JPH07142713A - Semiconductor device and its production - Google Patents

Semiconductor device and its production

Info

Publication number
JPH07142713A
JPH07142713A JP5160874A JP16087493A JPH07142713A JP H07142713 A JPH07142713 A JP H07142713A JP 5160874 A JP5160874 A JP 5160874A JP 16087493 A JP16087493 A JP 16087493A JP H07142713 A JPH07142713 A JP H07142713A
Authority
JP
Japan
Prior art keywords
semiconductor
main surface
semiconductor region
electric field
type layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5160874A
Other languages
Japanese (ja)
Other versions
JP3211490B2 (en
Inventor
Tetsuro Mizoguchi
哲朗 溝口
Hideo Kobayashi
秀男 小林
Sumio Kawakami
澄夫 河上
Tsutomu Yao
勉 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16087493A priority Critical patent/JP3211490B2/en
Publication of JPH07142713A publication Critical patent/JPH07142713A/en
Application granted granted Critical
Publication of JP3211490B2 publication Critical patent/JP3211490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Abstract

PURPOSE:To reduce the expansion of space between equivalent electric field limiting rings and prevent the drop in breakdown strength by making a construction in a manner that there will exist a position to minimize the space to the utmost between adjoining electric field limiting rings, out of the main surface part of the semiconductor substrate. CONSTITUTION:A circular p<+> type layer 16 formed on the bottom of a circular groove 12a functions as an electric field to enhance the expansion of a depletion layer which is to be formed when a p-n joint between an n<-> type layer 14 and a p<+> type layer 15 is reverse-biased. Since the layer 16 is formed on the bottom of the groove 12a, the part in which the rings 16 are most close to each other is located away from the main surface 12 of the other. Therefore, even if any positive charge would be generated due to moving ions in the outer part of a semiconductor substrate 1 through a high-temperature bias test, the carrier density of the layer 14 in the part where the rings 16 are most close to each other is given no influence and the breakdown strength hardly drops.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高耐圧半導体装置に係
り、特に阻止特性の経時変化に対して非常に強い耐性を
有する半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high breakdown voltage semiconductor device, and more particularly to a semiconductor device having a very strong resistance to a change in blocking characteristic over time.

【0002】[0002]

【従来の技術】IGBT(Insulated Gate Bipolar Tra
nsistor),GTO(Gate Turn OffThyristor),SI
(Static Induction)サイリスタ,サイリスタ等の高耐
圧大電力半導体素子において、阻止特性の経時変化に対
する耐性の改善への要求が強い。特にIGBTは、元来
このような要求には不向きとされている浅い接合構造を
持つ素子であるが、電源電圧が数kV級の用途への適用
も期待されており、阻止特性の高信頼化は重要な課題で
ある。
2. Description of the Related Art IGBT (Insulated Gate Bipolar Tra
nsistor), GTO (Gate Turn OffThyristor), SI
(Static Induction) In high-voltage high-power semiconductor elements such as thyristors and thyristors, there is a strong demand for improvement in resistance to changes in blocking characteristics over time. In particular, the IGBT is an element having a shallow junction structure that is originally unsuitable for such requirements, but it is also expected to be applied to applications with a power supply voltage of several kV class, and the blocking characteristics are highly reliable. Is an important issue.

【0003】一般に、IGBTは高耐圧を得るため複数
個の電界制限リングと呼ばれる環状の領域が、チップ周
辺部に主接合を取り囲むように形成される。電界制限リ
ングは、阻止時にチップ周辺部の電界分布を均等化する
ことで、低い電圧での局部的な高電界の発生による降伏
をなくする働きをする。この技術により主接合が浅くと
もkVオーダの初期耐圧を得ることができる。しかしな
がら、実用化に際しては初期耐圧の達成に加えて、耐圧
の経時変化を許容範囲に抑える必要がある。この経時変
化は、長時間の高温強電界の付与条件下で、チップの封
入材のチップ近傍にまで可動イオンが侵入したり、封入
材が分極して素子外部に電荷が発生し、その電荷の作用
の結果素子内部の電界分布が変化することにより生じ
る。このような、不本意な電荷による悪影響を考慮した
従来技術が、Proceedings of Inte-rnational Symposiu
m on Power Semiconductor Devices & ICsのpp86−
pp90に示されている。電界制限リングで挟まれた領
域の表面部に高濃度層を設け、この高濃度層により半導
体装置外部の電荷の変化が半導体基体内におよぼす影響
を小さくするものである。
Generally, in order to obtain a high breakdown voltage, an IGBT is formed with a plurality of annular regions called electric field limiting rings surrounding the main junction in the peripheral portion of the chip. The electric field limiting ring functions to eliminate the breakdown due to the local generation of a high electric field at a low voltage by equalizing the electric field distribution around the chip at the time of blocking. With this technique, an initial breakdown voltage on the order of kV can be obtained even if the main junction is shallow. However, in practical use, in addition to achieving the initial withstand voltage, it is necessary to suppress the change in withstand voltage over time within an allowable range. This change with time is due to the fact that, under the condition of applying a high-temperature strong electric field for a long time, mobile ions penetrate to the vicinity of the chip of the encapsulating material of the chip, or the encapsulating material is polarized to generate electric charges outside the element. This is caused by a change in the electric field distribution inside the element as a result of the action. Proceedings of Inte-rnational Symposiu is a conventional technology that takes into consideration the adverse effects of such unwanted charges.
m on Power Semiconductor Devices & ICs pp86-
It is shown in pp90. A high-concentration layer is provided on the surface of the region sandwiched by the electric field limiting rings, and the high-concentration layer reduces the influence of changes in the charges outside the semiconductor device on the semiconductor substrate.

【0004】[0004]

【発明が解決しようとする課題】使用条件が厳しくなる
と、外部発生電荷は多くなる。この影響で、半導体基体
の表面部に形成される蓄積層の電子濃度が初期状態の電
子濃度を大きく超える。これにより等価的に電界制限リ
ング間の間隔は大きくなり、装置の耐圧は低下する。ま
た、蓄積層の電子濃度が大きくなるに伴い、電界制限リ
ングと隣接層間の接合部における電界集中による耐圧低
下が問題となる。更に、電界制限リングの隣接層の不純
物量を多くすれば、蓄積層による電子濃度の増加割合は
小さくできるが、電界制限リングと隣接層間の接合部に
おける電界集中による耐圧低下の影響が厳しくなり、初
期耐圧を得ることが困難になる。
When the conditions of use become strict, the amount of externally generated charges increases. Due to this effect, the electron concentration of the storage layer formed on the surface of the semiconductor substrate greatly exceeds the electron concentration in the initial state. This equivalently increases the distance between the electric field limiting rings and lowers the breakdown voltage of the device. Further, as the electron concentration in the storage layer increases, the breakdown voltage decreases due to electric field concentration at the junction between the electric field limiting ring and the adjacent layers. Furthermore, if the amount of impurities in the adjacent layer of the electric field limiting ring is increased, the rate of increase in electron concentration due to the storage layer can be reduced, but the influence of the breakdown voltage reduction due to the electric field concentration at the junction between the electric field limiting ring and the adjacent layer becomes severe, It becomes difficult to obtain the initial breakdown voltage.

【0005】本発明の目的は、従来技術のレベルを超え
た更なる高信頼化を達成するための電界制限リングを有
する半導体装置を与えることである。
An object of the present invention is to provide a semiconductor device having an electric field limiting ring for achieving higher reliability beyond the level of the prior art.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の手段は以下の通りである。
Means for achieving the above object are as follows.

【0007】第一の手段は、隣接する電界制限リングの
間の間隔が最も小さくなる位置が、半導体基体の主表面
部以外に存在するような構造とすることである。
The first means is to have a structure in which the position where the distance between the adjacent electric field limiting rings is the smallest exists outside the main surface portion of the semiconductor substrate.

【0008】第二の手段は、電界制限リングが半導体基
体の主表面に露出しない構造とすることである。
The second means is to have a structure in which the electric field limiting ring is not exposed on the main surface of the semiconductor substrate.

【0009】第一,第二の手段の具体的な一例として
は、半導体基体の主表面部に溝を設け、その溝の底部に
電界制限リングを設け、電界制限リングが溝の開口部を
有する面、即ち主表面には露出しない構造とすることで
ある。
As a concrete example of the first and second means, a groove is provided in the main surface of the semiconductor substrate, an electric field limiting ring is provided at the bottom of the groove, and the electric field limiting ring has an opening of the groove. The structure is not exposed on the surface, that is, the main surface.

【0010】第三の手段は、第一,第二の手段に加え、
半導体基体の主表面の周辺領域に、複数個の高濃度領域
を付加することである。この高濃度領域と電界制限リン
グは、低濃度のn−層で隔離しておくのが好ましい。ま
た、高濃度領域の単位面積当たりの不純物量を1013
cm2 以上とするのが好ましく、n型,p型のどちらでも
良い。
The third means is, in addition to the first and second means,
A plurality of high-concentration regions are added to the peripheral region of the main surface of the semiconductor substrate. The high concentration region and the electric field limiting ring are preferably separated by a low concentration n-layer. Further, the amount of impurities per unit area in the high concentration region is 10 13 /
It is preferable that the size is cm 2 or more, and either n-type or p-type may be used.

【0011】第三の手段の具体的な一例としては、第
一,第二の手段の具体的な一例の構造に加え、周辺領域
の溝の開口部を有する面、即ち主表面に複数個の高濃度
領域を付加することである。これらの高濃度領域と電界
制限リングは、低濃度のn−層で隔離しておくのが好ま
しい。また、高濃度領域の単位面積当たりの不純物量を
1013/cm2 以上とするのが好ましく、n型,p型のど
ちらでも良い。
As a concrete example of the third means, in addition to the structure of the concrete example of the first and second means, a plurality of surfaces are provided on the surface having the opening of the groove in the peripheral region, that is, the main surface. A high-concentration region is added. It is preferable that the high concentration region and the electric field limiting ring are separated by a low concentration n-layer. Further, the amount of impurities per unit area of the high concentration region is preferably 10 13 / cm 2 or more, and either n-type or p-type may be used.

【0012】次に上記手段を実現する製法の一つは、半
導体基体に溝を形成する工程,その溝の底部に不純物を
導入し電界制限リングを形成する工程及び溝を充填する
工程を含むものである。
Next, one of the manufacturing methods for realizing the above means includes a step of forming a groove in the semiconductor substrate, a step of introducing an impurity into the bottom of the groove to form an electric field limiting ring, and a step of filling the groove. .

【0013】他の製法としては、半導体基体内部に不純
物を導入する工程,この不純物導入層上に半導体層をエ
ピタキシャル成長させ、この不純物導入層による電界制
限リングを形成する工程を含むものである。
Another manufacturing method includes a step of introducing impurities into the semiconductor substrate, a step of epitaxially growing a semiconductor layer on the impurity introduced layer, and forming an electric field limiting ring by the impurity introduced layer.

【0014】更に他の製法としては、半導体基体内部に
高加速イオン注入法により不純物を導入する工程,この
不純物導入層による電界制限リングを形成する工程を含
むものである。
Still another manufacturing method includes a step of introducing impurities into the inside of the semiconductor substrate by a highly accelerated ion implantation method, and a step of forming an electric field limiting ring by this impurity introduction layer.

【0015】[0015]

【作用】上記の構成にすれば、隣接する電界制限リング
の間の間隔が、半導体基体の主表面部から離れた個所で
最も小さくなるような構造となっているため、半導体装
置の長期使用により半導体基体外に発生した電荷の作用
で表面部に蓄積層が形成されても、隣接する電界制限リ
ング間の間隔が最も小さい部分における電子濃度の変化
を防止することができる。このため、等価的な電界制限
リング間の間隔の増加はなくなり、耐圧の低下を防止で
きる。
According to the above structure, the distance between the adjacent electric field limiting rings is such that the distance between the adjacent electric field limiting rings is the smallest at the position away from the main surface of the semiconductor substrate. Even if the storage layer is formed on the surface due to the action of the charges generated outside the semiconductor substrate, it is possible to prevent the change in the electron concentration in the portion where the distance between the adjacent electric field limiting rings is smallest. For this reason, the equivalent distance between the electric field limiting rings does not increase, and the breakdown voltage can be prevented from lowering.

【0016】また、電界制限リングが半導体基体の主表
面に露出しない構造とすることに加えて、主表面部に形
成される蓄積層と電界制限リングを隔離することによ
り、隔離部で電圧を分担することになり、両者の接触部
付近で起きる電界集中による耐圧低下を排除することが
可能になる。
In addition to the structure in which the electric field limiting ring is not exposed on the main surface of the semiconductor substrate, the electric field limiting ring is isolated from the storage layer formed on the main surface so that the isolation portion shares the voltage. As a result, it becomes possible to eliminate the decrease in breakdown voltage due to the electric field concentration that occurs in the vicinity of the contact portion between the two.

【0017】更に、半導体基体の主表面の周辺領域に複
数個の高濃度領域を付加する構造にすれば、主表面部に
蓄積層が形成されても主表面部のキャリア濃度の変化の
割合は小さくなり、等価的な電界制限リング間の間隔の
増加は更に小さくなって、耐圧の低下を防止できる。
Further, by adopting a structure in which a plurality of high-concentration regions are added to the peripheral region of the main surface of the semiconductor substrate, even if an accumulation layer is formed on the main surface part, the rate of change in carrier concentration on the main surface part is small. As a result, the increase in the distance between the equivalent electric field limiting rings becomes smaller and the breakdown voltage can be prevented from lowering.

【0018】[0018]

【実施例】以下、本発明半導体装置を実施例として示し
た図面を用いて詳細に説明する。図1は、本発明半導体
装置の一実施例を示す平面パターン図(a)及び周辺領
域の断面図(b)である。図において、1は一対の主表
面11,12を有する半導体基体で、一方の主表面11
に隣接するp型層13,p型層13及び他方の主表面1
2に隣接しそれより低不純物濃度を有するn型層14,
他方の主表面12の中央部において他方の主表面12か
らn型層14内に延びるn型層14より高不純物濃度を
有するp型層15,他方の主表面12の周辺部に形成さ
れたp型層15を所定間隔を有して包囲する複数個の環
状溝12a,各環状溝12aの底部及びその近傍に隣接
してn型層14内に延びる環状のp型層16,p型層1
5と最内周側に環状溝12aとの間及び環状溝12a相
互間に位置し他方の主表面12に隣接するn型層14よ
り高不純物濃度を有するn型層17,他方の主表面12
の最周辺部において他方の主表面12に隣接するn型層
14より高不純物濃度を有する環状のn型層18を具備
している。2はp型層13にオーミックコンタクトした
第1の主電極、3はp型層15にオーミックコンタクト
した第2の主電極、4は環状溝12aの表面に形成され
た酸化シリコン層、5は環状溝12aに充填されたポリ
イミド樹脂である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The semiconductor device of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a plane pattern view (a) and a cross-sectional view (b) of a peripheral region showing an embodiment of the semiconductor device of the present invention. In the figure, 1 is a semiconductor substrate having a pair of main surfaces 11 and 12, one main surface 11
P-type layer 13 adjacent to the p-type layer 13, the p-type layer 13 and the other main surface 1
N-type layer 14 adjacent to 2 and having a lower impurity concentration,
A p-type layer 15 having a higher impurity concentration than the n-type layer 14 extending from the other main surface 12 into the n-type layer 14 in the central portion of the other main surface 12, and a p-type layer formed in the peripheral portion of the other main surface 12 A plurality of annular grooves 12a surrounding the mold layer 15 at a predetermined interval, an annular p-type layer 16 extending in the n-type layer 14 adjacent to the bottom of each annular groove 12a and its vicinity, and a p-type layer 1
5, an n-type layer 17 having a higher impurity concentration than the n-type layer 14 located between the annular groove 12a on the innermost peripheral side and between the annular grooves 12a and adjacent to the other main surface 12, and the other main surface 12
An annular n-type layer 18 having a higher impurity concentration than that of the n-type layer 14 adjacent to the other main surface 12 is provided at the outermost peripheral portion. Reference numeral 2 is a first main electrode in ohmic contact with the p-type layer 13, 3 is a second main electrode in ohmic contact with the p-type layer 15, 4 is a silicon oxide layer formed on the surface of the annular groove 12a, and 5 is an annular shape. It is a polyimide resin filled in the groove 12a.

【0019】この実施例において、環状溝12aの底部
に形成された環状のp型層16は、n型層14とp型層
15との間のpn接合が逆バイアスされた時に形成され
る空乏層の広がりを助長する電界制限リングとして機能
する。このp型層16は環状溝12aの底部に形成され
ているため、電界制限リング相互間の最も接近している
部分が他方の主表面12から離れた個所に位置してい
る。このため、高温逆バイアス試験によって半導体基体
外部に可動イオンによる正電荷が発生しても、それによ
って電界制限リング相互間の最も接近している部分のn
型層14のキャリア濃度には何ら影響を与えず、耐圧の
低下は殆ど生じない。また、他方の主表面12に隣接し
て不純物量が多いn型層17が存在しているため、発生
正電荷の影響でn型層17に電子が誘起されても、n型
層17の電子濃度の変化の割合が非常に小さく抑えら
れ、耐圧の低下は殆ど生じない。n型層17の単位面積
当たりの不純物量は、1013/cm2 以上である。更に、
環状溝12a内は酸化シリコン層4及びポリイミド樹脂
5で充填されているため、電界制限リングが印加電圧を
分担しても環状溝12aにおいて絶縁破壊を生じる心配
はない。
In this embodiment, the annular p-type layer 16 formed at the bottom of the annular groove 12a is depleted when the pn junction between the n-type layer 14 and the p-type layer 15 is reverse biased. It functions as an electric field limiting ring that promotes the spreading of layers. Since this p-type layer 16 is formed at the bottom of the annular groove 12a, the closest parts between the electric field limiting rings are located at positions apart from the other main surface 12. Therefore, even if positive charges due to mobile ions are generated outside the semiconductor substrate by the high temperature reverse bias test, the n of the closest parts between the electric field limiting rings are thereby generated.
The carrier concentration of the mold layer 14 is not affected at all, and the breakdown voltage hardly decreases. Further, since n-type layer 17 having a large amount of impurities exists adjacent to the other main surface 12, even if electrons are induced in n-type layer 17 due to the influence of generated positive charges, The rate of change in concentration is suppressed to a very small level, and the breakdown voltage hardly decreases. The amount of impurities per unit area of the n-type layer 17 is 10 13 / cm 2 or more. Furthermore,
Since the inside of the annular groove 12a is filled with the silicon oxide layer 4 and the polyimide resin 5, there is no fear of causing dielectric breakdown in the annular groove 12a even if the electric field limiting ring shares the applied voltage.

【0020】図1の実施例の変形例として、n型層17
の単位面積当たりの不純物量を図1の場合より少ない1
13/cm2 以下にしてもよい。この場合、n型層17の
キャリア濃度は多少変化が大きくなる。しかしながら、
電界制限リングの隣合う電界制限リング間が最も小さい
距離を持つ個所が他方の主表面12から離れているた
め、この個所でのキャリア濃度は殆ど変化しない。その
ため、他方の主表面12上に蓄積層が誘起されても、隣
合う電界制限リング間が最も小さい距離を持つ部分での
空乏層の拡がり易さは殆ど影響を受けない。即ち、等価
的電界制限リング間隔の変化は非常に小さい。従って、
図1の場合と同様に耐圧の低下は生じない。また、蓄積
層と電界効果リングとの接触部における電界集中による
耐圧低下も生じない。
As a modification of the embodiment shown in FIG. 1, the n-type layer 17 is used.
The amount of impurities per unit area is less than in the case of Fig. 1 1
It may be 0 13 / cm 2 or less. In this case, the carrier concentration of the n-type layer 17 slightly changes. However,
Since the portion having the smallest distance between adjacent electric field limiting rings of the electric field limiting ring is separated from the other main surface 12, the carrier concentration at this portion hardly changes. Therefore, even if the storage layer is induced on the other main surface 12, the ease with which the depletion layer spreads in the portion where the adjacent electric field limiting rings have the smallest distance is hardly affected. That is, the change in the equivalent electric field limiting ring interval is very small. Therefore,
As in the case of FIG. 1, the breakdown voltage does not decrease. Further, the breakdown voltage does not decrease due to the electric field concentration at the contact portion between the storage layer and the field effect ring.

【0021】図2は、本発明半導体装置の他の実施例を
示す概略断面図である。この実施例はn型層17が存在
しない点で図1の実施例と相違している。図面からは確
認できないが、n型層17が存在しないことから、p型
層15と環状溝12aの間隔及び環状溝12a相互間の
間隔等も図1の実施例の場合と異なっている。その他の
点は、図1の実施例の場合と同じである。この実施例の
場合、n型層17が無いので、発生正電荷の影響でn型
層14の他方の主表面12に隣接する個所に蓄積層が誘
起されキャリア濃度は大きく変化する。しかしながら、
電界制限リングとして機能するp型層16が他方の主表
面12から離れて形成されているので、n型層14表面
におけるキャリア濃度の変動は電界制限リングまでは及
ばず、耐圧の低下は小さくできる。
FIG. 2 is a schematic sectional view showing another embodiment of the semiconductor device of the present invention. This embodiment differs from the embodiment of FIG. 1 in that the n-type layer 17 is not present. Although it cannot be confirmed from the drawing, since the n-type layer 17 does not exist, the distance between the p-type layer 15 and the annular groove 12a and the distance between the annular grooves 12a are different from those in the embodiment of FIG. The other points are the same as in the case of the embodiment of FIG. In the case of this embodiment, since the n-type layer 17 is not provided, the storage layer is induced at a portion adjacent to the other main surface 12 of the n-type layer 14 due to the influence of the generated positive charges, and the carrier concentration greatly changes. However,
Since the p-type layer 16 functioning as an electric field limiting ring is formed apart from the other main surface 12, the fluctuation of the carrier concentration on the surface of the n-type layer 14 does not reach the electric field limiting ring, and the decrease in breakdown voltage can be reduced. .

【0022】図3は、図1の半導体装置の変形例を示す
概略断面図である。この変形例はn型層17の代わりに
p型層19を用いた点で図1の実施例と相違している。
この構成によっても図1の実施例の場合と同様に耐圧の
低下を防止できる。従来技術においては、n型層17を
p型層にすることは、電圧が電界制限リング間に分担さ
れなくなるため困難であった。本発明によれば、p型層
19と電界制限リングとなるp型層16とが離れた構成
にすることによって、電圧を電界制限リングで挟まれた
n型層14,p型層19と電界制限リングの間及び溝1
2a内の酸化シリコン層4,ポリイミド樹脂5で分担で
きるので、p型層19の適用が可能になったのである。
FIG. 3 is a schematic sectional view showing a modification of the semiconductor device of FIG. This modification is different from the embodiment of FIG. 1 in that a p-type layer 19 is used instead of the n-type layer 17.
With this configuration, it is possible to prevent the breakdown voltage from lowering as in the case of the embodiment of FIG. In the prior art, it was difficult to make the n-type layer 17 a p-type layer because the voltage is not shared between the electric field limiting rings. According to the present invention, the p-type layer 19 and the p-type layer 16 serving as the electric field limiting ring are separated from each other, so that the voltage is sandwiched between the n-type layer 14 and the p-type layer 19 and the electric field. Between limit rings and groove 1
Since the silicon oxide layer 4 and the polyimide resin 5 in 2a can be shared, the p-type layer 19 can be applied.

【0023】図4は、本発明半導体装置の更に他の実施
例を示す概略断面図である。この実施例は図2の実施例
のp型層16が他方の主表面12まで延在してたものと
みることができる。この場合、溝12aの側壁が他方の
主表面12に対して垂直であるため、p型層16も他方
の主表面12に対して垂直方向に延びることになり、隣
合う電界制限リング間が最も小さい距離を持つ部分が他
方の主表面12から内部に向かって広い範囲で存在する
ことになる。従って、n型層14表面におけるキャリア
濃度の変動によって他方の主表面12近傍で等価的電界
制限リング間隔の変化が生じても、他方の主表面12か
ら離れた個所で隣合う電界制限リング間が最も小さい距
離を持つ部分が依然として存在するため、耐圧の低下を
防止できる。
FIG. 4 is a schematic sectional view showing still another embodiment of the semiconductor device of the present invention. This embodiment can be regarded as the p-type layer 16 of the embodiment of FIG. 2 extending to the other main surface 12. In this case, since the side wall of groove 12a is perpendicular to the other main surface 12, p-type layer 16 also extends in the direction perpendicular to the other main surface 12, and the space between adjacent electric field limiting rings is the most. A portion having a small distance exists in a wide range from the other main surface 12 toward the inside. Therefore, even if the equivalent electric field limiting ring spacing changes in the vicinity of the other main surface 12 due to the fluctuation of the carrier concentration on the surface of the n-type layer 14, the distance between the adjacent electric field limiting rings at a location distant from the other main surface 12 is increased. Since the portion having the smallest distance still exists, it is possible to prevent the breakdown voltage from decreasing.

【0024】以上の実施例では、溝12aの充填にポリ
イミド樹脂が使われていたが、低不純物濃度或いはノン
ドープの多結晶シリコンを使っても良い。
In the above embodiments, the polyimide resin is used to fill the groove 12a, but low impurity concentration or non-doped polycrystalline silicon may be used.

【0025】図5は、図1に示す実施例の半導体装置の
製造方法を示す概略工程図である。まず、電界制限リン
グとなるp型層16以外の拡散工程が終了した半導体基
体1を準備し、その他方の主表面12に環状溝12aと
なる部分を除いて選択的に酸化シリコン膜61を形成し
(a)、この酸化シリコン膜61をマスクとして異方性
エッチングにより環状溝12aを形成する(b)。環状
溝12a内面に酸化シリコン膜62を形成し(c)、異
方性ドライエッチングを施して酸化シリコン膜62の厚
さが薄く水平面である溝の底のみの酸化シリコン膜62
が除去される(d)。この酸化シリコン膜62をマスク
として、p型不純物を拡散させると、環状溝12aの底
部とその近傍にのみ位置し他方の主表面12に露出しな
いp型層16が形成される(e)。次に、再び環状溝1
2aの内面全面に酸化シリコン膜4を形成し(f)、更
に環状溝12aをポリイミド樹脂5で充填し、エッチバ
ックして平坦化する(g)。その後、電極,保護膜を形
成し、素子が完成する。工程(f)において、環状溝1
2aの内面全面に酸化シリコン膜4を形成したが、この
工程は、必須ではない。ポリイミド樹脂5の充填後、高
温熱処理をせぬような手順としたが、ポリイミド樹脂5
の代わりに多結晶シリコンを使えば、環状溝12aに充
填後に高温の拡散熱処理を施すことになる。工程(b)
における、エッチングのマスク材は酸化シリコン以外の
物質、例えばアルミニウムでも良い。
FIG. 5 is a schematic process diagram showing a method of manufacturing the semiconductor device of the embodiment shown in FIG. First, the semiconductor substrate 1 after the diffusion process other than the p-type layer 16 to be the electric field limiting ring is prepared, and the silicon oxide film 61 is selectively formed on the other main surface 12 except the portion to be the annular groove 12a. Then, (a), the annular groove 12a is formed by anisotropic etching using the silicon oxide film 61 as a mask (b). A silicon oxide film 62 is formed on the inner surface of the annular groove 12a (c), and anisotropic dry etching is performed so that the silicon oxide film 62 has a thin thickness and is a horizontal surface.
Are removed (d). When the p-type impurity is diffused using the silicon oxide film 62 as a mask, a p-type layer 16 is formed which is located only at the bottom of the annular groove 12a and in the vicinity thereof and is not exposed on the other main surface 12 (e). Then again the annular groove 1
A silicon oxide film 4 is formed on the entire inner surface of 2a (f), and further the annular groove 12a is filled with a polyimide resin 5 and flattened by etching back (g). After that, electrodes and a protective film are formed to complete the device. In step (f), the annular groove 1
Although the silicon oxide film 4 is formed on the entire inner surface of 2a, this step is not essential. After the polyimide resin 5 was filled, the procedure was such that the high temperature heat treatment was not performed.
If polycrystalline silicon is used instead of, the high temperature diffusion heat treatment is performed after filling the annular groove 12a. Process (b)
In the above, the mask material for etching may be a substance other than silicon oxide, for example, aluminum.

【0026】この製造方法は、他の実施例にも適用でき
る。工程(a)で、n型層17のない半導体基体を使用
すれば図2に示す半導体装置が得られ、n型層17の代
わりにp型層を形成した半導体基体を使用すれば図3に
示す半導体装置が得られる。また、工程(a)でn型層
17のない半導体基体を使用し、工程(c)及び(d)を
省略すると図4に示す半導体装置が得られる。この場
合、環状溝12aの形成に完全な異方性エッチングは必
要ない。ある程度、環状溝12aの側壁が主表面12に
対する垂直性があれば、従来例の場合よりも信頼性を向
上させる効果はある。その理由は、主表面から離れたと
ころでの電界制限リング間の距離を、従来例の場合より
小さくできるからである。しかし、環状溝12aの形成
に異方性エッチングを使い、図4に示したように環状溝
12aの側壁部を垂直にする場合が、主表面から離れた
ところでの電界制限リング間の距離を小さくすることに
より効果があり、信頼性の改善効果は大きい。また、環
状溝12aの開口部より底部が広いような形状であれ
ば、更に効果は大きい。
This manufacturing method can be applied to other embodiments. In the step (a), the semiconductor device shown in FIG. 2 is obtained by using a semiconductor substrate without the n-type layer 17, and by using a semiconductor substrate having a p-type layer formed in place of the n-type layer 17 in FIG. The semiconductor device shown is obtained. If the semiconductor substrate without the n-type layer 17 is used in step (a) and steps (c) and (d) are omitted, the semiconductor device shown in FIG. 4 is obtained. In this case, complete anisotropic etching is not required to form the annular groove 12a. If the side wall of the annular groove 12a is perpendicular to the main surface 12 to some extent, there is an effect of improving reliability as compared with the case of the conventional example. The reason is that the distance between the electric field limiting rings at a distance from the main surface can be made smaller than in the case of the conventional example. However, when anisotropic etching is used to form the annular groove 12a and the side wall portion of the annular groove 12a is made vertical as shown in FIG. 4, the distance between the electric field limiting rings at a distance from the main surface is reduced. By doing so, there is an effect, and the effect of improving reliability is great. Further, if the shape is such that the bottom portion is wider than the opening portion of the annular groove 12a, the effect is further increased.

【0027】これまで述べた実施例では、後で述べる実
施例の場合と異なり、エピタキシャル成長を必要としな
い。そのため、工程制御面に起因するエピタキシャル成
長層の品質限界の特性への影響が無く、歩留まり良く高
い初期耐圧を得ることができる。即ち、半導体基体の不
純物濃度が低い場合も、電界制限リングで挟まれた領域
の不純物濃度を基体濃度と同じく低くできる。また、こ
の部分の欠陥密度も非常に小さくできる。
The embodiments described so far do not require epitaxial growth, unlike the embodiments described later. Therefore, there is no influence of the quality limit of the epitaxial growth layer on the characteristics due to the process control surface, and it is possible to obtain a high yield and a high initial breakdown voltage. That is, even when the impurity concentration of the semiconductor substrate is low, the impurity concentration of the region sandwiched by the electric field limiting rings can be made as low as the substrate concentration. Also, the defect density in this portion can be made very small.

【0028】図6は本発明半導体装置の異なる実施例を
示す概略断面図である。図1の実施例とは、環状溝12
aがないこと、環状溝12aがないことによりp型層1
6が埋込層となっていること及びn型層17相互間にn
型層14が露出していることにおいて相違している。こ
の構成においても図1の実施例と同じく本発明の特徴を
持っている。即ち、これらの電界制限リングでは、隣
合う電界制限リング間の距離が最も小さい部分が他方の
主表面12から離れて存在すること、電界制限リング
が他方の主表面12には露出していないこと、n型層
17が他方の主表面12に形成されていること、n型
層17と電界制限リングが隔離されていることが図1と
同一であることによる。このn型層17の単位面積当た
りの不純物量は1013/cm2 以上ある。
FIG. 6 is a schematic sectional view showing a different embodiment of the semiconductor device of the present invention. The embodiment of FIG. 1 differs from the annular groove 12
p-type layer 1 due to the absence of a and the absence of annular groove 12a
6 is an embedded layer, and n is provided between the n-type layers 17.
The difference is that the mold layer 14 is exposed. This configuration also has the features of the present invention as in the embodiment of FIG. That is, in these electric field limiting rings, a portion where the distance between adjacent electric field limiting rings is smallest exists apart from the other main surface 12, and the electric field limiting ring is not exposed to the other main surface 12. The fact that the n-type layer 17 is formed on the other main surface 12 and that the n-type layer 17 and the electric field limiting ring are separated is the same as in FIG. The amount of impurities per unit area of the n-type layer 17 is 10 13 / cm 2 or more.

【0029】図7は図6の実施例の変形例を示す概略断
面図である。図6の実施例とは、n型層17の間にp型
層21を付加した点で相違している。
FIG. 7 is a schematic sectional view showing a modification of the embodiment shown in FIG. The embodiment is different from the embodiment of FIG. 6 in that a p-type layer 21 is added between the n-type layers 17.

【0030】図8は図6の実施例の別の変形例を示す概
略断面図である。図6の実施例とは、n型層17の代わ
りにp型層22を用いた点で相違している。
FIG. 8 is a schematic sectional view showing another modification of the embodiment shown in FIG. It differs from the embodiment of FIG. 6 in that a p-type layer 22 is used instead of the n-type layer 17.

【0031】本発明の構造面での特徴、即ち、p+層1
8と電界制限リング8が離れていることにより、電圧
を、電界制限リング8で挟まれた領域,p+層18と電
界制限リング8で挟まれた領域及びp+層18で挟まれ
た領域で構成される領域で分担できるため、p+層18
の適用が可能になった。
The structural feature of the present invention, that is, the p + layer 1
8 and the electric field limiting ring 8 are separated from each other, the voltage is composed of a region sandwiched by the electric field limiting ring 8, a region sandwiched by the p + layer 18 and the electric field limiting ring 8 and a region sandwiched by the p + layer 18. The p + layer 18
Can be applied.

【0032】図9は図7の変形例の更なる変形例を示す
概略断面図である。図7の実施例とは、他方の主表面1
2に絶縁層23を介して高抵抗導電層24を設けた点で
相違している。この高抵抗導電層24に分路電流を流し
て装置の表面の電位分布を均一化することができる。高
抵抗導電層24としては、多結晶Siが使われている。
この場合には、本発明の特徴である構造による効果と、
高抵抗導電層24による高信頼化という効果を達成して
いる。この変形例では、表面に溝がない構造で平坦性が
良いため、多結晶Siによる高抵抗導電層24を形成し
易い。
FIG. 9 is a schematic sectional view showing a further modification of the modification of FIG. The other main surface 1 is different from the embodiment of FIG.
2 is different in that a high resistance conductive layer 24 is provided via an insulating layer 23. A shunt current can be passed through the high resistance conductive layer 24 to make the potential distribution on the surface of the device uniform. Polycrystalline Si is used for the high resistance conductive layer 24.
In this case, the effect of the structure, which is a feature of the present invention,
The high resistance conductive layer 24 achieves the effect of high reliability. In this modification, since the surface has no groove and the flatness is good, it is easy to form the high resistance conductive layer 24 of polycrystalline Si.

【0033】図10は図6の実施例の半導体装置の製造
方法の一部を示す概略工程図である。図6の半導体装置
は、半導体基体1のn型141層表面に選択的にp型不
純物161を導入し(a)、その上にn型層142をエ
ピタキシャル成長させる(b)。その後、n型層142
の表面付近にp型層15及びn型層17を形成して(c)
形成される。
FIG. 10 is a schematic process view showing a part of the method of manufacturing the semiconductor device of the embodiment of FIG. In the semiconductor device of FIG. 6, the p-type impurity 161 is selectively introduced into the surface of the n-type 141 layer of the semiconductor substrate 1 (a), and the n-type layer 142 is epitaxially grown thereon (b). Then, the n-type layer 142
Forming a p-type layer 15 and an n-type layer 17 near the surface of (c)
It is formed.

【0034】図11は本発明半導体装置の別の実施例を
示す概略断面図である。図1の実施例とは、p型層15
が環状溝12aと同じ深さの凹部12bの底部に形成さ
れていることである。p型層15と第2の主電極との間
及び環状溝12aの底部の酸化シリコン膜4を除去して
p型層16とポリイミド樹脂5との間にシリサイド層2
5を介在したことにおいて相違している。
FIG. 11 is a schematic sectional view showing another embodiment of the semiconductor device of the present invention. The embodiment of FIG. 1 is different from the p-type layer 15 in FIG.
Is formed at the bottom of the recess 12b having the same depth as the annular groove 12a. The silicon oxide film 4 at the bottom of the annular groove 12a is removed between the p-type layer 15 and the second main electrode to remove the silicide layer 2 between the p-type layer 16 and the polyimide resin 5.
The difference is that 5 is interposed.

【0035】図12は図11の実施例の変形例を示す概
略断面図で、図11の装置とはp型層15の深さよりp
型層16のそれを浅くした点において相違している。
FIG. 12 is a schematic sectional view showing a modification of the embodiment shown in FIG. 11. The device shown in FIG. 11 differs from the device shown in FIG.
The difference is that the mold layer 16 is shallower.

【0036】図13は図11の実施例の他の変形例を示
す概略断面図で、図12の装置とはp型層15とp型層
16とを接近させた点において相違している。このよう
にすれば、p型層15の接合から延びる空乏層が電界制
限リングとしてのp型層16に達し易いようになるた
め、p型層15の底部での電界集中が緩和され、図12
の場合に比べて初期耐圧は高くできる。
FIG. 13 is a schematic sectional view showing another modification of the embodiment shown in FIG. 11, which is different from the device shown in FIG. 12 in that the p-type layer 15 and the p-type layer 16 are brought close to each other. By doing so, the depletion layer extending from the junction of the p-type layer 15 easily reaches the p-type layer 16 as the electric field limiting ring, so that the electric field concentration at the bottom of the p-type layer 15 is relaxed, and the depletion layer is reduced.
The initial breakdown voltage can be made higher than in the case of.

【0037】図14は図11の実施例の更に他の変形例
を示す概略断面図で、図12の装置とは、環状溝12a
の深さと幅をp型層15から遠ざかるに従って浅くかつ
狭くした点で相違している。この構成によれば、p型層
15の底部での電界集中が緩和され、図12の場合に比
べ初期耐圧は高くできる。
FIG. 14 is a schematic sectional view showing still another modification of the embodiment shown in FIG. 11. The apparatus shown in FIG. 12 differs from the annular groove 12a.
The difference is that the depth and the width are made shallower and narrower with increasing distance from the p-type layer 15. According to this structure, the electric field concentration at the bottom of the p-type layer 15 is relaxed, and the initial breakdown voltage can be increased as compared with the case of FIG.

【0038】図15は図11の実施例の別の変形例を示
す概略断面図で、図11の実施例とは環状溝12aの深
さをp型層15から離れるに従って順次浅くするととも
に幅を狭くした点で相違している。この構造によると、
他の実施例ではもっとも厳しかったp型層15の底部で
の電界集中は緩和され、初期耐圧は他の実施例より向上
できる。
FIG. 15 is a schematic cross-sectional view showing another modification of the embodiment of FIG. 11, in which the depth of the annular groove 12a is gradually reduced as the distance from the p-type layer 15 is increased and the width thereof is made smaller. The difference is that it is narrowed. According to this structure,
The electric field concentration at the bottom of the p-type layer 15 which is the most severe in the other examples is relaxed, and the initial breakdown voltage can be improved as compared with the other examples.

【0039】図16は図15の実施例における環状溝1
2aの製造方法を示す概略工程図で、異方性エッチング
においては開口部の幅によって深さが自動的に決められ
るという性質を利用した製造方法である。工程(a)は
環状溝12aを形成する前の半導体基体1の他方の主表
面12上にマスクとしての酸化シリコン膜30を、p型
層15が形成される個所は薄い酸化シリコン膜30a、
環状溝12aが形成される個所は開口30b、他の個所
は厚い酸化シリコン膜30cとなるように形成する工程
である。この状態で、半導体基体1の他方の主表面12
に異方性エッチングを施すと、酸化シリコン膜30の開
口30bの部分ではその幅の相違により深さの異なる環
状溝12aが形成され、薄い酸化シリコン膜30aの部
分では開口30bの部分に比較して酸化シリコン膜30
aのエッチングに要する時間だけ半導体基体1のエッチ
ング時間が短くなり開口部の幅の割には浅い凹部が形成
される(b)。ここで、エッチングのマスク材は、酸化
シリコン以外の物質、例えばアルミニウム他でも良い。
FIG. 16 shows an annular groove 1 in the embodiment of FIG.
2a is a schematic process diagram showing the manufacturing method of 2a, which is a manufacturing method utilizing the property that the depth is automatically determined by the width of the opening in anisotropic etching. In the step (a), the silicon oxide film 30 as a mask is formed on the other main surface 12 of the semiconductor substrate 1 before the formation of the annular groove 12a, and the thin silicon oxide film 30a is formed on the p-type layer 15.
The process for forming the annular groove 12a is such that the place where the annular groove 12a is formed is the opening 30b and the other place is the thick silicon oxide film 30c. In this state, the other main surface 12 of the semiconductor substrate 1
When anisotropic etching is performed on the silicon oxide film 30, an annular groove 12a having a different depth is formed in the opening 30b portion of the silicon oxide film 30 due to the difference in width, and the thin silicon oxide film 30a portion is different from the opening 30b portion. Silicon oxide film 30
The etching time of the semiconductor substrate 1 is shortened by the time required for etching a, and a shallow recess is formed for the width of the opening (b). Here, the etching mask material may be a material other than silicon oxide, such as aluminum.

【0040】以上は本発明を代表的な実施例をベースに
説明したが、本発明はこれら実施例に限定されるもので
はなく、本発明の思想を逸脱しない範囲で種々の変形が
可能である。
Although the present invention has been described above based on typical embodiments, the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention. .

【0041】図17は、本発明半導体装置を適用したI
GBT及びダイオードを用いて電動機駆動用インバータ
装置を構成した一例を示したものである。六個のIGB
T,SW11,SW12,SW21,SW22,SW3
1,SW33により、三相誘導電動機を制御する例であ
る。IGBTは、スイッチング速度の大きい素子であ
り、これに本発明を適用することにより逆阻止電圧が高
くされたIGBT及びダイオードは長期に渡り使用して
も耐圧の低下がないので、インバータ装置の小型,軽
量,低損失化及び低雑音化等に効果があり、インバータ
装置を用いたシステムの低コスト,高効率化が達成でき
る。
FIG. 17 shows an I to which the semiconductor device of the present invention is applied.
1 is a diagram showing an example in which a motor driving inverter device is configured using a GBT and a diode. 6 IGB
T, SW11, SW12, SW21, SW22, SW3
1 is an example of controlling a three-phase induction motor by SW33. The IGBT is an element having a high switching speed, and since the IGBT and the diode whose reverse blocking voltage is increased by applying the present invention thereto does not lower the withstand voltage even if they are used for a long period of time, the size of the inverter device can be reduced. It is effective in weight reduction, loss reduction, and noise reduction, and can achieve low cost and high efficiency of a system using an inverter device.

【0042】[0042]

【発明の効果】本発明によれば、逆阻止電圧の低下が無
く素子を使用できる期間を大幅に長くできる。或いは、
事実上逆阻止電圧の低下の問題を根絶できるとも言え
る。また、素子の非常に過酷な環境での使用,低コスト
での実装にも道を開く。このような超高信頼化が、高い
初期耐圧を容易に達成しつつ実現できる。製造方法も容
易である。
According to the present invention, the period in which the device can be used can be greatly extended without a decrease in the reverse blocking voltage. Alternatively,
It can be said that the problem of the reduction of the reverse blocking voltage can be virtually eliminated. It also opens the way to the use of the device in extremely harsh environments and low-cost mounting. Such ultra-high reliability can be realized while easily achieving a high initial breakdown voltage. The manufacturing method is also easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明半導体装置の一実施例を示す概略平面図
及び断面図である。
FIG. 1 is a schematic plan view and a sectional view showing an embodiment of a semiconductor device of the present invention.

【図2】本発明半導体装置の他の実施例を示す概略断面
図である。
FIG. 2 is a schematic sectional view showing another embodiment of the semiconductor device of the present invention.

【図3】図1の半導体装置の変形例を示す概略断面図で
ある。
FIG. 3 is a schematic cross-sectional view showing a modified example of the semiconductor device of FIG.

【図4】本発明半導体装置の更に他の実施例を示す概略
断面図である。
FIG. 4 is a schematic sectional view showing still another embodiment of the semiconductor device of the present invention.

【図5】図1の半導体装置の製造方法を示す概略工程図
である。
5A to 5C are schematic process diagrams showing a method of manufacturing the semiconductor device of FIG.

【図6】本発明半導体装置の更に他の実施例を示す概略
断面図である。
FIG. 6 is a schematic sectional view showing still another embodiment of the semiconductor device of the present invention.

【図7】図6の半導体装置の変形例を示す概略断面図で
ある。
FIG. 7 is a schematic cross-sectional view showing a modified example of the semiconductor device of FIG.

【図8】図6の半導体装置の別の変形例を示す概略断面
図である。
8 is a schematic cross-sectional view showing another modification of the semiconductor device of FIG.

【図9】図7の変形例の更に別の変形例を示す概略断面
図である。
9 is a schematic cross-sectional view showing still another modification of the modification of FIG.

【図10】図6の半導体装置の製造方法を示す概略工程
図である。
10A to 10D are schematic process diagrams showing a method of manufacturing the semiconductor device of FIG.

【図11】本発明半導体装置の別の実施例を示す概略断
面図である。
FIG. 11 is a schematic sectional view showing another embodiment of the semiconductor device of the present invention.

【図12】図11の半導体装置の別の変形例を示す概略
断面図である。
12 is a schematic cross-sectional view showing another modified example of the semiconductor device of FIG.

【図13】図11の半導体装置の他の変形例を示す概略
断面図である。
13 is a schematic cross-sectional view showing another modified example of the semiconductor device of FIG.

【図14】図11の半導体装置の更に他の変形例を示す
概略断面図である。
FIG. 14 is a schematic sectional view showing still another modification of the semiconductor device of FIG.

【図15】図11の半導体装置の異なる変形例を示す概
略断面図である。
15 is a schematic cross-sectional view showing another modified example of the semiconductor device of FIG.

【図16】図15の半導体装置の製造方法を示す概略工
程図である。
16 is a schematic process diagram showing the method of manufacturing the semiconductor device of FIG.

【図17】本発明半導体装置を使った電動機駆動用イン
バータ装置の回路図である。
FIG. 17 is a circuit diagram of an electric motor driving inverter device using the semiconductor device of the present invention.

【符号の説明】[Explanation of symbols]

1…半導体基体、11,12…主表面、12a…環状
溝、16…p型層(電界制限リング)、17…n型層。
1 ... Semiconductor substrate, 11, 12 ... Main surface, 12a ... Annular groove, 16 ... P-type layer (electric field limiting ring), 17 ... N-type layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八尾 勉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsutomu Yao 7-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】半導体基体の主表面に一方導電型の第1の
半導体領域と、主表面から第1の半導体領域内に延びる
他方導電型の第2の半導体領域と、主表面及び第2の半
導体領域から離れた位置において第2の半導体領域から
順次遠ざかるように配置された第2の半導体領域を包囲
する複数個の他方導電型の第3の半導体領域と、主表面
において第2の半導体領域に設けられた電極とを具備す
ることを特徴とする半導体装置。
1. A first semiconductor region of one conductivity type on a main surface of a semiconductor substrate, a second semiconductor region of the other conductivity type extending from the main surface into the first semiconductor region, a main surface and a second surface. A plurality of third conductivity type third semiconductor regions surrounding the second semiconductor region, which are arranged so as to be distant from the second semiconductor region at positions distant from the semiconductor region, and the second semiconductor region on the main surface. And an electrode provided on the semiconductor device.
【請求項2】請求項1において、半導体基体の主表面か
ら第3の半導体領域に達する凹部が設けられ、この凹部
は絶縁物によって充填されていることを特徴とする半導
体装置。
2. A semiconductor device according to claim 1, wherein a recess reaching from the main surface of the semiconductor substrate to the third semiconductor region is provided, and the recess is filled with an insulating material.
【請求項3】請求項1または2において、半導体基体の
主表面の第2の半導体領域と第3の半導体領域との間及
び第3の半導体領域相互間に対応する個所に第1の半導
体領域より高不純物濃度を有する一方導電型または他方
導電型の複数個の第4の半導体領域を設けたことを特徴
とする半導体装置。
3. The first semiconductor region according to claim 1, wherein the first semiconductor region is provided on the main surface of the semiconductor substrate at a position corresponding to between the second semiconductor region and the third semiconductor region and between the third semiconductor regions. A semiconductor device comprising a plurality of fourth semiconductor regions of one conductivity type or the other conductivity type having a higher impurity concentration.
【請求項4】請求項1において、半導体基体の主表面の
第2の半導体領域と第3の半導体領域との間及び第3の
半導体領域相互間に対応する個所に第1の半導体領域よ
り高不純物濃度を有する一方導電型の複数個の第4の半
導体領域を設け、半導体基体の主表面の第3の半導体領
域相互間に対応する個所に第1の半導体領域より高不純
物濃度を有する他方導電型の複数個の第4の半導体領域
を設けたことを特徴とする半導体装置。
4. The semiconductor device according to claim 1, wherein a portion of the main surface of the semiconductor substrate that is located between the second semiconductor region and the third semiconductor region and between the third semiconductor regions is higher than the first semiconductor region. A plurality of one-conductivity-type fourth semiconductor regions having an impurity concentration are provided, and the other conductivity having a higher impurity concentration than the first semiconductor region is provided on the main surface of the semiconductor substrate at a position corresponding to each other between the third semiconductor regions. A semiconductor device comprising a plurality of fourth semiconductor regions of a mold.
【請求項5】半導体基体の主表面に一方導電型の第1の
半導体領域と、主表面から第1の半導体領域内に延びる
他方導電型の第2の半導体領域と、第2の半導体領域か
ら順次遠ざかるように離れた位置において主表面から第
1の半導体領域内に延びる第2の半導体領域を包囲する
複数個の他方導電型の第3の半導体領域と、主表面にお
いて第2の半導体領域に設けられた電極とを具備し、第
3の半導体領域相互間の最小間隔個所が主表面から離れ
ていることを特徴とする半導体装置。
5. A first semiconductor region of one conductivity type on the main surface of a semiconductor substrate, a second semiconductor region of the other conductivity type extending from the main surface into the first semiconductor region, and a second semiconductor region. A plurality of third semiconductor regions of the other conductivity type surrounding a second semiconductor region extending from the main surface into the first semiconductor region at positions spaced apart from each other in sequence, and a second semiconductor region on the main surface. A semiconductor device comprising: an electrode provided, wherein a minimum distance between the third semiconductor regions is away from the main surface.
【請求項6】請求項5において、半導体基体の主表面の
第2の半導体領域と第3の半導体領域との間及び第3の
半導体領域相互間に対応する個所に第1の半導体領域よ
り高不純物濃度を有する一方導電型または他方導電型の
複数個の第4の半導体領域を設けたことを特徴とする半
導体装置。
6. The semiconductor device according to claim 5, wherein a portion of the main surface of the semiconductor substrate which is located between the second semiconductor region and the third semiconductor region and between the third semiconductor regions is higher than the first semiconductor region. A semiconductor device comprising a plurality of one conductivity type or other conductivity type fourth semiconductor regions having an impurity concentration.
【請求項7】請求項5または6において、半導体基体の
主表面から第3の半導体領域に達する凹部が設けられ、
この凹部は絶縁物によって充填されていることを特徴と
する半導体装置。
7. The recess according to claim 5 or 6, wherein a recess reaching from the main surface of the semiconductor substrate to the third semiconductor region is provided.
A semiconductor device, wherein the recess is filled with an insulating material.
【請求項8】半導体基体の主表面に一方導電型の第1の
半導体領域と、主表面から第1の半導体領域内に延びる
他方導電型の第2の半導体領域と、主表面及び第2の半
導体領域から離れた位置において第2の半導体領域から
順次遠ざかるように、かつ遠ざかるように従って深さが
浅くなるように配置された第2の半導体領域を包囲する
複数個の他方導電型の第3の半導体領域と、主表面にお
いて第2の半導体領域に設けられた電極とを具備するこ
とを特徴とする半導体装置。
8. A first semiconductor region of one conductivity type on a main surface of a semiconductor substrate, a second semiconductor region of the other conductivity type extending from the main surface into the first semiconductor region, a main surface and a second surface. A plurality of third conductivity type thirds surrounding the second semiconductor region arranged so as to be gradually separated from the second semiconductor region at a position distant from the semiconductor region and to become shallower as the distance increases. A semiconductor device comprising: a semiconductor region; and an electrode provided in the second semiconductor region on the main surface.
【請求項9】請求項8において、半導体基体の主表面か
ら第3の半導体領域に達する凹部が設けられ、この凹部
は絶縁物によって充填されていることを特徴とする半導
体装置。
9. A semiconductor device according to claim 8, wherein a recess reaching from the main surface of the semiconductor substrate to the third semiconductor region is provided, and the recess is filled with an insulating material.
【請求項10】請求項9において、第2の半導体領域か
ら遠ざかるように従って凹部の幅が小さくなるようにさ
れていることを特徴とする半導体装置。
10. A semiconductor device according to claim 9, wherein the width of the recess is reduced as the distance from the second semiconductor region increases.
【請求項11】請求項8,9または10において、半導
体基体の主表面の第2の半導体領域と第3の半導体領域
との間及び第3の半導体領域相互間に対応する個所に第
1の半導体領域より高不純物濃度を有する一方導電型ま
たは他方導電型の複数個の第4の半導体領域を設けたこ
とを特徴とする半導体装置。
11. The semiconductor device according to claim 8, 9 or 10, wherein the first surface is provided on the main surface of the semiconductor substrate at a position corresponding to between the second semiconductor region and the third semiconductor region and between the third semiconductor regions. A semiconductor device comprising a plurality of fourth semiconductor regions of one conductivity type or the other conductivity type having a higher impurity concentration than that of the semiconductor region.
JP16087493A 1993-06-30 1993-06-30 Semiconductor device and manufacturing method thereof Expired - Fee Related JP3211490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16087493A JP3211490B2 (en) 1993-06-30 1993-06-30 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16087493A JP3211490B2 (en) 1993-06-30 1993-06-30 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07142713A true JPH07142713A (en) 1995-06-02
JP3211490B2 JP3211490B2 (en) 2001-09-25

Family

ID=15724242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16087493A Expired - Fee Related JP3211490B2 (en) 1993-06-30 1993-06-30 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3211490B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0813250A2 (en) * 1996-06-13 1997-12-17 Plessey Semiconductors Limited Trench semiconductor device
WO2005076362A3 (en) * 2004-02-02 2005-10-06 Hamza Yilmaz Semiconductor device containing dielectrically isolated doped field shield region
DE102007030755B3 (en) * 2007-07-02 2009-02-19 Infineon Technologies Austria Ag Semiconductor device having a trench edge having edge and method for producing a border termination
JP2010010556A (en) * 2008-06-30 2010-01-14 Denso Corp Semiconductor device
JP2010062377A (en) * 2008-09-04 2010-03-18 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2011114028A (en) * 2009-11-24 2011-06-09 Toyota Motor Corp SiC SEMICONDUCTOR DEVICE, AND METHOD OF MANUFACTURING THE SAME
US8080858B2 (en) 2006-08-03 2011-12-20 Infineon Technologies Austria Ag Semiconductor component having a space saving edge structure
JP2013080893A (en) * 2011-09-21 2013-05-02 Toshiba Corp Semiconductor device
JP2014195089A (en) * 2014-04-28 2014-10-09 Toshiba Corp Semiconductor device
US9252251B2 (en) 2006-08-03 2016-02-02 Infineon Technologies Austria Ag Semiconductor component with a space saving edge structure
US9640651B2 (en) 2014-02-10 2017-05-02 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method of manufacturing semiconductor device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0813250A3 (en) * 1996-06-13 1998-10-07 Mitel Semiconductor Limited Trench semiconductor device
EP0813250A2 (en) * 1996-06-13 1997-12-17 Plessey Semiconductors Limited Trench semiconductor device
WO2005076362A3 (en) * 2004-02-02 2005-10-06 Hamza Yilmaz Semiconductor device containing dielectrically isolated doped field shield region
US7323386B2 (en) 2004-02-02 2008-01-29 Hamza Yilmaz Method of fabricating semiconductor device containing dielectrically isolated PN junction for enhanced breakdown characteristics
US7405452B2 (en) 2004-02-02 2008-07-29 Hamza Yilmaz Semiconductor device containing dielectrically isolated PN junction for enhanced breakdown characteristics
US7427800B2 (en) 2004-02-02 2008-09-23 Hamza Yilmaz Semiconductor device containing dielectrically isolated PN junction for enhanced breakdown characteristics
US7489011B2 (en) 2004-02-02 2009-02-10 Hamza Yilmaz Semiconductor device containing dielectrically isolated PN junction for enhanced breakdown characteristics
US8080858B2 (en) 2006-08-03 2011-12-20 Infineon Technologies Austria Ag Semiconductor component having a space saving edge structure
US9627520B2 (en) 2006-08-03 2017-04-18 Infineon Technologies Austria Ag MOS transistor having a cell array edge zone arranged partially below and having an interface with a trench in an edge region of the cell array
US9252251B2 (en) 2006-08-03 2016-02-02 Infineon Technologies Austria Ag Semiconductor component with a space saving edge structure
US8093676B2 (en) 2007-07-02 2012-01-10 Infineon Technologies Austria Ag Semiconductor component including an edge termination having a trench and method for producing
DE102007030755B3 (en) * 2007-07-02 2009-02-19 Infineon Technologies Austria Ag Semiconductor device having a trench edge having edge and method for producing a border termination
JP2010010556A (en) * 2008-06-30 2010-01-14 Denso Corp Semiconductor device
JP2010062377A (en) * 2008-09-04 2010-03-18 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2011114028A (en) * 2009-11-24 2011-06-09 Toyota Motor Corp SiC SEMICONDUCTOR DEVICE, AND METHOD OF MANUFACTURING THE SAME
JP2013080893A (en) * 2011-09-21 2013-05-02 Toshiba Corp Semiconductor device
US9640651B2 (en) 2014-02-10 2017-05-02 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method of manufacturing semiconductor device
JP2014195089A (en) * 2014-04-28 2014-10-09 Toshiba Corp Semiconductor device

Also Published As

Publication number Publication date
JP3211490B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
US9576841B2 (en) Semiconductor device and manufacturing method
KR101745776B1 (en) Power Semiconductor Device
KR100841141B1 (en) Semiconductor device and method of forming a semiconductor device
US8482062B2 (en) Semiconductor device having a floating semiconductor zone
JP2000101082A (en) Edge structure and drift region for semiconductor constituent element and manufacture thereof
US9391137B2 (en) Power semiconductor device and method of fabricating the same
JPH1154519A (en) Semiconductor device and its manufacture
JP4108762B2 (en) Semiconductor devices that can be controlled by field effects
JP3211490B2 (en) Semiconductor device and manufacturing method thereof
US20220020850A1 (en) Feeder design with high current capability
JP2010003762A (en) High breakdown voltage semiconductor device
US11764295B2 (en) Gate trench power semiconductor devices having improved deep shield connection patterns
JPH11297994A (en) Semiconductor device
CN115148826B (en) Manufacturing method of deep-groove silicon carbide JFET structure
JP4096722B2 (en) Manufacturing method of semiconductor device
JP2013251467A (en) Semiconductor device and semiconductor device manufacturing method
KR101949519B1 (en) Power semiconductor device and method of fabricating the same
KR101949511B1 (en) Power semiconductor device and method of fabricating the same
CN116387348B (en) Planar SiC MOSFET capable of precisely controlling short channel and manufacturing method thereof
US5578859A (en) Semiconductor structure having one or more lateral, high-blocking semiconductor components
RU2059327C1 (en) Planar thyristor
KR100320955B1 (en) Triac semiconductor device having a pressure-resistant support region having a surface layer at a low concentration, and a manufacturing method thereof
CN116598343A (en) Trench silicon carbide diode device structure and manufacturing method thereof
JPS6310900B2 (en)
JPH0846178A (en) Self-arc-extinguishing reeversely conducting thyristor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees