealing property to a glass tube, and has an electron emission promoting action. Another object of the present invention is to provide a surge absorber which is resistant to deterioration of the conductive film and the microgap during sealing and arc discharge, has a high surge resistance, and has a long life.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明のガラス管に封着される封止電極は、図1に
示すように、鉄及びニッケルを含む合金からなる電極素
体11aと、ガラス管10との接触部分の素体11a表
面及びガラス管10の内部に面する素体11a表面にそ
れぞれ設けられた所定の厚さの銅薄膜11bと、銅薄膜
11bの表面に形成されたCu2O膜11cとを備えた
ものである。また本発明のサージアブソーバは、ガラス
管10と、このガラス管10内に収容され、導電性皮膜
13aで被包した円柱状のセラミックス素体13bの周
面にマイクロギャップ13cが形成され、セラミックス
素体13bの両端に一対のキャップ電極13dを有する
サージ吸収素子13と、このガラス管10の両端に封着
した状態でサージ吸収素子13を固定し、かつ一対のキ
ャップ電極13dに電気的に接続された前記封止電極1
1,12と、これらの封止電極11,12とガラス管1
0とにより形成される空間に封入された不活性ガス14
とを備えたものである。
To achieve the above object, the sealing electrode sealed in the glass tube of the present invention is, as shown in FIG. 1, an electrode body made of an alloy containing iron and nickel. 11a, a copper thin film 11b having a predetermined thickness respectively provided on the surface of the element body 11a in the contact portion with the glass tube 10 and the surface of the element body 11a facing the inside of the glass tube 10, and formed on the surface of the copper thin film 11b. And a Cu 2 O film 11c that has been formed. Further, the surge absorber of the present invention has a glass tube 10 and a cylindrical ceramic body 13b housed in the glass tube 10 and covered with a conductive film 13a. The surge absorbing element 13 having a pair of cap electrodes 13d at both ends of the body 13b, and the surge absorbing element 13 fixed in a sealed state at both ends of the glass tube 10 and electrically connected to the pair of cap electrodes 13d. The sealing electrode 1
1, 12 and these sealing electrodes 11, 12 and the glass tube 1
Inert gas 14 enclosed in the space formed by
It is equipped with and.

【0007】本発明のガラス管は、ホウケイ酸ガラスの
ような硬質ガラス、又は鉛ガラス、ソーダ石灰ガラスの
ような軟質ガラスから作られる。硬質ガラスより熱膨張
係数の大きな軟質ガラスにも適用することができる。ま
た電極素体は、鉄−ニッケル合金、鉄−ニッケル−クロ
ム合金、鉄−ニッケル−コバルト合金等の鉄とニッケル
を含む熱膨張係数がガラスより低い合金からなる。電極
素体は所定の形状に成形して作られる。電極素体の熱膨
張係数とガラス管の熱膨張係数とを整合させるために熱
膨張係数の大きな銅薄膜が電極素体の表面に設けられ
る。即ち、電極素体の熱膨張係数とガラス管の熱膨張係
数との差が大きいときには銅薄膜の厚さを大きくし、そ
の差が小さいときには銅薄膜の厚さを小さくする。銅薄
膜は、必要な厚さの程度に応じて、めっき、高周波スパ
ッタリング、真空蒸着等の薄膜形成技術により直接電極
素体の表面に形成するか、或いは銅薄膜を電極素体表面
に接着してもよい。銅薄膜の表面にはガラスに対する濡
れ性を良くし、かつ電子放射を促進する仕事関数の小さ
いCu2O膜が形成される。このCu2O膜は銅薄膜を酸
化することにより容易に形成することができる。銅薄膜
はCu2O膜を必要とする電極素体の表面、即ちガラス
管と接触する素体表面及びガラス管内部に面する素体表
面に少なくとも設けられる。
The glass tube of the present invention is made of hard glass such as borosilicate glass, or soft glass such as lead glass and soda lime glass. It can also be applied to soft glass having a larger coefficient of thermal expansion than hard glass. The electrode body is made of an alloy containing iron and nickel, such as an iron-nickel alloy, an iron-nickel-chromium alloy, and an iron-nickel-cobalt alloy, having a coefficient of thermal expansion lower than that of glass. The electrode body is formed by molding it into a predetermined shape. In order to match the coefficient of thermal expansion of the electrode body with the coefficient of thermal expansion of the glass tube, a copper thin film having a large coefficient of thermal expansion is provided on the surface of the electrode body. That is, when the difference between the coefficient of thermal expansion of the electrode body and the coefficient of thermal expansion of the glass tube is large, the thickness of the copper thin film is increased, and when the difference is small, the thickness of the copper thin film is decreased. The copper thin film is formed on the surface of the electrode body directly by a thin film forming technique such as plating, high frequency sputtering, vacuum deposition, or the copper thin film is adhered to the surface of the electrode body according to the required thickness. Good. On the surface of the copper thin film, a Cu 2 O film having a low work function which improves the wettability to glass and promotes electron emission is formed. This Cu 2 O film can be easily formed by oxidizing a copper thin film. The copper thin film is provided at least on the surface of the electrode body that requires the Cu 2 O film, that is, the surface of the body that contacts the glass tube and the surface of the body that faces the inside of the glass tube.

【0008】[0008]

【作用】熱膨張係数が鉄及びニッケルを含む合金より大
きな銅をこの合金とガラスとの間に所定の厚さで介在さ
せることにより、鉄及びニッケルを含む合金の熱膨張係
数がガラスの熱膨張係数に近づき、封着時にガラス管の
熱収縮によるクラックの発生がなくなる。また、封止電
極の表面に銅薄膜とCu2O膜の2つの層が形成される
ため、第一に封着時のガラスに対する濡れ性が良くなり
低温でしかも不活性ガス雰囲気中で封着でき、熱ストレ
スによる導電性皮膜及びマイクロギャップの劣化が起き
にくい。第二にCu2Oは仕事関数が小さいため、その
電子放射促進作用によりアーク放電がサージ吸収素子の
導電性皮膜から離れた封止電極間に容易に移行し、放電
による導電性皮膜の熱損傷を解消する。
[Function] By interposing copper having a coefficient of thermal expansion larger than that of the alloy containing iron and nickel in a predetermined thickness between the alloy and the glass, the coefficient of thermal expansion of the alloy containing iron and nickel is the thermal expansion of the glass. The coefficient is approached, and cracking due to heat shrinkage of the glass tube is eliminated during sealing. Also, since two layers, a copper thin film and a Cu 2 O film, are formed on the surface of the sealing electrode, firstly, the wettability to glass at the time of sealing is improved, and sealing is performed at a low temperature and in an inert gas atmosphere. It is possible to prevent deterioration of the conductive film and the micro gap due to heat stress. Secondly, since Cu 2 O has a small work function, the arc discharge easily moves between the sealing electrodes separated from the conductive film of the surge absorbing element due to its electron emission promoting action, and the conductive film is thermally damaged by the discharge. To eliminate.

【0009】[0009]

【実施例】次に、本発明の実施例を図面に基づいて詳し
く説明する。<実施例>図1及び図2に示すように、円
筒形のガラス管10の両端に封止電極11,12が封着
される。図では上端の封止電極11を詳細に示す。この
例では、ガラス管10は軟質ガラスの一種の鉛ガラスで
ある。また封止電極11は、鉄42%とニッケル58%
の合金からなる電極素体11aと、ガラス管10との接
触部分の素体11a表面及びガラス管10の内部に面す
る素体11a表面にそれぞれ形成された銅薄膜11b
と、銅薄膜11bの表面に形成されたCu2O膜11c
とにより構成される。電極素体11aをガラス管10に
挿入し得るようにハット状に成形した後、ガラス管10
との接触部分の素体表面及びガラス管10の内部に面す
る素体表面に銅薄膜11bを所定の厚さに形成する。銅
薄膜11bは銅めっきにより形成される。次いで銅薄膜
11bの形成された電極素体11aを高温の酸素雰囲気
下に置き、その後急冷して銅薄膜11b表面にCu2
膜11cを形成する。ガラス管10内にはマイクロギャ
ップ式のサージ吸収素子13が収容される。このサージ
吸収素子13は導電性皮膜13aで被包した円柱状のセ
ラミックス素体13bの周面に数10μmのマイクロギ
ャップ13cをレーザにより形成させた後、セラミック
ス素体の両端にキャップ電極13dを圧入して作られ
る。
Embodiments of the present invention will now be described in detail with reference to the drawings. <Example> As shown in FIGS. 1 and 2, sealing electrodes 11 and 12 are sealed at both ends of a cylindrical glass tube 10. In the figure, the sealing electrode 11 at the upper end is shown in detail. In this example, the glass tube 10 is a kind of soft glass lead glass. The sealing electrode 11 is made of 42% iron and 58% nickel.
Of the electrode body 11a made of the above alloy and the surface of the body 11a in contact with the glass tube 10 and the copper thin film 11b formed on the surface of the body 11a facing the inside of the glass tube 10 respectively.
And a Cu 2 O film 11c formed on the surface of the copper thin film 11b.
Composed of and. After forming the electrode body 11a into a hat shape so that it can be inserted into the glass tube 10, the glass tube 10
A copper thin film 11b having a predetermined thickness is formed on the surface of the element body in contact with and the surface of the element body facing the inside of the glass tube 10. The copper thin film 11b is formed by copper plating. Then, the electrode body 11a having the copper thin film 11b formed thereon is placed in a high-temperature oxygen atmosphere and then rapidly cooled to form Cu 2 O on the surface of the copper thin film 11b.
The film 11c is formed. A microgap type surge absorbing element 13 is housed in the glass tube 10. In this surge absorbing element 13, after forming a microgap 13c of several tens of μm by a laser on the peripheral surface of a cylindrical ceramic body 13b covered with a conductive film 13a, cap electrodes 13d are press-fitted at both ends of the ceramic body. Made.

【0010】またサージアブソーバ20は次の方法によ
り作られる。先ずガラス管10内にサージ吸収素子13
を入れ、ガラス管10の一端に封止電極11を取付け
る。封止電極11の凹部11dをサージ吸収素子13の
キャップ電極13dに嵌合させる。次いでガラス管10
の他端に封止電極11と同一構造の封止電極12を同様
に取付ける。これによりサージ吸収素子13の一対のキ
ャップ電極13dが封止電極11,12と電気的に接続
される。次にこの組立体をカーボンヒータを設けた封着
室(図示せず)に入れ、封着室を負圧にすることにより
ガラス管内部の空気を抜いた後、代わりに不活性ガス、
例えばアルゴンガスを封着室に供給してガラス管内にこ
のアルゴンガスを導入する。この状態でカーボンヒータ
によりガラス管10及び封止電極11,12を加熱す
る。Cu2O膜を介して銅薄膜付き電極素体11aの周
縁がガラス管10になじみ、封止電極11がガラス管1
0に封着される。これによりアルゴンガス14が封入さ
れたサージアブソーバ20が作られる。Cu2O膜の存
在によりこの封止電極11,12は約700℃の低温で
封着される。
The surge absorber 20 is manufactured by the following method. First, the surge absorber 13 is placed in the glass tube 10.
Then, the sealing electrode 11 is attached to one end of the glass tube 10. The recess 11d of the sealing electrode 11 is fitted into the cap electrode 13d of the surge absorbing element 13. Then the glass tube 10
A sealing electrode 12 having the same structure as the sealing electrode 11 is similarly attached to the other end of the. As a result, the pair of cap electrodes 13d of the surge absorbing element 13 is electrically connected to the sealing electrodes 11 and 12. Next, this assembly is put in a sealing chamber (not shown) provided with a carbon heater, and the inside of the glass tube is evacuated by setting a negative pressure in the sealing chamber.
For example, argon gas is supplied to the sealing chamber and introduced into the glass tube. In this state, the glass tube 10 and the sealing electrodes 11 and 12 are heated by the carbon heater. The peripheral edge of the electrode body 11a with a copper thin film fits the glass tube 10 through the Cu 2 O film, and the sealing electrode 11 becomes the glass tube 1.
Sealed to 0. As a result, the surge absorber 20 in which the argon gas 14 is enclosed is produced. Due to the presence of the Cu 2 O film, the sealing electrodes 11 and 12 are sealed at a low temperature of about 700 ° C.

【0011】銅薄膜11bによる電極素体11aとガラ
ス管10との熱膨張係数の調整度を調べるため、電極素
体11a(鉄−ニッケル合金)の厚さ(A)と銅薄膜11
bの厚さ(B)を変えて封着後のガラス管10のクラック
の発生の有無を目視により確認した。具体的には、銅薄
膜の厚さ(B)に対する封止電極全体の厚さ(A+B)の
比率(P)が20%、30%、45%、50%及び60%
になるように、銅薄膜の厚さ(B)及び鉄−ニッケル合金
の厚さ(A)を変えた。その結果を表1及び図3に示す。
図3において、たて軸は熱膨張係数、よこ軸は比率(P)
を示す。またたて軸の符号Eは鉄42%とニッケル58
%の合金の熱膨張係数、符号Fは銅の熱膨張係数、符号
Gは鉛ガラスの熱膨張係数をそれぞれ表わす。これらの
結果より、銅薄膜11bの厚さは封止電極全体の厚さの
30〜45%が適していることが判明した。(以下、本
頁余白)
In order to check the degree of adjustment of the coefficient of thermal expansion between the electrode body 11a and the glass tube 10 by the copper thin film 11b, the thickness (A) of the electrode body 11a (iron-nickel alloy) and the copper thin film 11 are examined.
The thickness (B) of b was changed and the presence or absence of cracks in the glass tube 10 after sealing was visually confirmed. Specifically, the ratio (P) of the total thickness (A + B) of the sealing electrode to the thickness (B) of the copper thin film is 20%, 30%, 45%, 50% and 60%.
The thickness (B) of the copper thin film and the thickness (A) of the iron-nickel alloy were changed so that The results are shown in Table 1 and FIG.
In Fig. 3, the vertical axis is the coefficient of thermal expansion and the horizontal axis is the ratio (P).
Indicates. The vertical axis E is 42% iron and 58 nickel.
% Of the alloy, the symbol F represents the coefficient of thermal expansion of copper, and the symbol G represents the coefficient of thermal expansion of lead glass. From these results, it was found that the thickness of the copper thin film 11b is preferably 30 to 45% of the total thickness of the sealing electrode. (Hereafter, margins on this page)

【0012】[0012]

【表1】 [Table 1]

【0013】<比較例>電極素体にニッケル42%−ク
ロム6%−鉄52%の合金を用い、電極素体にCr23
を形成して封止電極とした。この封止電極と実施例と同
じガラス管及びサージ吸収素子を用いてアルゴンガス入
りサージアブソーバを作製した。このときの封着温度は
900℃以上であった。この比較例のサージアブソーバ
と、上述した比率(P)が45%の実施例のサージアブソ
ーバの各サージ耐量及び寿命を測定した。その結果を表
2に示す。サージ耐量はJEC−212(電気学会、電
気規格調査会標準規格)に規定される(8×20)μ秒
のサージ電流を用いて測定した。また寿命はIEC−P
ub.60−2に規定される(1.2×50)μ秒の1
0kVのサージ電圧を繰返し印加してサージ吸収性能の
劣化が始る回数を調べた。表2より比較例のサージアブ
ソーバより実施例のサージアブソーバは封着温度が20
0℃以上低く、しかもサージ耐量が大きく、寿命が長い
ことが判明した。(以下、本頁余白)
Comparative Example A nickel 42% -chromium 6% -iron 52% alloy was used for the electrode body, and Cr 2 O 3 was used for the electrode body.
To form a sealing electrode. A surge absorber containing argon gas was produced using this sealing electrode, the same glass tube and surge absorbing element as in the example. The sealing temperature at this time was 900 ° C. or higher. The surge withstanding capacity and life of each of the surge absorber of this comparative example and the surge absorber of the example in which the ratio (P) was 45% were measured. The results are shown in Table 2. The surge withstand capability was measured using a surge current of (8 × 20) μsec defined in JEC-212 (standards of the Institute of Electrical Engineers of Japan, Electrical Standards Research Committee). The life is IEC-P
ub. 1 of (1.2 × 50) μsec specified in 60-2
A surge voltage of 0 kV was repeatedly applied to examine the number of times the deterioration of the surge absorption performance started. From Table 2, the sealing temperature of the surge absorber of the embodiment is 20 from that of the surge absorber of the comparative example.
It was found that the temperature was lower than 0 ° C, the surge resistance was large, and the life was long. (Hereafter, margins on this page)

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【発明の効果】以上述べたように、本発明によれば、次
の効果を奏する。 銅薄膜による熱膨張係数の調整に
より、鉄及びニッケルを含む合金の熱膨張係数がガラス
の熱膨張係数に近づくため、封着時のガラス管のクラッ
ク発生を防止することができる。 従来、鉄−ニッケ
ル合金では酸化膜が厚くなりすぎ、ガスバーナの炎を必
要とし、不活性ガス雰囲気中では封着できなかったもの
が、本発明では鉄−ニッケル合金であっても銅薄膜上の
Cu2O膜の存在により不活性ガス雰囲気中でカーボン
ヒータで封着することができる。 本発明の封止電極
の素体が鉄−ニッケル合金の場合、銅薄膜上のCu2
膜の存在により、従来の鉄−ニッケル−クロム合金の封
止電極より約200℃低い温度で封着することができ、
ガラス管内部のマイクロギャップ式サージ吸収素子の導
電性皮膜の熱ストレスが緩和される。 本発明の封止
電極の内面のCu2O膜は電子放射促進作用があるた
め、サージ電圧の印加時にはマイクロギャップ付近で開
始されたアーク放電がマイクロギャップ及び導電性皮膜
から離れた封止電極間で容易に行われるようになる。上
記及びにより、導電性皮膜の熱損傷がなくなりサー
ジアブソーバのサージ耐量を大きくできるとともに、寿
命を長くすることができる。
As described above, the present invention has the following effects. By adjusting the coefficient of thermal expansion by the copper thin film, the coefficient of thermal expansion of the alloy containing iron and nickel approaches the coefficient of thermal expansion of glass, so that cracking of the glass tube during sealing can be prevented. Conventionally, the iron-nickel alloy has a too thick oxide film, requires a gas burner flame, and could not be sealed in an inert gas atmosphere. Due to the presence of the Cu 2 O film, it is possible to seal with a carbon heater in an inert gas atmosphere. When the element body of the sealed electrode of the present invention is an iron-nickel alloy, Cu 2 O on the copper thin film is used.
Due to the presence of the film, it is possible to seal at a temperature about 200 ° C. lower than that of the conventional iron-nickel-chromium alloy sealing electrode,
The thermal stress of the conductive film of the micro gap type surge absorber inside the glass tube is relieved. Since the Cu 2 O film on the inner surface of the sealing electrode of the present invention has an electron emission promoting action, the arc discharge started in the vicinity of the microgap at the time of applying the surge voltage is generated between the sealing electrodes separated from the microgap and the conductive film. Will be done easily. Due to the above, heat damage to the conductive film is eliminated, the surge resistance of the surge absorber can be increased, and the life can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例のサージアブソーバの要部断面
図。
FIG. 1 is a sectional view of a main part of a surge absorber according to an embodiment of the present invention.

【図2】その外観斜視図。FIG. 2 is an external perspective view thereof.

【図3】その封止電極の銅薄膜の厚さに対する封止電極
全体の厚さの比率を変えたときの熱膨張係数の変化を示
す図。
FIG. 3 is a diagram showing changes in the coefficient of thermal expansion when the ratio of the thickness of the entire sealing electrode to the thickness of the copper thin film of the sealing electrode is changed.

【符号の説明】[Explanation of symbols]

10 ガラス管 11,12 封止電極 11a 電極素体 11b 銅薄膜 11c Cu2O膜 13 サージ吸収素子 13a 導電性皮膜 13b セラミックス素体 13c マイクロギャップ 13d キャップ電極 14 アルゴンガス(不活性ガス) 20 サージアブソーバ10 Glass Tube 11, 12 Sealing Electrode 11a Electrode Element 11b Copper Thin Film 11c Cu 2 O Film 13 Surge Absorbing Element 13a Conductive Film 13b Ceramics Element 13c Micro Gap 13d Cap Electrode 14 Argon Gas (Inert Gas) 20 Surge Absorber

【手続補正書】[Procedure amendment]

【提出日】平成4年8月18日[Submission date] August 18, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】銅薄膜11bによる電極素体11aとガラ
ス管10との熱膨張係数の調整度を調べるため、電極素
体11a(鉄−ニッケル合金)の厚さ(A)と銅薄膜11
bの厚さ(B)を変えて封着後のガラス管10のクラック
の発生の有無を目視により確認した。具体的には、封止
電極全体の厚さ(A+B)に対する銅薄膜の厚さ(B)の
比率(P)が20%、30%、45%、50%及び60%
になるように、銅薄膜の厚さ(B)及び鉄−ニッケル合金
の厚さ(A)を変えた。その結果を表1及び図3に示す。
図3において、たて軸は熱膨張係数、よこ軸は比率(P)
を示す。またたて軸の符号Eは鉄42%とニッケル58
%の合金の熱膨張係数、符号Fは銅の熱膨張係数、符号
Gは鉛ガラスの熱膨張係数をそれぞれ表わす。これらの
結果より、銅薄膜11bの厚さは封止電極全体の厚さの
30〜45%が適していることが判明した。(以下、本
頁余白) ─────────────────────────────────────────────────────
In order to check the degree of adjustment of the coefficient of thermal expansion between the electrode body 11a and the glass tube 10 by the copper thin film 11b, the thickness (A) of the electrode body 11a (iron-nickel alloy) and the copper thin film 11 are examined.
The thickness (B) of b was changed and the presence or absence of cracks in the glass tube 10 after sealing was visually confirmed. Specifically, the ratio (P) of the thickness (B) of the copper thin film to the total thickness (A + B) of the sealing electrode is 20%, 30%, 45%, 50% and 60%.
The thickness (B) of the copper thin film and the thickness (A) of the iron-nickel alloy were changed so that The results are shown in Table 1 and FIG.
In Fig. 3, the vertical axis is the coefficient of thermal expansion and the horizontal axis is the ratio (P).
Indicates. The vertical axis E is 42% iron and 58 nickel.
% Of the alloy, the symbol F represents the coefficient of thermal expansion of copper, and the symbol G represents the coefficient of thermal expansion of lead glass. From these results, it was found that the thickness of the copper thin film 11b is preferably 30 to 45% of the total thickness of the sealing electrode. (Hereafter, this page margin) ──────────────────────────────────────────── ──────────

【手続補正書】[Procedure amendment]

【提出日】平成4年9月25日[Submission date] September 25, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】[0009]

【実施例】次に、本発明の実施例を図面に基づいて詳し
く説明する。<実施例>図1及び図2に示すように、円
筒形のガラス管10の両端に封止電極11,12が封着
される。図では上端の封止電極11を詳細に示す。この
例では、ガラス管10は軟質ガラスの一種の鉛ガラスで
ある。また封止電極11は、鉄58%とニッケル42%
の合金からなる電極素体11aと、ガラス管10との接
触部分の素体11a表面及びガラス管10の内部に面す
る素体11a表面にそれぞれ形成された銅薄膜11b
と、銅薄膜11bの表面に形成されたCu2O膜11c
とにより構成される。電極素体11aをガラス管10に
挿入し得るようにハット状に成形した後、ガラス管10
との接触部分の素体表面及びガラス管10の内部に面す
る素体表面に銅薄膜11bを所定の厚さに形成する。銅
薄膜11bは銅めっきにより形成される。次いで銅薄膜
11bの形成された電極素体11aを高温の酸素雰囲気
下に置き、その後急冷して銅薄膜11b表面にCu2
膜11cを形成する。ガラス管10内にはマイクロギャ
ップ式のサージ吸収素子13が収容される。このサージ
吸収素子13は導電性皮膜13aで被包した円柱状のセ
ラミックス素体13bの周面に数10μmのマイクロギ
ャップ13cをレーザにより形成させた後、セラミック
ス素体の両端にキャップ電極13dを圧入して作られ
る。
Embodiments of the present invention will now be described in detail with reference to the drawings. <Example> As shown in FIGS. 1 and 2, sealing electrodes 11 and 12 are sealed at both ends of a cylindrical glass tube 10. In the figure, the sealing electrode 11 at the upper end is shown in detail. In this example, the glass tube 10 is a kind of soft glass lead glass. The sealing electrode 11 is made of iron 58% and nickel 42%.
Electrode body 11a made of the above alloy and a copper thin film 11b formed on the surface of the body 11a in contact with the glass tube 10 and the surface of the body 11a facing the inside of the glass tube 10, respectively.
And a Cu 2 O film 11c formed on the surface of the copper thin film 11b.
Composed of and. After forming the electrode body 11a into a hat shape so that it can be inserted into the glass tube 10, the glass tube 10
A copper thin film 11b having a predetermined thickness is formed on the surface of the element body in contact with and the surface of the element body facing the inside of the glass tube 10. The copper thin film 11b is formed by copper plating. Then, the electrode body 11a having the copper thin film 11b formed thereon is placed in a high-temperature oxygen atmosphere, and then rapidly cooled to form Cu 2 O on the surface of the copper thin film 11b.
The film 11c is formed. A microgap type surge absorbing element 13 is housed in the glass tube 10. In this surge absorbing element 13, after forming a microgap 13c of several tens of μm by a laser on the peripheral surface of a cylindrical ceramic body 13b covered with a conductive film 13a, cap electrodes 13d are press-fitted at both ends of the ceramic body. Made.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】銅薄膜11bによる電極素体11aとガラ
ス管10との熱膨張係数の調整度を調べるため、電極素
体11a(鉄−ニッケル合金)の厚さ(A)と銅薄膜11
bの厚さ(B)を変えて封着後のガラス管10のクラック
の発生の有無を目視により確認した。具体的には、封止
電極全体の厚さ(A+B)に対する銅薄膜の厚さ(B)の
比率(P)が20%、30%、45%、50%及び60%
になるように、銅薄膜の厚さ(B)及び鉄−ニッケル合金
の厚さ(A)を変えた。その結果を表1及び図3に示す。
図3において、たて軸は熱膨張係数、よこ軸は比率(P)
を示す。またたて軸の符号Eは鉄58%とニッケル42
%の合金の熱膨張係数、符号Fは銅の熱膨張係数、符号
Gは鉛ガラスの熱膨張係数をそれぞれ表わす。これらの
結果より、銅薄膜11bの厚さは封止電極全体の厚さの
30〜45%が適していることが判明した。(以下、本
頁余白)
In order to check the degree of adjustment of the coefficient of thermal expansion between the electrode body 11a and the glass tube 10 by the copper thin film 11b, the thickness (A) of the electrode body 11a (iron-nickel alloy) and the copper thin film 11 are examined.
The thickness (B) of b was changed and the presence or absence of cracks in the glass tube 10 after sealing was visually confirmed. Specifically, the ratio (P) of the thickness (B) of the copper thin film to the total thickness (A + B) of the sealing electrode is 20%, 30%, 45%, 50% and 60%.
The thickness (B) of the copper thin film and the thickness (A) of the iron-nickel alloy were changed so that The results are shown in Table 1 and FIG.
In Fig. 3, the vertical axis is the coefficient of thermal expansion and the horizontal axis is the ratio (P).
Indicates. The vertical axis E is 58% iron and 42% nickel.
% Of the alloy, the symbol F represents the coefficient of thermal expansion of copper, and the symbol G represents the coefficient of thermal expansion of lead glass. From these results, it was found that the thickness of the copper thin film 11b is preferably 30 to 45% of the total thickness of the sealing electrode. (Hereafter, margins on this page)

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】[0014]

【表2】 ─────────────────────────────────────────────────────
[Table 2] ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年3月23日[Submission date] March 23, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Name of item to be corrected] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガラス管(10)に封着される封止電極(11,
12)において、 鉄及びニッケルを含む合金からなる電極素体(11a)と、 前記ガラス管(10)との接触部分の前記素体(11a)表面及
び前記ガラス管(10)の内部に面する前記素体(11a)表面
にそれぞれ設けられた所定の厚さの銅薄膜(11b)と、 前記銅薄膜(11b)の表面に形成されたCu2O膜(11c)と
を備えたことを特徴とする封止電極。
1. A sealing electrode (11, 11) which is sealed to a glass tube (10).
In 12), the electrode element body (11a) made of an alloy containing iron and nickel, faces the surface of the element body (11a) at the contact portion with the glass tube (10) and the inside of the glass tube (10). A copper thin film (11b) having a predetermined thickness provided on the surface of the element body (11a), and a Cu 2 O film (11c) formed on the surface of the copper thin film (11b). And a sealing electrode.
【請求項2】 ガラス管(10)が軟質ガラスからなり、電
極素体(11a)が鉄42%とニッケル58%の合金からな
り、前記電極素体(11a)の厚さと銅薄膜(11b)の厚さの合
計値に対する銅薄膜の厚さの比率が30〜45%である
請求項1記載の封止電極。
2. The glass tube (10) is made of soft glass, the electrode body (11a) is made of an alloy of 42% iron and 58% nickel, the thickness of the electrode body (11a) and the copper thin film (11b). The sealing electrode according to claim 1, wherein the ratio of the thickness of the copper thin film to the total value of the thicknesses of 30 to 45%.
【請求項3】 Cu2O膜(11c)が銅薄膜(11b)を酸化さ
せることにより形成された請求項1記載の封止電極。
3. The sealed electrode according to claim 1, wherein the Cu 2 O film (11c) is formed by oxidizing the copper thin film (11b).
【請求項4】 ガラス管(10)と、 前記ガラス管(10)内に収容され、導電性皮膜(13a)で被
包した円柱状のセラミックス素体(13b)の周面にマイク
ロギャップ(13c)が形成され、前記セラミックス素体(13
b)の両端に一対のキャップ電極(13d)を有するサージ吸
収素子(13)と、 前記ガラス管810)の両端に封着した状態で前記サージ吸
収素子(13)を固定し、 かつ前記一対のキャップ電極(13d)に電気的に接続され
た請求項1記載の封止電極(11,12)と、 前記封止電極(11,12)と前記ガラス管(10)とにより形成
される空間に封入された不活性ガス(14)とを備えたサー
ジアブソーバ。
4. A microgap (13c) is provided on the peripheral surface of a glass tube (10) and a cylindrical ceramic body (13b) housed in the glass tube (10) and covered with a conductive film (13a). ) Is formed, and the ceramic body (13
b) a surge absorbing element (13) having a pair of cap electrodes (13d) at both ends, and the surge absorbing element (13) is fixed in a sealed state at both ends of the glass tube 810, and the pair of The sealing electrode (11, 12) according to claim 1, which is electrically connected to the cap electrode (13d), and a space formed by the sealing electrode (11, 12) and the glass tube (10). Surge absorber with enclosed inert gas (14).
JP4076357A 1992-02-27 1992-02-27 Sealing electrode and surge absorber using the same Expired - Lifetime JP2541069B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP4076357A JP2541069B2 (en) 1992-02-27 1992-02-27 Sealing electrode and surge absorber using the same
KR1019930703228A KR0139509B1 (en) 1992-02-27 1993-02-25 Sealing electrode and surge absorber using the same
DE4390682T DE4390682T1 (en) 1992-02-27 1993-02-25 Locking electrode and its use in surge protection
PCT/JP1993/000234 WO1993017475A1 (en) 1992-02-27 1993-02-25 Sealing electrode and surge absorber using such electrodes
US08/140,028 US5506071A (en) 1992-02-27 1993-02-25 Sealing electrode and surge absorber using the same
DE4390682A DE4390682C2 (en) 1992-02-27 1993-02-25 Overvoltage protection
GB9321710A GB2272329B (en) 1992-02-27 1993-02-25 Sealing electrode and surge absorber using the same
CA002107679A CA2107679A1 (en) 1992-02-27 1993-02-25 Sealing electrode and surge absorber using such electrodes
TW082101956A TW219403B (en) 1992-02-27 1993-03-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4076357A JP2541069B2 (en) 1992-02-27 1992-02-27 Sealing electrode and surge absorber using the same

Publications (2)

Publication Number Publication Date
JPH05242951A true JPH05242951A (en) 1993-09-21
JP2541069B2 JP2541069B2 (en) 1996-10-09

Family

ID=13603110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4076357A Expired - Lifetime JP2541069B2 (en) 1992-02-27 1992-02-27 Sealing electrode and surge absorber using the same

Country Status (1)

Country Link
JP (1) JP2541069B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008853A1 (en) 2003-07-17 2005-01-27 Mitsubishi Materials Corporation Surge absorber
EP1788680A1 (en) * 2004-07-15 2007-05-23 Mitsubishi Materials Corporation Surge absorber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124983A (en) * 1987-11-09 1989-05-17 Okaya Electric Ind Co Ltd Surge absorbing element
JPH01186579A (en) * 1988-01-14 1989-07-26 Mitsubishi Mining & Cement Co Ltd Microgap type surge absorption element
JPH0377292A (en) * 1989-08-18 1991-04-02 Hitachi Cable Ltd Electrode material for shock absorber and surge absorber using the same material
JPH0377293A (en) * 1989-08-18 1991-04-02 Hitachi Cable Ltd Electrode material for shock absorber and surge absorber using the same material
JPH03214580A (en) * 1990-01-16 1991-09-19 Mitsubishi Materials Corp Micro-gap type surge absorbing element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124983A (en) * 1987-11-09 1989-05-17 Okaya Electric Ind Co Ltd Surge absorbing element
JPH01186579A (en) * 1988-01-14 1989-07-26 Mitsubishi Mining & Cement Co Ltd Microgap type surge absorption element
JPH0377292A (en) * 1989-08-18 1991-04-02 Hitachi Cable Ltd Electrode material for shock absorber and surge absorber using the same material
JPH0377293A (en) * 1989-08-18 1991-04-02 Hitachi Cable Ltd Electrode material for shock absorber and surge absorber using the same material
JPH03214580A (en) * 1990-01-16 1991-09-19 Mitsubishi Materials Corp Micro-gap type surge absorbing element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008853A1 (en) 2003-07-17 2005-01-27 Mitsubishi Materials Corporation Surge absorber
US7660095B2 (en) 2003-07-17 2010-02-09 Mitsubishi Materials Corporation Surge protector
US7937825B2 (en) 2003-07-17 2011-05-10 Mitsubishi Materials Corporation Method of forming a surge protector
EP1788680A1 (en) * 2004-07-15 2007-05-23 Mitsubishi Materials Corporation Surge absorber
EP1788680A4 (en) * 2004-07-15 2013-12-04 Mitsubishi Materials Corp Surge absorber

Also Published As

Publication number Publication date
JP2541069B2 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
US7570473B2 (en) Surge absorber
US5506071A (en) Sealing electrode and surge absorber using the same
JP2541069B2 (en) Sealing electrode and surge absorber using the same
GB1587647A (en) Surge protectors
JP2541068B2 (en) Sealing electrode and surge absorber using the same
JP2910007B2 (en) surge absorber
JP2910006B2 (en) surge absorber
JP4544255B2 (en) Electronic component enclosure
CA2108828A1 (en) Encapsulated spark gap and method of manufacturing
JP3134905B2 (en) surge absorber
JPH057835B2 (en)
JP4265321B2 (en) surge absorber
JP3134912B2 (en) surge absorber
JPH11224761A (en) High voltage surge absorber
JP3969098B2 (en) surge absorber
JPS58198884A (en) Surge absorbing element
JP2021120943A (en) Surge protective element and manufacturing method of the same
JP2534954B2 (en) Discharge type surge absorber and method for manufacturing the same
JPH1022042A (en) Electronic part sealing body
JP4239422B2 (en) surge absorber
JP4123981B2 (en) Chip-type surge absorber and manufacturing method thereof
JPH10247578A (en) Manufacture of discharging serge absorption element
JPH0878133A (en) Serge absorber
JPH0216554Y2 (en)
JP2022138781A (en) Surge protection element and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 16