JPH07142082A - Retainer type sealed lead-acid battery - Google Patents

Retainer type sealed lead-acid battery

Info

Publication number
JPH07142082A
JPH07142082A JP5307428A JP30742893A JPH07142082A JP H07142082 A JPH07142082 A JP H07142082A JP 5307428 A JP5307428 A JP 5307428A JP 30742893 A JP30742893 A JP 30742893A JP H07142082 A JPH07142082 A JP H07142082A
Authority
JP
Japan
Prior art keywords
powder layer
average pore
battery
pore diameter
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5307428A
Other languages
Japanese (ja)
Inventor
Kenji Asai
兼治 浅井
Takashi Yazaki
貴史 矢崎
Yasutaka Doyama
堂山  泰隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP5307428A priority Critical patent/JPH07142082A/en
Publication of JPH07142082A publication Critical patent/JPH07142082A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a retainer type sealed lead-acid battery having a trickle service life characteristic, a cycle service life characteristic and an excellent overcharge characteristic. CONSTITUTION:A powder layer 11 arranged around a plate group and a continuous foam body 2 arranged between a powder layer 4 and a storage battery cover, are provided, and the average pore diameter of the powder layer 4 is set larger than the average hole diameter of a separator, and the average hole diameter of the continuous foam body 2 is set larger than the average pore diameter of the powder layer 4. Through electrolyte inside of a battery is reduced by steam permeation as a trickle service life test makes progress, when the average pore diameter of the powder layer 4 is larger than the average hole diameter of the separator, the reduction in the electrolyte is caused from the powder layer 4, and an IR loss is not caused in the separator. Since the powder layer does not move freely, the expansion of a positive electrode plate by corrosion is restrained, and since the pressure degree of a plate group 3 is increased, service life performance is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリテーナ式密閉型鉛蓄電
池の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a retainer type sealed lead acid battery.

【0002】[0002]

【従来の技術】蓄電池の充電中に発生する酸素ガスを負
極板で吸収する、いわゆる酸素サイクルを利用した密閉
型鉛蓄電池には、リテーナ式とゲル式の二種類があり、
現在、主にリテーナ式が用いられている。
2. Description of the Related Art There are two types of retainer type and gel type sealed lead-acid batteries that use a so-called oxygen cycle, in which a negative electrode plate absorbs oxygen gas generated during charging of the battery.
Currently, the retainer type is mainly used.

【0003】リテーナ式は、正極板と負極板との間に挿
入した微細なガラス繊維を素材とするマット状セパレー
タ(ガラスセパレータ)で充放電に必要な硫酸電解液の
保持と両極の隔離とを行う方式である。リテーナ式は無
保守、無漏液、ポジションフリーなどの特徴を活かし
て、近年ポータブル機器、コードレス機器、コンピュー
ターのバックアップ電源をはじめ、大型の据置用電池や
自動車のエンジン始動用にも使用されるようになってき
た。
The retainer type is a mat-like separator (glass separator) made of fine glass fibers inserted between a positive electrode plate and a negative electrode plate for holding a sulfuric acid electrolytic solution necessary for charging and discharging and for separating both electrodes. This is the method to do. The retainer type has the advantages of no maintenance, no leakage, position-free, etc., and in recent years it has been used for portable devices, cordless devices, backup power sources for computers, large stationary batteries, and for starting the engine of automobiles. Has become.

【0004】[0004]

【発明が解決しようとする課題】ところが、密閉型鉛蓄
電池では、過充電や使用雰囲気が40℃以上のとき、電
槽から電解液の水分が水蒸気となって透出するため、電
解液が除々に減少する。このためセパレータ中の電解液
が減少し、IR損失が大きくなるといった問題がある。
それゆえ、特にUPS用途等の高率放電時では、性能が
大きく低下してしまうことがある。
However, in the sealed lead-acid battery, when the overcharge or the use atmosphere is 40 ° C. or higher, the water content of the electrolytic solution permeates as water vapor, so that the electrolytic solution is gradually removed. Decrease to. For this reason, there is a problem that the electrolytic solution in the separator decreases and the IR loss increases.
Therefore, especially at the time of high-rate discharge such as UPS application, the performance may be significantly reduced.

【0005】この問題を防ぐには、初めから電解液を過
剰に存在させておけば良いが、リテーナ式密閉型鉛蓄電
池のポジションフリーという特徴を潰してしまうことに
なり、十分な解決策とはいいがたい。
In order to prevent this problem, it is sufficient to make the electrolyte excessively exist from the beginning, but this will destroy the position-free characteristic of the retainer type sealed lead acid battery, and is not a sufficient solution. I'm sorry.

【0006】他の方法として、蓄電池内部をセパレータ
の平均孔径よりも大きい平均空孔径を有する粉体層で満
たすことも考えられるが、蓄電池の構造上、内部一杯に
粉体を充填することは非常に困難である。
As another method, it is possible to fill the inside of the storage battery with a powder layer having an average pore size larger than the average pore size of the separator, but it is extremely difficult to fill the inside of the storage battery with the powder because of the structure of the storage battery. Difficult to do.

【0007】この発明は、上記のような課題を解決する
ためになされたものであり、その目的とするところは、
過充電時や高温使用時における水分減少によりセパレー
タでの電気抵抗が増大し、大きなIR損失が生ずること
を防止しうるとともに、サイクル寿命特性や過充電特性
にも優れたリテーナ式密閉型鉛蓄電池を提供することで
ある。
The present invention has been made in order to solve the above problems, and its purpose is to:
A retainer-type sealed lead-acid battery that can prevent the occurrence of a large IR loss due to an increase in electrical resistance at the separator due to a decrease in water content during overcharge or high temperature use, as well as excellent cycle life characteristics and overcharge characteristics. Is to provide.

【0008】[0008]

【課題を解決するための手段】そこで、極板群周辺に配
された粉体層と、粉体層と蓄電池蓋との間に配された連
続気泡体とを備え、粉体層の平均空孔径はセパレータの
平均孔径よりも大きく、連続気泡体の平均孔径は粉体層
の平均空孔径よりも大きいものである、リテーナ式密閉
型鉛蓄電池とすることにより、従来の課題を解決するも
のである。尚、本発明において、連続気泡体とは内部に
連続気泡を有する部材の総称である。
[Means for Solving the Problems] Therefore, the powder layer disposed around the electrode plate group and the open-cell body disposed between the powder layer and the storage battery lid are provided. The pore size is larger than the average pore size of the separator, and the average pore size of the open-cell body is larger than the average pore size of the powder layer.By using the retainer type sealed lead-acid battery, the conventional problems can be solved. is there. In addition, in the present invention, the open-cell body is a general term for members having open cells therein.

【0009】[0009]

【実施例】以下、本発明を実施例により詳細に説明す
る。セパレータには、ガラス繊維の平均直径約1μm、
多孔度約94%の通常使用されているものを用い、20
kg/dm2 荷重下で、厚さが1.5mmのものを使用
し、これに正極板と負極板とを組み合わせ(極板間は
1.5mm)、2V定格容量8Ah(20hR)の蓄電
池を製作した。その後、蓋の開口部より粉体を充填し粉
体層を形成し、その後、蓋の開口部より発泡性樹脂を充
填して蓄電池内部で発泡させた。また、粉体としては、
ソーダ石灰ガラスよりなり真球に近く自身は孔をほとん
ど持たないガラスビーズを用いた。また、比較のため、
蓋裏空間に連続気泡を有する発泡性樹脂の代わりに無気
泡性樹脂を配した蓄電池、及び粉体層は設けてあるが、
その上部には自由空間を有する蓄電池についても製作し
た。さらに、粉体層の平均空孔径は、種々の粒径の粉体
を用い、1、20、50、100μmとした。この例で
は連続気泡を有する発泡体の平均孔径は約200μmで
あったが、液保持機能との関係上、連続気泡体の平均孔
径の方が粉体層の平均空孔径よりも大きくする必要があ
る。
EXAMPLES The present invention will be described in detail below with reference to examples. The separator has a glass fiber average diameter of about 1 μm,
Using a commonly used one with porosity of about 94%, 20
A storage battery with a 2V rated capacity of 8Ah (20hR) is used, which has a thickness of 1.5mm under a load of kg / dm 2 and is combined with a positive electrode plate and a negative electrode plate (between the electrode plates is 1.5mm). I made it. Then, powder was filled from the opening of the lid to form a powder layer, and then foamable resin was filled from the opening of the lid to foam inside the storage battery. Also, as powder,
Glass beads made of soda-lime glass, which is close to a true sphere and has almost no holes, were used. Also, for comparison,
Although a storage battery in which a non-cellular resin is arranged in place of the foamable resin having open cells in the space behind the lid and a powder layer are provided,
A storage battery having a free space above it was also manufactured. Further, the average pore diameter of the powder layer was set to 1, 20, 50, and 100 μm by using powders having various particle diameters. In this example, the average pore size of the foam having open cells was about 200 μm, but it is necessary to make the average pore size of the open cells larger than the average pore size of the powder layer in view of the liquid retention function. is there.

【0010】尚、粉体層の平均空孔径は(株)島津製作
所製micrometric pore sizer9310を使用して計測した。
The average pore diameter of the powder layer was measured using a micrometric pore sizer 9310 manufactured by Shimadzu Corporation.

【0011】かかる蓄電池の断面模式図を図1に示す。
同図において、1は電槽、2は連続気泡体、3は極板
群、4は粉体層、5は粉体、6は粉体を充填するための
ジョウゴである。図4は、粉体層の平均空孔径以外の構
成種別を示す図である。
A schematic sectional view of such a storage battery is shown in FIG.
In the figure, 1 is a battery case, 2 is an open cell body, 3 is an electrode plate group, 4 is a powder layer, 5 is powder, and 6 is a jogo for filling powder. FIG. 4 is a diagram showing the types of components other than the average pore diameter of the powder layer.

【0012】これらの蓄電池に比重1.32(20℃)
の希硫酸を注液したのち、試験に供した。第1の試験と
して、トリクル電圧2.3V/セルで温度40℃に保っ
た恒温槽(気相)に電池を入れ、3ヶ月毎に50W定電
力放電で終止電圧1.65V/セルになるまで放電を行
ない、放電持続時間を測定した。粉体層の平均空孔径が
100μmの場合の結果を図2に示す。極板群の周囲に
粒体層を配したリテーナ式密閉型鉛蓄電池No.2から
4は、従来品に比べトリクル寿命性能に優れていた。こ
の傾向は、平均空孔径が20及び50μmのものについ
ても同様であったが、平均空孔径が1μmのものは、従
来品との差異が認められなかった。この理由として以下
のことが考えられる。すなわち、トリクル寿命試験が進
行するにつれ、水蒸気透過により液が電槽壁を透過して
外部へ出てしまうので、電池内部の電解液が減少する
が、極板群周囲に配した粉体層は電解液を含浸してお
り、粉体層の平均孔径がセパレータの平均孔径より大き
いため、電解液の減少が粉体層から起り、セパレータ中
でIR損失が起らず、トリクル寿命性能が優れていたと
思われる。
Specific gravity of these storage batteries is 1.32 (20 ° C.)
After diluting the diluted sulfuric acid of No. 1, it was subjected to the test. As the first test, the battery was placed in a thermostatic chamber (gas phase) kept at a temperature of 40 ° C with a trickle voltage of 2.3 V / cell, and a final voltage of 1.65 V / cell was obtained by constant power discharge of 50 W every 3 months. Discharge was performed and the discharge duration was measured. The result when the average pore diameter of the powder layer is 100 μm is shown in FIG. Retainer-type sealed lead-acid battery No. 1 in which a granular layer was arranged around the electrode plate group. Nos. 2 to 4 were superior in trickle life performance to the conventional products. This tendency was the same for those having an average pore diameter of 20 and 50 μm, but no difference was observed for the one having an average pore diameter of 1 μm from the conventional product. The following are possible reasons for this. That is, as the trickle life test progresses, the liquid permeates the battery cell wall due to water vapor permeation and goes out, so the amount of electrolytic solution inside the battery decreases, but the powder layer arranged around the electrode plate group Since the electrolyte is impregnated and the average pore diameter of the powder layer is larger than the average pore diameter of the separator, the electrolyte solution decreases from the powder layer, IR loss does not occur in the separator, and the trickle life performance is excellent. It seems that

【0013】次に、上記構成の蓄電池をサイクル寿命試
験に供した。サイクル寿命試験条件としては、電池を
0.25CAで1.7V/セルまでの放電と、2.45
V/セル、最大電流0.25CAの定電流定電圧での6
時間充電とを25℃の温度雰囲気で繰り返した。粉体層
の平均空孔径が100μmの場合の結果を図3に示す。
粉体を充填しない電池No.1や粒体で極板群を埋没し
ただけの電池No.2では約300サイクルで寿命に達
したが、上部に樹脂体を配した電池No.3や4では約
600サイクルの寿命を有していた。この傾向は粉体層
の平均空孔径の大小にかかかわらず同じであった。この
理由として以下のことが考えられる。つまり、サイクル
寿命試験が進行するにつれ、正極板の腐食のよる膨張や
活物質の結合力の低下が起こり、電池No.1や2では
早期に寿命に達したが、電池No.3や4では粉体が電
池内空間全体に充填されているため、正極板の腐食によ
る膨張が抑制され、長寿命化されたものと思われる。後
者の容量推移が良かったのは、格子の伸びが周囲のガラ
スビーズにより制限され、その応力が極板にかかり、極
板群の圧迫度が増加したためと考えられる。従来より、
極板群の圧迫度を高めて電池を組立れば、寿命性能は良
くなると言われている。しかし実際には組立が困難にな
るため、あまり圧迫度は上げることができない。ところ
が、粉体を極板群周囲に配すと、上述したように結果的
に極板群に圧迫がかるようになるため、容量推移が良か
ったものと思われる。また、格子が伸びても、本発明の
ように極板群周囲にガラスビーズを配せば、力が分散し
電槽壁全体に応力がかかるため、電槽破壊もおこり難く
なるものと思われる。
Next, the storage battery having the above structure was subjected to a cycle life test. The cycle life test conditions were as follows: the battery was discharged at 0.25 CA to 1.7 V / cell and 2.45
V / cell, 6 at maximum current 0.25 CA constant current constant voltage
The time charging and the temperature atmosphere of 25 ° C. were repeated. The result when the average pore diameter of the powder layer is 100 μm is shown in FIG.
Battery No. not filled with powder Battery No. 1 in which the electrode plate group was simply buried with 1 or particles. The battery No. 2 reached the end of its life in about 300 cycles, but the battery No. Nos. 3 and 4 had a life of about 600 cycles. This tendency was the same regardless of the average pore size of the powder layer. The following are possible reasons for this. That is, as the cycle life test progresses, expansion due to corrosion of the positive electrode plate and decrease in binding force of the active material occur, and battery No. Battery No. 1 and 2 reached the end of their service life early, but battery No. In Nos. 3 and 4, since the powder is filled in the entire space in the battery, expansion due to corrosion of the positive electrode plate is suppressed, and it is considered that the life is extended. The reason why the latter capacity transition was good is considered that the elongation of the lattice was limited by the surrounding glass beads, the stress was applied to the electrode plate, and the degree of compression of the electrode plate group increased. Traditionally,
It is said that the life performance will improve if the battery is assembled by increasing the degree of pressure on the electrode plates. However, since the assembly is actually difficult, the degree of pressure cannot be increased so much. However, when the powder is placed around the electrode plate group, as described above, the electrode plate group is eventually pressed, and it is considered that the capacity transition was good. Further, even if the lattice stretches, if glass beads are arranged around the electrode plate group as in the present invention, the force is dispersed and stress is applied to the entire wall of the battery case, so that it is considered that the battery case is less likely to break. .

【0014】さらに、これら構成の蓄電池を粉体注入口
が底面になるように逆置して、小形シ−ル鉛蓄電池のJ
IS規格JIS−C−8702(1988)、8.3.
6「過充電特性」にしたがって、0.1CAの一定電流
で48時間連続充電した。その結果、試験後No.3の
蓄電池では、粒体層の平均空孔径の大小にかかかわら
ず、電解液の溢液が観察された。この理由として以下の
ことが考えられる。上記の定電流充電ではガッシングに
より極板群に保持された電解液の一部が排出され底部の
注入口の部分に移行するが、No.3の蓄電池では蓋裏
には無気泡性樹脂が配されているため逃げ場がなく、注
入口から外部に溢液したものと考えられる。
Further, the storage batteries having these structures are installed upside down so that the powder injection port is on the bottom surface, and the small seal lead storage battery J is installed.
IS standard JIS-C-8702 (1988), 8.3.
According to 6 "Overcharge characteristics", continuous charging was performed for 48 hours at a constant current of 0.1 CA. As a result, after the test No. In the storage battery of No. 3, overflow of the electrolytic solution was observed regardless of the size of the average pore diameter of the granular layer. The following are possible reasons for this. In the above-mentioned constant current charging, a part of the electrolytic solution held in the electrode plate group was discharged by gassing and moved to the injection port portion at the bottom. In the storage battery of No. 3, there is no escape because the non-cellular resin is arranged on the back of the lid, and it is considered that the storage battery overflowed from the inlet.

【0015】以上の試験結果から、トリクル寿命性能、
サイクル寿命性能及び過充電特性に優れた蓄電池を得る
には、極板群周辺に配された粉体層と、粉体層と蓄電池
蓋との間に配された連続気泡体とを備え、粉体層の平均
空孔径はセパレータの平均孔径よりも大きく、連続気泡
体の平均孔径は粉体層の平均空孔径よりも大きいもので
あるリテーナ式密閉型鉛蓄電池とすればよいことがわか
る。
From the above test results, the trickle life performance,
In order to obtain a storage battery having excellent cycle life performance and overcharge characteristics, a powder layer disposed around the electrode plate group and an open-cell body disposed between the powder layer and the storage battery lid are used. It is understood that the retainer-type sealed lead-acid battery in which the average pore diameter of the body layer is larger than the average pore diameter of the separator and the average pore diameter of the open-cell body is larger than the average pore diameter of the powder layer is sufficient.

【0016】[0016]

【発明の効果】以上詳述したように、本発明にかかるリ
テーナ式密閉型鉛蓄電池は、極板群周辺に配された粉体
層と、粉体層と蓄電池蓋との間に配された連続気泡体と
を備え、粉体層の平均空孔径はセパレータの平均孔径よ
りも大きく、連続気泡体の平均孔径は粉体層の平均空孔
径よりも大きいことを特徴とするものである。
As described above in detail, the retainer type sealed lead acid battery according to the present invention is arranged between the powder layer disposed around the electrode plate group and the powder layer and the battery lid. And the average pore size of the powder layer is larger than the average pore size of the separator, and the average pore size of the open cell is larger than the average pore size of the powder layer.

【0017】これにより、蓄電池を倒置状態で使用して
も漏液することがなく、かつ、トリクル寿命性、サイク
ル寿命性及び過充電特性に優れたリテーナ式密閉型鉛蓄
電池を提供するこができる。
As a result, it is possible to provide a retainer-type sealed lead-acid battery which does not leak even if the storage battery is used in an inverted state and has excellent trickle life, cycle life and overcharge characteristics. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明密閉型鉛蓄電池の要部断面模式図であ
る。
FIG. 1 is a schematic cross-sectional view of a main part of a sealed lead acid battery of the present invention.

【図2】40℃トリクル寿命性能を示す図である。FIG. 2 is a diagram showing 40 ° C. trickle life performance.

【図3】25℃サイクル寿命性能図を示す図である。FIG. 3 is a diagram showing a 25 ° C. cycle life performance diagram.

【図4】電池構成を示す図である。FIG. 4 is a diagram showing a battery configuration.

【符号の説明】[Explanation of symbols]

1 電槽 2 連続気泡体 3 極板群 4 粉体層 5 粉体 6 粉体を充填するためのジョウゴ 7 電槽内の粉体の充填されていない空間 DESCRIPTION OF SYMBOLS 1 Battery case 2 Open cell body 3 Electrode plate group 4 Powder layer 5 Powder 6 Jogo for filling powder 7 Space where powder is not filled in battery case

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 極板群周辺に配された粉体層と、粉体層
と蓄電池蓋との間に配された連続気泡体とを備え、粉体
層の平均空孔径はセパレータの平均孔径よりも大きく、
連続気泡体の平均孔径は粉体層の平均空孔径よりも大き
いものである、リテーナ式密閉型鉛蓄電池。
1. A powder layer disposed around the electrode plate group and an open-cell body disposed between the powder layer and a storage battery lid, wherein the average pore diameter of the powder layer is the average pore diameter of the separator. Greater than
Retainer-type sealed lead acid battery in which the average pore diameter of the open-cell body is larger than the average pore diameter of the powder layer.
JP5307428A 1993-11-12 1993-11-12 Retainer type sealed lead-acid battery Pending JPH07142082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5307428A JPH07142082A (en) 1993-11-12 1993-11-12 Retainer type sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5307428A JPH07142082A (en) 1993-11-12 1993-11-12 Retainer type sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH07142082A true JPH07142082A (en) 1995-06-02

Family

ID=17968949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5307428A Pending JPH07142082A (en) 1993-11-12 1993-11-12 Retainer type sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH07142082A (en)

Similar Documents

Publication Publication Date Title
JP3390309B2 (en) Sealed alkaline storage battery
KR870000670B1 (en) Sealed maintenance-free lead-acid batteries for float application
JPH0729595A (en) Retainer type sealed lead-acid battery
JPH07142082A (en) Retainer type sealed lead-acid battery
JPH042060A (en) Sealed type lead acid battery
JPH07211342A (en) Retainer type sealed lead-acid battery
JPH07142081A (en) Retainer type sealed lead-acid battery
JP3482671B2 (en) Sealed lead-acid battery
JPH07142083A (en) Retainer type sealed lead-acid battery
JP3185300B2 (en) Sealed lead-acid battery
Lim et al. Lightweight nickel electrodes for nickel/hydrogen cells
JPS6040672B2 (en) Manufacturing method of sealed lead-acid battery
JP3094396B2 (en) Manufacturing method of sealed lead-acid battery
JPS63175357A (en) Air-zinc cell
JPS63126161A (en) Enclosed type lead storage battery
JPH0246662A (en) Sealed lead-acid battery
JP2023069444A (en) alkaline battery
JPH10125331A (en) Cylindrical sealed lead-acid battery
JPH0562704A (en) Sealed lead-acid battery
JPH09293530A (en) Manufacture of cylindrical battery
JPH06104005A (en) Sealed-lead-acid battery
JPH10172542A (en) Sealed lead acid storage battery
JPH0432165A (en) Enclosed lead battery
JPH0536434A (en) Sealed lead-acid battery
JPH0546066B2 (en)