JPH07144997A - Production of x axis-oriented lithium niobate single crystal - Google Patents

Production of x axis-oriented lithium niobate single crystal

Info

Publication number
JPH07144997A
JPH07144997A JP29329293A JP29329293A JPH07144997A JP H07144997 A JPH07144997 A JP H07144997A JP 29329293 A JP29329293 A JP 29329293A JP 29329293 A JP29329293 A JP 29329293A JP H07144997 A JPH07144997 A JP H07144997A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
lithium niobate
melt
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29329293A
Other languages
Japanese (ja)
Other versions
JP2738641B2 (en
Inventor
Hideyuki Sekiwa
和 秀 幸 関
Noriyuki Miyazaki
崎 則 幸 宮
Hitoshi Uchida
田 仁 内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP29329293A priority Critical patent/JP2738641B2/en
Publication of JPH07144997A publication Critical patent/JPH07144997A/en
Application granted granted Critical
Publication of JP2738641B2 publication Critical patent/JP2738641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce an x axis-oriented lithium niobate single crystal without any macrodefect or microdefect. CONSTITUTION:A seed crystal is brought into contact with a melt in a crucible, and the single crystal is rotated and pulled up to grow a lithium niobate single crystal with the growth orientation as the x axis. In this case, the solid-liq. interface is concaved toward the melt by controlling the revolving speed of the crystal, and a/R expressing the concavity ((a) is the concave depth, and R is the crystal diameter) is limited to conform to 0.01<=a/R<=0.10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導波路型光デバイスな
どの光学材料に用いられる高品質のX軸方位ニオブ酸リ
ウチム(LiNbO:略してLN)単結晶の製造方法
に関するものである。
The present invention relates to a high-quality X-axis direction niobate Riuchimu used for an optical material such as a waveguide type optical device (LiNbO 3: short LN) a process for producing a single crystal.

【0002】[0002]

【従来の技術と解決しようとする課題】従来、導波路型
光デバイスとしてニオブ酸リチウム単結晶を使用する場
合、主に、Z軸、すなわち<001>方向に育成した結
晶を育成方向に垂直に切断研磨したZカット基板を使用
してきた。しかしながら、Zカット基板は、 特定の偏波方向を持った光に対してのみその特性を発
揮し、すなわち、偏波依存性を持ち、現行のシングルモ
ード光ファイバー伝送路の途中に任意に挿入して使用す
ることができない。
2. Description of the Related Art Conventionally, when a lithium niobate single crystal is used as a waveguide type optical device, a crystal grown in the Z-axis, that is, in the <001> direction is mainly made perpendicular to the growth direction. Z-cut substrates that have been cut and polished have been used. However, the Z-cut substrate exhibits its characteristics only for light having a specific polarization direction, that is, has polarization dependence, and can be arbitrarily inserted in the middle of the existing single-mode optical fiber transmission line. Cannot be used.

【0003】素子構成が方向性結合型であるため、温
度などの環境条件に影響されやすい。(参考文献;石
川、古田 電子情報通信学会技術研究報告 vol.91,No.
511,OCS91 75 85 Page51-58,1992)などの欠点を有して
おり、特に双方向光伝送用外部変調器などに使用するこ
とが困難であった。
Since the element structure is a directional coupling type, it is easily affected by environmental conditions such as temperature. (Reference: Ishikawa, Furuta Technical Report of IEICE vol.91, No.
511, OCS91 75 85 Page 51-58, 1992) and the like, and it was particularly difficult to use for an external modulator for bidirectional optical transmission.

【0004】一方、X軸、すなわち<100>方向に育
成したニオブ酸リチウム単結晶を育成方向に垂直に切断
研磨したXカット基板を用い、Z軸方向に光導波路を構
成し、Y軸方向に電界を印加する場合には偏波無依存性
が容易に得られ、Zカット基板に比較して温度などの環
境条件による特性変動の少ない導波路型光デバイスが製
造できる利点があった。ところが、ニオブ酸リチウム単
結晶の熱膨張係数には、異方性(X=Y≠Z)があり、
X軸育成のように育成面内に熱膨張係数の異なる方位
(YとZ)が混在する場合には、育成中結晶に歪みが局
所的に集中しやすく、育成中あるいは冷却中にクラック
が入ってしまったり、サブグレインなどの結晶欠陥が多
くなってしまったりする問題点があった。この問題点を
解決するため、従来は育成の安定性を考慮して固液界面
形状を融液側へ凸状にするように育成条件を決めてきた
が、満足な結果は得られていなかった。そのため、大型
のZ軸方位に育成したニオブ酸リチウム単結晶をX軸方
向に横抜きし、それを加工して、Xカット基板を得てい
た。この方法は、作業工程が多く、収率が悪いため、と
ても経済的とは言い難かった。
On the other hand, an X-cut substrate obtained by cutting and polishing a lithium niobate single crystal grown in the X-axis, that is, the <100> direction, is cut and polished perpendicularly to the growth direction to form an optical waveguide in the Z-axis direction and in the Y-axis direction. When an electric field is applied, polarization independence can be easily obtained, and there is an advantage that a waveguide type optical device with less characteristic variation due to environmental conditions such as temperature can be manufactured as compared with the Z-cut substrate. However, the coefficient of thermal expansion of the lithium niobate single crystal has anisotropy (X = Y ≠ Z),
When orientations (Y and Z) having different thermal expansion coefficients are mixed in the growth plane as in the case of X-axis growth, strain is likely to be locally concentrated in the crystal during the growth, and cracks may be generated during the growth or cooling. However, there are problems that the crystal defects such as sub-grains and the number of crystal defects such as sub-grains increase. In order to solve this problem, conventionally, the growth conditions were determined so that the solid-liquid interface shape was convex toward the melt side in consideration of the growth stability, but satisfactory results were not obtained. . Therefore, a large-sized lithium niobate single crystal grown in the Z-axis direction is laterally punched in the X-axis direction and processed to obtain an X-cut substrate. This method is not very economical because it has many working steps and the yield is low.

【0005】本発明は、導波路型光デバイス、特に双方
向光伝送用外部変調器などに使用可能なX軸方位ニオブ
酸リチウム単結晶を、クラックなどのマクロ的欠陥およ
びサブグレインなどのミクロ的欠陥無しに製造する方法
を提供することを目的とするものである。
The present invention is directed to an X-axis oriented lithium niobate single crystal which can be used in a waveguide type optical device, particularly an external modulator for bidirectional optical transmission, and a macroscopic defect such as a crack and a microscopic defect such as a subgrain. It is an object of the present invention to provide a manufacturing method without defects.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前述した
目的を達成すべく鋭意研究を重ねた結果、回転引き上げ
法によるX軸方位ニオブ酸リチウム単結晶育成におい
て、結晶回転数を制御することで、固液界面形状を融液
側へ凹状とし、かつその度合いを表すa/R(a;凹の
深さ、R;結晶径、図1参照)を、0.01≦a/R≦
0.10の範囲にすると、クラックなどのマクロ的欠陥
がなく、サブグレインなどのミクロ的欠陥の少ないX軸
方位ニオブ酸リチウム単結晶を製造することができるこ
とを見出した。
As a result of intensive studies to achieve the above-mentioned object, the inventors of the present invention have controlled the crystal rotation speed in the X-axis oriented lithium niobate single crystal growth by the rotation pulling method. Thus, the solid-liquid interface shape is concave toward the melt side, and a / R (a: depth of concave, R: crystal diameter, see FIG. 1) representing the degree is 0.01 ≦ a / R ≦
It has been found that when the range is 0.10, an X-axis oriented lithium niobate single crystal having no macroscopic defects such as cracks and few microscopic defects such as subgrains can be produced.

【0007】前述した通り、本発明は、導波路型光デバ
イス、特に双方向光伝送用外部変調器などに使用が可能
なX軸方位ニオブ酸リチウム単結晶を経済的に、かつ高
品質に製造する方法に係わるものである。回転引き上げ
法によるX軸方位ニオブ酸リチウム単結晶において、固
液界面形状を融液側へ凹状とし、かつその度合いを表す
a/R値を0.01≦a/R≦0.10の範囲に制御
し、好ましくはa/Rを0.03〜0.08の範囲に制
御するのであり、このように制御することによってクラ
ックなどのマクロ的欠陥がなく、サブグレインなどのミ
クロ的欠陥の少ない高品質なX軸方位ニオブ酸リチウム
単結晶を育成することができる。これに対して上記範囲
外の場合、たとえば固液界面形状が融液側に対して、フ
ラット(a/R=0)あるいは凸状(a/R<0)であ
る場合には、固液界面近傍並びに結晶表面に応力が集中
しやすく、結晶にクラックが入ったり、サブグレインな
どの欠陥が発生しやすくなる。また、固液界面形状が融
液側へ凹状であっても、a/R値が0.10を超えてし
まうと、結晶が融液から離れやすくなって、安定な育成
の持続が困難となる。かくして本発明では、0.01≦
a/R≦0.10の範囲の時のみ、クラックなどのマク
ロ的欠陥がなくサブグレインなどのミクロ的欠陥が少な
い高品質で、かつ導波路型光デバイスに使用可能なX軸
方位ニオブ酸リチウム単結晶を製造することができるの
である。
As described above, according to the present invention, an X-axis azimuth lithium niobate single crystal which can be used for a waveguide type optical device, particularly an external modulator for bidirectional optical transmission, can be manufactured economically and with high quality. It is related to the method of doing. In the X-axis orientation lithium niobate single crystal obtained by the rotary pulling method, the solid-liquid interface shape is concave toward the melt side, and the a / R value representing the degree is in the range of 0.01 ≦ a / R ≦ 0.10. It is controlled, and preferably a / R is controlled in the range of 0.03 to 0.08. By controlling in this way, macro defects such as cracks are not generated, and micro defects such as subgrains are few and high. It is possible to grow a high quality X-axis oriented lithium niobate single crystal. On the other hand, in the case of outside the above range, for example, when the solid-liquid interface shape is flat (a / R = 0) or convex (a / R <0) with respect to the melt side, the solid-liquid interface is Stress is likely to be concentrated in the vicinity and on the crystal surface, and the crystal is likely to be cracked and defects such as subgrains are easily generated. Further, even if the solid-liquid interface shape is concave toward the melt side, if the a / R value exceeds 0.10, the crystals are likely to separate from the melt, making it difficult to maintain stable growth. . Thus, in the present invention, 0.01 ≦
High quality X-axis oriented lithium niobate with no macroscopic defects such as cracks and microscopic defects such as subgrains only when a / R ≦ 0.10. A single crystal can be manufactured.

【0008】るつぼ内融液には、主に融液内温度差に基
づく自然対流と結晶回転に基づく強制対流が有り、後者
の優勢を保持することで、固液界面形状を融液側へ凹状
とすることができる。結晶回転条件は、炉構成、加熱源
とるつぼの相対位置、育成結晶径およびるつぼ径などに
よって異なるが、育成結晶を融液から切り離したときの
固液界面形状を観察し、その結果計算されるa/R値
と、結晶回転数との関係を調査することで、固液界面形
状を常に融液側へ凹状とし、かつa/R値を0.01≦
a/R≦0.10の範囲に制御することができる。ま
た、育成が進行するにつれて変化する自然対流の強さに
合わせて、結晶回転数(強制対流)を任意に変化させる
ことも可能である。
In the melt in the crucible, there are natural convection mainly due to the temperature difference in the melt and forced convection due to crystal rotation, and by maintaining the advantage of the latter, the solid-liquid interface shape is concave toward the melt. Can be The crystal rotation conditions vary depending on the furnace configuration, the relative position of the heating source and the crucible, the diameter of the grown crystal and the diameter of the crucible, but the solid-liquid interface shape when the grown crystal is separated from the melt is observed, and the result is calculated. By investigating the relationship between the a / R value and the crystal rotation speed, the solid-liquid interface shape is always concave toward the melt side, and the a / R value is 0.01 ≦.
It can be controlled within the range of a / R ≦ 0.10. It is also possible to arbitrarily change the crystal rotation speed (forced convection) according to the strength of natural convection that changes as the growth proceeds.

【0009】実際には、結晶回転数は種付け時20〜5
0rpmとして以後育成が進行するのに従って減少させ
るのが望ましい。しかし種付け開始時から22〜26r
pmの回転数で一定に保つようにしてもよい。
In practice, the crystal rotation speed is 20 to 5 at the time of seeding.
It is desirable to set it to 0 rpm and decrease it as the growth progresses thereafter. However, from the start of seeding 22-26r
You may make it hold | maintain constant by the rotation speed of pm.

【0010】ほぼ24時間結晶を育成した後、結晶を大
気中でアニールし、更に図2に従って結晶を切断してa
/Rの比を測定する。
After the crystal is grown for about 24 hours, the crystal is annealed in the atmosphere, and the crystal is cut according to FIG.
/ R ratio is measured.

【0011】即ち、結晶を円錐状部と円筒状部に分け、
円筒状部の底部を薄く切断してこの部分を試料部位と
する。又円筒状部乃至胴部の中央部を垂直方向に薄く切
断してこれを試料部位とする。この試料部位以外の
円筒状部は事実上二つの断面半円状に切断されている。
上記試料部位を両面研磨し、直交ニコルなどの光学的
方法でストリエーションを観察することで、a/R比を
計算する。また、試料部位を片面研磨して、ラングカ
メラ撮影することでサブグレインなどのシクロ的欠陥を
観察する。
That is, the crystal is divided into a conical portion and a cylindrical portion,
The bottom part of the cylindrical part is thinly cut to make this part a sample site. Further, the central portion of the cylindrical portion or the body portion is thinly cut in the vertical direction to form a sample portion. The cylindrical portion other than the sample portion is virtually cut into two semicircular cross sections.
The a / R ratio is calculated by polishing both sides of the sample part and observing striation by an optical method such as crossed Nicols. In addition, a sample site is polished on one side and photographed by a Lang camera to observe cyclo defects such as subgrains.

【0012】次に、本発明の代表的な実施例を示す。Next, a typical embodiment of the present invention will be shown.

【0013】[0013]

【実施例】【Example】

<実施例1>単結晶育成は、全て高周波誘導加熱による
回転引き上げ法(チョクラルスキー法)で行った。原料
として、純度4Nの炭酸リチウムと五酸化ニオブを原子
比で48.6:51.4になるように混合し、成型、焼
成した後、その約5200gを直径、高さおよび厚みが
夫々130mmφ、130mmおよび2.5mmの大き
さの白金るつぼに充填した。育成条件は、引き上げ速度
3mm/hr、育成方位<100>とし、約24時間か
けて大気中で育成した。結晶回転数は、種付け時30r
pmとし、その後徐々に減少させ、単結晶切り離し時2
0rpmとした。充填した原料の約60%を引き上げた
後、約20hrかけて室温まで冷却した。得られた結晶
は、クラックなどのマクロ的欠陥がなく、80mmφ×
100mmhのサイズで、結晶底面形状は融液側へ凹状
であった。
<Example 1> All single crystal growth was performed by the rotary pulling method (Czochralski method) by high frequency induction heating. As raw materials, lithium carbonate having a purity of 4N and niobium pentoxide were mixed so that the atomic ratio was 48.6: 51.4, and after molding and firing, about 5200 g thereof had a diameter, height and thickness of 130 mmφ, respectively. Platinum crucibles of 130 mm and 2.5 mm in size were filled. The growing conditions were a pulling rate of 3 mm / hr and a growing direction of <100>, and the growing was performed in the atmosphere for about 24 hours. Crystal rotation speed is 30r at seeding
pm, and then gradually decrease, when separating the single crystal 2
It was set to 0 rpm. After pulling up about 60% of the charged raw material, it was cooled to room temperature over about 20 hours. The obtained crystal has no macroscopic defects such as cracks, and has a diameter of 80 mmφ ×
The size of the crystal was 100 mmh, and the shape of the crystal bottom surface was concave toward the melt.

【0014】この結晶を大気中でアニールした後、図2
に示すように切断した。試料部位を両面研磨して直効
ニコル観察したところ、融液側の最大凹部深さa=2.
5mm〜5.0mmであり直径R=80mmであり、従
ってa/Rは0.03から0.06であった。また、試
料部位を片面研磨してラングカメラ撮影を行ったとこ
ろ、サブグレインなどのミクロ的欠陥はほとんど観察さ
れなかった。 <実施例2>結晶回転数を、種付けから育成終了まで2
2rpm一定とした以外、全て実施例1と同様の条件で
育成を行った。得られた結晶は、クラックなどのマクロ
的欠陥がなく、80mmφ×100mmhのサイズで、
結晶底面形状は融液側へ凹状であった。この結晶を大気
中でアニールした後、図2に示すように切断した。試料
部位を両面研磨して直効ニコル観察したところ、a/
Rは0.03から0.05であった。また、試料部位
を片面研磨してラングカメラ撮影を行ったところ、サブ
グレインなどのミクロ的欠陥はほとんど観察されなかっ
た。 <実施例3>結晶回転数を、24rpm一定とした以
外、全て実施例2と同様に育成を行った。得られた結晶
は、クラックなどのマクロ的欠陥がなく、80mmφ×
100mmhのサイズで、結晶底面形状は融液側へ凹状
であった。この結晶を大気中でアニールした後、図2に
示すように切断した。試料部位を両面研磨して直効ニ
コル観察したところ、a/Rは0.05から0.07で
あった。また、試料部位を片面研磨してラングカメラ
撮影を行ったところ、サブグレインなどのミクロ的欠陥
はほとんど観察されなかった。 <実施例4>結晶回転数を、26rpm一定とした以
外、全て実施例2と同様に育成を行った。得られた結晶
は、クラックなどのマクロ的欠陥がなく、80mmφ×
100mmhのサイズで、結晶底面形状は融液側へ凹状
であった。この結晶を大気中でアニールした後、図2に
示すように切断した。試料部位を両面研磨して直効ニ
コル観察したところ、a/Rは0.06から0.08で
あった。また、試料部位を片面研磨してラングカメラ
撮影を行ったところ、サブグレインなどのミクロ的欠陥
はほとんど観察されなかった。 <比較例1>結晶回転数を、6rpm一定とした以外、
全て実施例2と同様に育成を行った。得られた結晶は、
サイズが80mmφ×100mmで、直径20mmφ前
後からクラックが無数に発生していた。結晶底面形状は
融液側へ凸状で、a/R=−0.10であった。 <比較例2>結晶回転数を、10rpm一定とした以
外、全て実施例2と同様に育成を行った。得られた結晶
は、サイズが80mmφ×100mmで、直径25mm
φ前後からクラックが無数に発生していた。結晶底面形
状は融液側へ凸状で、a/R=−0.06であった。 <比較例3>結晶回転数を、30rpm一定とした以
外、全て実施例2と同様に育成を行った。しかし、育成
途中で結晶が融液から離れてしまった。得られた結晶
は、クラックなどのマクロ的欠陥がなく、80mmφ×
45mmのサイズであった。結晶底面形状は融液側へ凹
状で、a/R=0.15であった。この結晶を大気中で
アニールした後、直胴部を育成方向に垂直に切断研磨し
てラングカメラ撮影を行ったところ、サブグレインが観
察された。
After annealing this crystal in the atmosphere, as shown in FIG.
It was cut as shown in. When the sample site was polished on both sides and directly observed by Nicole, the maximum recess depth a on the melt side was a = 2.
It was 5 mm to 5.0 mm and the diameter R was 80 mm, so that a / R was 0.03 to 0.06. In addition, when the surface of the sample was polished on one side and photographed by a Lang camera, microscopic defects such as subgrains were hardly observed. <Example 2> The crystal rotation speed was 2 from seeding to the end of growth.
All were grown under the same conditions as in Example 1 except that the speed was kept constant at 2 rpm. The obtained crystal is free of macroscopic defects such as cracks, has a size of 80 mmφ × 100 mmh,
The crystal bottom shape was concave toward the melt. After annealing this crystal in the atmosphere, it was cut as shown in FIG. The sample area was polished on both sides and directly observed by Nicole.
R was 0.03 to 0.05. In addition, when the surface of the sample was polished on one side and photographed by a Lang camera, microscopic defects such as subgrains were hardly observed. <Example 3> The growth was performed in the same manner as in Example 2 except that the crystal rotation speed was kept constant at 24 rpm. The obtained crystal has no macroscopic defects such as cracks, and has a diameter of 80 mmφ ×
The size of the crystal was 100 mmh, and the shape of the crystal bottom surface was concave toward the melt. After annealing this crystal in the atmosphere, it was cut as shown in FIG. When the sample site was polished on both sides and directly observed by Nicole, a / R was 0.05 to 0.07. In addition, when the surface of the sample was polished on one side and photographed by a Lang camera, microscopic defects such as subgrains were hardly observed. <Example 4> The growth was performed in the same manner as in Example 2 except that the crystal rotation speed was kept constant at 26 rpm. The obtained crystal has no macroscopic defects such as cracks, and has a diameter of 80 mmφ ×
The size of the crystal was 100 mmh, and the shape of the crystal bottom surface was concave toward the melt. After annealing this crystal in the atmosphere, it was cut as shown in FIG. When the sample site was polished on both sides and directly observed by Nicole, a / R was 0.06 to 0.08. In addition, when the surface of the sample was polished on one side and photographed by a Lang camera, microscopic defects such as subgrains were hardly observed. <Comparative Example 1> Except that the crystal rotation speed was fixed at 6 rpm,
All were raised in the same manner as in Example 2. The obtained crystals are
The size was 80 mmφ × 100 mm, and innumerable cracks were generated around a diameter of 20 mmφ. The shape of the crystal bottom surface was convex toward the melt and was a / R = -0.10. <Comparative Example 2> The same growth as in Example 2 was performed except that the crystal rotation speed was fixed at 10 rpm. The obtained crystal has a size of 80 mmφ × 100 mm and a diameter of 25 mm.
Countless cracks were generated around φ. The crystal bottom shape was convex toward the melt, and was a / R = -0.06. <Comparative Example 3> The growth was performed in the same manner as in Example 2 except that the crystal rotation speed was kept constant at 30 rpm. However, the crystals separated from the melt during the growth. The obtained crystal has no macroscopic defects such as cracks, and has a diameter of 80 mmφ ×
It had a size of 45 mm. The crystal bottom shape was concave toward the melt, and a / R = 0.15. After this crystal was annealed in the air, the straight body was cut and polished perpendicularly to the growth direction and photographed by a Lang camera. Subgrains were observed.

【0015】以上実施例と比較例をまとめれば次の表の
とおりである。
The following table shows a summary of the examples and comparative examples.

【0016】 結晶回転数 a/R クラック サ ブ グ (rpm) レ イ ン 比較例1 6 -0.10 有り − 比較例2 10 -0.06 有り − 実施例1 20〜30 0.03〜0.06 無し 観察されず 実施例2 22 0.03〜0.05 無し 観察されず 実施例3 24 0.05〜0.07 無し 観察されず 実施例4 26 0.06〜0.08 無し 観察されず 比較例3 30 0.15 無し 有り [0016] Crystal rotation speed a / R Crack substituting (rpm) line Comparative Example 1 6 -0.10 Yes-Comparative Example 2 10 -0.06 Yes-Example 1 20-30 0.03 to 0.06 No Not observed Example 2 22 0.03 ~ 0.05 None Not observed Example 3 24 0.05 ~ 0.07 None None observed Example 4 26 0.06 ~ 0.08 None None observed No Comparative Example 3 30 0.15 None Yes

【0017】[0017]

【発明の効果】比較例1〜3に示した通り、固液界面形
状を融液側へ凹状とし、かつその度合いを表すa/R
を、0.01≦a/R≦0.10の範囲に制御しない
と、結晶に局所的応力が集中し、クラックやサブグレイ
ンなどの欠陥が発生した。
As shown in Comparative Examples 1 to 3, the solid / liquid interface shape is concave toward the melt side, and a / R represents the degree thereof.
Is not controlled within the range of 0.01 ≦ a / R ≦ 0.10, local stress is concentrated on the crystal and defects such as cracks and subgrains occur.

【0018】しかし、本発明方法に従って実施例1〜4
に示した通り、固液界面形状を融液側へ凹状とし、かつ
その度合いを表すa/Rを、0.01≦a/R≦0.1
0の範囲に制御すると、クラックなどのマクロ的欠陥や
サブグレインなどのミクロ的欠陥なしにX軸方位ニオブ
酸リチウム単結晶を製造することができる。
However, according to the method of the present invention, Examples 1-4 are used.
As shown in, the solid-liquid interface shape is concave toward the melt side, and a / R indicating the degree is 0.01 ≦ a / R ≦ 0.1.
When the content is controlled in the range of 0, an X-axis oriented lithium niobate single crystal can be produced without macroscopic defects such as cracks and microscopic defects such as subgrains.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法における固液界面形状を示す説明
図。
FIG. 1 is an explanatory view showing a solid-liquid interface shape in the method of the present invention.

【図2】育成した結晶を切断して試料部位を形成する状
態を示すための説明図。
FIG. 2 is an explanatory diagram showing a state in which a grown crystal is cut to form a sample portion.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】るつぼに収容された溶融液に種結晶を接触
させ、その種結晶を回転させながら引き上げ、育成方位
をX軸とするニオブ酸リチウム単結晶を成長させる際、
結晶回転数を制御することで、固液界面形状を融液側へ
凹状とし、かつその度合いを表すa/R(a;凹の深
さ、R;結晶径)を、0.01≦a/R≦0.10の範
囲にすることを特徴とするニオブ酸リチウム単結晶の製
造方法。
1. When a seed crystal is brought into contact with a melt contained in a crucible and the seed crystal is pulled up while rotating to grow a lithium niobate single crystal having a growth orientation as an X axis,
By controlling the crystal rotation speed, the solid-liquid interface shape is made concave toward the melt side, and a / R (a; depth of concave, R; crystal diameter) representing the degree is 0.01 ≦ a / A method for producing a lithium niobate single crystal, characterized in that R ≦ 0.10.
JP29329293A 1993-11-24 1993-11-24 Method for producing X-axis oriented lithium niobate single crystal Expired - Fee Related JP2738641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29329293A JP2738641B2 (en) 1993-11-24 1993-11-24 Method for producing X-axis oriented lithium niobate single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29329293A JP2738641B2 (en) 1993-11-24 1993-11-24 Method for producing X-axis oriented lithium niobate single crystal

Publications (2)

Publication Number Publication Date
JPH07144997A true JPH07144997A (en) 1995-06-06
JP2738641B2 JP2738641B2 (en) 1998-04-08

Family

ID=17792950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29329293A Expired - Fee Related JP2738641B2 (en) 1993-11-24 1993-11-24 Method for producing X-axis oriented lithium niobate single crystal

Country Status (1)

Country Link
JP (1) JP2738641B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116200828A (en) * 2023-05-06 2023-06-02 天通控股股份有限公司 Preparation method of large-size lithium niobate crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116200828A (en) * 2023-05-06 2023-06-02 天通控股股份有限公司 Preparation method of large-size lithium niobate crystal

Also Published As

Publication number Publication date
JP2738641B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
KR100232537B1 (en) Rutile single crystals and their growth processes
JP2738641B2 (en) Method for producing X-axis oriented lithium niobate single crystal
JP2003221299A (en) Large lithium niobate single crystal for optical application, and method and apparatus of the same
JP2738642B2 (en) X-axis orientation lithium niobate single crystal growing method
JP2507910B2 (en) Method for producing oxide single crystal
US5454345A (en) Method of growing single crystal of β-barium borate
JPS63301525A (en) Manufacture of bso wafer
US3775066A (en) Method for producing crystal plate of gadolinium molybdate
JP2739556B2 (en) Method for manufacturing piezoelectric crystal
JPS61266395A (en) Preparation of single crystal of oxide piezoelectric body
JPH0333096A (en) Production of magnesium-added lithium niobate single crystal
JP3037829B2 (en) Single crystal growing method and single crystal
KR920006204B1 (en) Linbo3 single crystal growing method
CN116397315A (en) CeF realized by using C-direction seed crystal 3 Method for directional growth of crystals
JP2913006B2 (en) Manufacturing method of optical fiber for manufacturing single crystal fiber optical waveguide structure
JPH06183896A (en) Method for growing lithium niobate single crystal
JP3115145B2 (en) Single crystal manufacturing method
JP2640615B2 (en) Method for manufacturing piezoelectric crystal
JPH09208380A (en) Production of oxide single crystal
JP2651788B2 (en) Method for producing lithium tetraborate single crystal
JPH0692781A (en) Production of single crystal and apparatus therefor
JPS59107996A (en) Single crystal growing up method of solid solution composition of inorganic compound oxide
JPS60195098A (en) Production of lithium niobate single crystal
JPH04325496A (en) Manufacture of magnesium added lithium niobade single crystal
JPH09241092A (en) Production of oxide single crystal