JPH07141639A - Magnetic recording medium and magnetic recorder - Google Patents

Magnetic recording medium and magnetic recorder

Info

Publication number
JPH07141639A
JPH07141639A JP28673693A JP28673693A JPH07141639A JP H07141639 A JPH07141639 A JP H07141639A JP 28673693 A JP28673693 A JP 28673693A JP 28673693 A JP28673693 A JP 28673693A JP H07141639 A JPH07141639 A JP H07141639A
Authority
JP
Japan
Prior art keywords
film
magnetic
recording medium
magnetic recording
underlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28673693A
Other languages
Japanese (ja)
Inventor
Atsushi Nakamura
敦 中村
Yoshiyuki Hirayama
義幸 平山
Masaaki Futamoto
正昭 二本
Nobuyuki Inaba
信幸 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28673693A priority Critical patent/JPH07141639A/en
Publication of JPH07141639A publication Critical patent/JPH07141639A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic recording medium having the magnetic film improved in crystal orientability so as to make the medium fit for high density magnetic recording. CONSTITUTION:A 1st base film 13 having a body-centered cubic structure is formed on a 2nd base film 14 having a CaF2 type crystal structure formed directly on a nonmagnetic substrate 15 or through a certain base film and a magnetic film 12 having a hexagonal close-packed structure is formed on the 1st under film 13. The coercive force and squareness ratio of the resulting magnetic recording medium in the intrasurface direction are enhanced and higher density magnetic recording is enabled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度磁気記録に適す
る磁性膜を有する磁気記録媒体及びそれを用いた磁気記
録装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium having a magnetic film suitable for high density magnetic recording and a magnetic recording device using the same.

【0002】[0002]

【外1】 [Outer 1]

【0003】[0003]

【従来の技術】高密度磁気記録に適する記録媒体とし
て、非磁性基板上に形成した連続磁性膜を有する磁気記
録媒体が知られている。磁性膜は例えばCoのような強
磁性金属を主成分とする合金の薄膜であり、スパッタリ
ング法、真空蒸着法、化学めっき法等の方法により形成
される。磁気記録媒体としての特性は、この磁性膜の微
細構造と密接な関係があることが知られており、磁気記
録特性を向上させるために磁性膜の改良が試みられてい
る。特に、高保磁力、高角形比といった磁気記録媒体と
して好ましい磁気特性を発現させ、高密度記録を行なっ
ても十分な再生特性を得るためには、磁性膜の結晶配向
性をより向上させることが必要である。
2. Description of the Related Art As a recording medium suitable for high density magnetic recording, a magnetic recording medium having a continuous magnetic film formed on a non-magnetic substrate is known. The magnetic film is a thin film of an alloy containing a ferromagnetic metal such as Co as a main component, and is formed by a method such as a sputtering method, a vacuum deposition method, a chemical plating method, or the like. It is known that the characteristics as a magnetic recording medium are closely related to the fine structure of the magnetic film, and attempts have been made to improve the magnetic film in order to improve the magnetic recording characteristics. In particular, in order to develop preferable magnetic characteristics such as high coercive force and high squareness ratio for a magnetic recording medium and to obtain sufficient reproduction characteristics even when high density recording is performed, it is necessary to further improve the crystal orientation of the magnetic film. Is.

【0004】一般に磁気記録媒体に用いられるCo合金
の結晶構造は、単体のCoと同様のhcp(六方最密充
填)構造であり、c軸の方向(〔0001〕方向)に磁
化容易軸を持つ。面内磁気記録媒体としてCo合金を用
いる場合には、個々の結晶粒の磁化容易軸を、磁性膜面
に平行に向かせるか、なるべく磁性膜面に平行な成分を
多く持たせることが必要となる。しかし、hcp構造の
最稠密面は(0001)面であるため、この面が優先配
向しやすい。この場合c軸は膜面に垂直方向に向くた
め、このままでは面内磁気記録媒体には適さない。
Generally, the crystal structure of a Co alloy used in a magnetic recording medium is an hcp (hexagonal close-packed) structure similar to that of simple substance Co, and has an easy axis of magnetization in the c-axis direction ([0001] direction). . When a Co alloy is used as the in-plane magnetic recording medium, it is necessary to direct the easy axis of magnetization of each crystal grain parallel to the magnetic film surface, or to have as many components as possible parallel to the magnetic film surface. Become. However, since the densest plane of the hcp structure is the (0001) plane, this plane is likely to be preferentially oriented. In this case, since the c-axis is oriented in the direction perpendicular to the film surface, it is not suitable for an in-plane magnetic recording medium as it is.

【0005】ところが、磁性膜と基板との間にbcc
(体心立方)構造を持つ金属の下地膜を設けることによ
り、Co合金のc軸の方向を膜面内方向に傾けることが
できる。例えば、IEEE磁気学会報、22巻、334
〜336頁(1986年)〔IEEE Trans. Magn., MAG-2
2, pp.334 〜336.(1986)〕に記載のチェン(Ga-Lane Ch
en)の論文に、Cr下地膜上に形成したCoNiCr合
金の配向方位が、Cr下地膜を設けずに形成した同じ組
成の膜の配向方位と異なっており、前者では、Co合金
磁性膜の{1101}面が、Cr下地膜の{110}面
上に成長することが示されている。すなわち{110}
優先配向したbcc下地膜を用いれば、膜面から約28
度傾いた方向に磁化容易軸を持つような{1101}優
先配向したhcp磁性膜が得られる。
However, there is a bcc between the magnetic film and the substrate.
By providing a metal underlayer having a (body-centered cubic) structure, the direction of the c-axis of the Co alloy can be tilted in the in-plane direction. For example, IEEE Magnetics Society, Vol. 22, 334.
~ 336 (1986) [IEEE Trans. Magn., MAG-2
2, pp.334-336. (1986)].
In the paper of (en), the orientation direction of the CoNiCr alloy formed on the Cr underlayer film is different from the orientation direction of the film of the same composition formed without providing the Cr underlayer film. It is shown that the 1101} plane grows on the {110} plane of the Cr underlayer. That is, {110}
If a bcc base film with preferential orientation is used, it is about 28 from the film surface.
A {1101} preferentially oriented hcp magnetic film having an easy axis of magnetization in a tilted direction can be obtained.

【0006】[0006]

【発明が解決しようとする課題】前述のように、面内磁
気記録媒体にCo合金を用いる場合、個々の結晶粒の磁
化容易軸の膜面平行方向の成分を増すために、{11
0}優先配向したbcc下地膜を設けることが有効であ
る。この{110}優先配向したbcc下地膜は、最稠
密面である{110}面が優先的に結晶成長することで
達成されている。しかし、成長の初期の段階で、どうし
ても他の方位を持つ結晶粒が同時に生成し、これまで十
分な{110}配向性を得ることができなかった。した
がって、この下地膜上に磁性膜を形成しても、高配向し
た結晶粒からなる磁性薄膜媒体を得ることは、これまで
困難であった。本発明の目的は、磁性膜の結晶配向性を
向上した磁気記録媒体及びそれを用いた磁気記録装置を
提供することにある。
As described above, when a Co alloy is used for the in-plane magnetic recording medium, in order to increase the component of the easy axis of magnetization of individual crystal grains in the direction parallel to the film surface, {11
It is effective to provide a bcc base film having a 0} preferential orientation. This {110} preferentially oriented bcc underlayer film is achieved by preferentially crystallizing the {110} plane which is the closest packed surface. However, in the initial stage of growth, crystal grains having other orientations were inevitably formed at the same time, and thus far, sufficient {110} orientation could not be obtained. Therefore, even if a magnetic film is formed on this underlayer, it has been difficult to obtain a magnetic thin film medium composed of highly oriented crystal grains. An object of the present invention is to provide a magnetic recording medium in which the crystal orientation of a magnetic film is improved and a magnetic recording device using the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の磁気記録媒体は、非磁性基板と、この非磁
性基板上に直接又はなんらかの下地膜を介して設けられ
た2層の下地膜と、この2層の下地膜上に設けられた磁
性膜とを有し、磁性膜は、六方最密充填構造を持ち、2
層の下地膜のうち、磁性膜の直下に設けられた第1下地
膜は、体心立方構造を持ち、第1下地膜の直下に設けら
れた第2下地膜は、CaF2 型結晶構造を持つように構
成する。
In order to achieve the above object, the magnetic recording medium of the present invention comprises a non-magnetic substrate and a two-layer structure provided directly or through some underlayer on the non-magnetic substrate. It has an underlayer film and a magnetic film provided on the two-layer underlayer film, and the magnetic film has a hexagonal close-packed structure.
Among the underlayer films of the layer, the first underlayer film provided directly below the magnetic film has a body-centered cubic structure, and the second underlayer film provided immediately below the first underlayer film has a CaF 2 type crystal structure. Configure to have.

【0008】図1に、本発明の磁気記録媒体の一例の模
式図を示して説明する。hcp構造を持つ磁性膜12
が、bcc構造を持つ第1下地膜13上に形成されてい
る。この第1下地膜13は、CaF2 型結晶構造を持つ
第2下地膜14上に形成されている。第2下地膜14は
非磁性基板15上に直接、又は六方最密構造を持つT
i,Zn,Ru等の薄い下地膜等を介して形成されてい
る。磁性膜12の上にはカーボン膜等の保護膜11を形
成することが好ましい。
FIG. 1 is a schematic diagram showing an example of the magnetic recording medium of the present invention. Magnetic film 12 having an hcp structure
Are formed on the first base film 13 having the bcc structure. The first base film 13 is formed on the second base film 14 having a CaF 2 type crystal structure. The second base film 14 is formed on the non-magnetic substrate 15 directly or has a hexagonal close-packed structure.
It is formed through a thin base film of i, Zn, Ru, or the like. It is preferable to form a protective film 11 such as a carbon film on the magnetic film 12.

【0009】磁性膜12は、優先配向方位が{110
1}であり、第1下地膜13は、優先配向方位が{11
0}であり、第2下地膜14は、優先配向方位が{11
1}であることが好ましい。また、第1下地膜及び第2
下地膜は、いずれも非磁性材料からなることが好まし
い。さらに、磁性膜12は、Co又はCoCrPt合
金、CoCrTa合金等のCoを主成分とする合金から
なることが好ましい。Coを主成分とする合金は、従来
から種々の合金が磁性膜として用いられており、本発明
においてもそのような合金を用いることができる。磁性
膜の厚さは10〜100nmの範囲であることが実用的
に望ましい。磁性膜は、真空蒸着法、スパッタリング法
等の方法で形成することができる。
The magnetic film 12 has a preferred orientation of {110
1}, and the first base film 13 has a preferred orientation of {11
0}, and the second base film 14 has a preferred orientation of {11
1} is preferable. In addition, the first base film and the second
It is preferable that each of the base films is made of a nonmagnetic material. Furthermore, the magnetic film 12 is preferably made of Co or an alloy containing Co as a main component, such as a CoCrPt alloy or a CoCrTa alloy. As the alloy containing Co as a main component, various alloys have been conventionally used as the magnetic film, and such alloy can be used in the present invention. It is practically desirable that the thickness of the magnetic film be in the range of 10 to 100 nm. The magnetic film can be formed by a method such as a vacuum vapor deposition method or a sputtering method.

【0010】第1下地膜の材料としては、Cr,Mo,
W,V,Nb,Ta及びこれらの元素を主成分とする合
金からなる群から選ばれた少なくとも一種の材料を用い
ることができる。もちろん、第1下地膜の材料は、これ
らの材料に限定されるものではなく、bcc構造を持つ
他の金属、合金を用いることも可能である。第1下地膜
の厚さは2〜100nmの範囲にあることが実用的に望
ましい。第1下地膜も磁性膜と同様に真空蒸着法、スパ
ッタリング法等の方法で形成することができる。
The material of the first underlayer is Cr, Mo,
At least one material selected from the group consisting of W, V, Nb, Ta and alloys containing these elements as main components can be used. Of course, the material of the first base film is not limited to these materials, and other metals or alloys having a bcc structure can be used. It is practically desirable that the thickness of the first base film is in the range of 2 to 100 nm. The first underlayer film can also be formed by a method such as a vacuum vapor deposition method or a sputtering method as with the magnetic film.

【0011】第2下地膜の材料としては、CaF2 ,S
rF2 ,BaF2 ,SrCl2 及びこれらの無機化合物
を主成分とする混晶からなる群から選ばれた少なくとも
一種の材料を用いることができる。第2下地膜の材料に
ついても、これらの材料に限定されるものではなく、C
aF2 型結晶構造を持つ他の化合物、混晶を用いること
も可能である。第2下地膜の厚さは、2〜300nmの
範囲にあることが実用的に望ましい。第2下地膜は、真
空蒸着法、スパッタリング法、化学気相成長法、イオン
プレーティング法等の方法で形成することができる。
The material of the second underlayer film is CaF 2 , S.
At least one material selected from the group consisting of rF 2 , BaF 2 , SrCl 2 and mixed crystals containing these inorganic compounds as the main components can be used. The material of the second base film is not limited to these materials, and C
It is also possible to use other compounds having an aF 2 type crystal structure or mixed crystals. It is practically desirable that the thickness of the second base film is in the range of 2 to 300 nm. The second base film can be formed by a method such as a vacuum vapor deposition method, a sputtering method, a chemical vapor deposition method, an ion plating method or the like.

【0012】磁性膜がCo又はCoを主成分とする合金
からなるとき、第1下地膜は、Cr又はCrを主成分と
する合金からなることが好ましい。また、第1下地膜が
Cr又はCrを主成分とする合金からなるとき、第2下
地膜は、CaF2 ,SrF2又はこれらの無機化合物を
主成分とする混晶からなることが好ましい。また、本発
明の磁気記録装置は、上記のような磁気記録媒体、この
磁気記録媒体を保持する保持具、磁気記録媒体の磁性膜
上に配置され、情報を記録、再生するための磁気ヘッ
ド、磁気ヘッドと磁気記録媒体の相対的位置を移動させ
るための移動手段及びこれらを制御するための制御手段
とから周知のようにして構成される。
When the magnetic film is made of Co or an alloy containing Co as a main component, the first underlayer is preferably made of Cr or an alloy containing Cr as a main component. When the first undercoating film is made of Cr or an alloy containing Cr as a main component, the second undercoating film is preferably made of CaF 2 , SrF 2 or a mixed crystal containing these inorganic compounds as main components. The magnetic recording apparatus of the present invention includes a magnetic recording medium as described above, a holder for holding the magnetic recording medium, a magnetic head arranged on the magnetic film of the magnetic recording medium for recording and reproducing information, The magnetic head and the magnetic recording medium are configured in a known manner from a moving means for moving the relative position and a control means for controlling them.

【0013】[0013]

【作用】bcc構造を持つ金属の{110}面上に、h
cp構造を持つ金属の{1101}面がエピタキシャル
成長することが知られている。hcp構造の{110
1}結晶面を図2に示す。また、hcp構造の{110
1}面とbcc構造の{110}面の整合関係を図3に
示す。bcc構造を持つ非磁性下地膜材料にはCr,M
o,W,V,Nb,Ta及びこれらの元素を主成分とす
る合金が考えられるが、その{110}面上での原子間
距離が、上記磁性膜材料の{1101}面内での原子間
距離と整合するように選択するとよい。具体的には図3
から理解されるように、次式(1)と(2)がなるべく
近い値をとるようにする。 a(hcp)×2 (1) a(bcc)×31/2 (2)
[Function] On the {110} plane of a metal having a bcc structure, h
It is known that the {1101} plane of a metal having a cp structure is epitaxially grown. hcp structure {110
The 1} crystal plane is shown in FIG. In addition, the hcp structure {110
FIG. 3 shows the matching relationship between the 1} plane and the {110} plane of the bcc structure. For the non-magnetic underlayer material having the bcc structure, Cr, M
Although o, W, V, Nb, Ta and alloys containing these elements as main components are conceivable, the interatomic distance on the {110} plane is determined by the atoms in the {1101} plane of the magnetic film material. It is preferable to select it so as to match the inter-distance. Specifically,
As will be understood from the following, the following equations (1) and (2) are set to values as close as possible. a (hcp) × 2 (1) a (bcc) × 3 1/2 (2)

【0014】ここに、a(bcc)はbcc構造のa軸
の格子定数、a(hcp)はhcp構造のa軸の格子定
数である。式(1)と式(2)の値の差の式(2)に対
する比、すなわち次式(3)の値は、±0.1を超える
とエピタキシャル成長がうまく起こらなくなり結晶性に
乱れが生じるので±0.1以下が好ましく、±0.03
以下がより好ましい。 {a(hcp)×2−a(bcc)×31/2}/a(bcc)×31/2 (3)
Where a (bcc) is the a-axis lattice constant of the bcc structure, and a (hcp) is the a-axis lattice constant of the hcp structure. If the ratio of the difference between the values of the formula (1) and the formula (2) to the formula (2), that is, the value of the following formula (3) exceeds ± 0.1, epitaxial growth does not occur well and crystallinity is disturbed. ± 0.1 or less is preferable, ± 0.03
The following is more preferable. {A (hcp) × 2-a (bcc) × 3 1/2 } / a (bcc) × 3 1/2 (3)

【0015】例えば、磁性膜にCoを用い、下地膜を変
えた場合の式(3)の値は、下地膜がCrの場合に約
0.004、Vの場合に約−0.043、Moの場合に
約−0.080、Wの場合に約−0.085となる。C
o合金の格子定数は組成を変化させてもCoの格子定数
とほぼ同じである。磁性膜がCoCrTa合金で下地膜
がCrの場合、前記差は約0.005である。
For example, when Co is used for the magnetic film and the underlayer is changed, the value of the equation (3) is about 0.004 when the underlayer is Cr, and about -0.043 when V is V, and Mo. In the case of, it becomes about -0.080, and in the case of W, it becomes about -0.085. C
The lattice constant of the o alloy is almost the same as that of Co even if the composition is changed. When the magnetic film is a CoCrTa alloy and the base film is Cr, the difference is about 0.005.

【0016】本発明では、bcc下地膜(第1下地膜)
の配向性を、その直下に設けたCaF2 型結晶構造を持
つ第2下地膜によって制御する。これは図4に示すよう
に、bcc構造の{110}面が、CaF2 型結晶構造
の{111}面上にエピタキシャル成長しやすいことを
利用するものである。さらにCaF2 型結晶は一般に
{111}優先配向しやすい性質を持っている。従って
その表面にbcc結晶をエピタキシャル成長させること
によって、十分に{110}配向したbcc結晶の膜を
容易に得ることができる。
In the present invention, the bcc base film (first base film)
Is controlled by the second underlayer film having a CaF 2 type crystal structure provided immediately below. This is because, as shown in FIG. 4, the {110} plane of the bcc structure is easily epitaxially grown on the {111} plane of the CaF 2 type crystal structure. In addition, CaF 2 type crystals generally have a property of being easily oriented in {111}. Therefore, by epitaxially growing a bcc crystal on the surface thereof, it is possible to easily obtain a film of a bcc crystal having a sufficiently {110} orientation.

【0017】十分に{110}配向させた上記bcc第
1下地膜上にhcp磁性膜をエピタキシャル成長させる
と、{1101}配向し、個々の結晶粒の磁化容易軸が
膜面から約28゜傾いた磁性膜が得られる。このように
して得た磁性膜は、基板上にbcc下地膜のみを形成
し、その上にhcp磁性膜を形成した場合に比較して、
膜面内方向でより高い保磁力と角形比を示し、より高密
度の記録再生が可能な面内磁気記録媒体として用いるこ
とができる。
When the hcp magnetic film was epitaxially grown on the above-mentioned bcc first underlayer having a sufficient {110} orientation, {1101} orientation was achieved, and the easy axis of magnetization of each crystal grain was inclined about 28 ° from the film surface. A magnetic film is obtained. In the magnetic film thus obtained, as compared with the case where only the bcc underlayer film is formed on the substrate and the hcp magnetic film is formed thereon,
It exhibits a higher coercive force and squareness ratio in the in-plane direction of the film, and can be used as an in-plane magnetic recording medium capable of recording and reproducing at higher density.

【0018】[0018]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。 〔実施例1〕直径3.5インチのガラス基板を用い、図
5に示すような断面構造を持つ磁気記録媒体を、高周波
マグネトロンスパッタリング法によって作製した。すな
わちガラス基板55の両面に、CaF2 型結晶構造を持
つCaF2 下地膜54,54’、bcc構造を持つCr
下地膜53,53’、hcp構造を持つCo合金磁性膜
52,52’、及びカーボン保護膜51,51’をこの
順序で形成する。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 A magnetic recording medium having a cross-sectional structure as shown in FIG. 5 was produced by a high frequency magnetron sputtering method using a glass substrate having a diameter of 3.5 inches. That is, on both surfaces of the glass substrate 55, CaF 2 base films 54 and 54 ′ having a CaF 2 type crystal structure and Cr having a bcc structure are formed.
The base films 53 and 53 ', the Co alloy magnetic films 52 and 52' having the hcp structure, and the carbon protective films 51 and 51 'are formed in this order.

【0019】CaF2 下地膜54,54’の成膜にはア
ルゴンガスを用い、ガスの圧力は0.5〜1.5Pa、
基板温度200℃、成膜速度毎分3〜5nmの条件で形
成した。Cr下地膜53,53’、Co合金磁性膜5
2,52’及びカーボン保護膜51,51’の成膜には
アルゴンガスを用い、ガスの圧力0.7Pa、基板温度
150℃、成膜速度毎分50nmの条件で形成した。磁
性膜52,52’の形成に用いるターゲットの組成はC
o−15at.%Cr−7at.%Ptとした。各膜の
膜厚は、CaF2 下地膜が50nm、Cr下地膜が50
nm、Co合金磁性膜が30nm、カーボン保護膜が1
0nmとした。上記の膜形成はすべて同一の真空槽内で
真空を破ることなく連続して行った。
Argon gas was used to form the CaF 2 base films 54 and 54 ', and the gas pressure was 0.5 to 1.5 Pa.
It was formed under the conditions of a substrate temperature of 200 ° C. and a film forming rate of 3 to 5 nm per minute. Cr underlayer films 53, 53 ', Co alloy magnetic film 5
2, 52 ′ and the carbon protective films 51, 51 ′ were formed using argon gas under the conditions of a gas pressure of 0.7 Pa, a substrate temperature of 150 ° C., and a film forming rate of 50 nm / min. The composition of the target used to form the magnetic films 52 and 52 'is C
o-15 at. % Cr-7 at. % Pt. The film thickness of each film is 50 nm for the CaF 2 underlayer film and 50 for the Cr underlayer film.
nm, Co alloy magnetic film 30 nm, carbon protective film 1
It was set to 0 nm. The above film formation was continuously performed in the same vacuum chamber without breaking the vacuum.

【0020】作製した試料の結晶配向をX線回折によっ
て、磁気特性を試料振動型磁力計(VSM)を用いてそ
れぞれ測定した。その結果、本実施例の磁気記録媒体
は、CaF2 下地膜を設けない他は全く同様の条件で作
製した磁気記録媒体と比較して、Cr下地膜の{11
0}配向、Co合金磁性膜の{1101}配向ともに著
しく改善され、膜面内方向の保磁力が7.0%(105
Oe)向上し、角形比が9.8%(0.08)向上し
た。なお、この磁気記録媒体のCo合金磁性膜とCr下
地膜の各結晶構造から計算される前記式(3)の値は、
0.004である。
The crystal orientation of the produced sample was measured by X-ray diffraction, and the magnetic characteristics were measured by using a sample vibrating magnetometer (VSM). As a result, the magnetic recording medium of this example has a Cr underlayer {11} compared to a magnetic recording medium produced under exactly the same conditions except that the CaF 2 underlayer is not provided.
0} orientation and the {1101} orientation of the Co alloy magnetic film were remarkably improved, and the coercive force in the in-plane direction of the film was 7.0% (105
Oe) was improved, and the squareness ratio was improved by 9.8% (0.08). The value of the above equation (3) calculated from each crystal structure of the Co alloy magnetic film and the Cr underlayer of this magnetic recording medium is
It is 0.004.

【0021】〔実施例2〕直径3.5インチのガラス基
板を用い、図5に示すような断面構造を持つ磁気記録媒
体を、高周波マグネトロンスパッタリング法によって作
製した。ガラス基板55の両面に、CaF2 型結晶構造
を持つSrF2 下地膜54,54’、bcc構造を持つ
Cr下地膜53,53’、hcp構造を持つCo合金磁
性膜52,52’、及びカーボン保護膜51,51’を
この順序で形成する。
Example 2 Using a glass substrate having a diameter of 3.5 inches, a magnetic recording medium having a sectional structure as shown in FIG. 5 was produced by a high frequency magnetron sputtering method. On both surfaces of the glass substrate 55, SrF 2 base films 54 and 54 ′ having a CaF 2 type crystal structure, Cr base films 53 and 53 ′ having a bcc structure, Co alloy magnetic films 52 and 52 ′ having an hcp structure, and carbon. The protective films 51 and 51 'are formed in this order.

【0022】SrF2 下地膜54,54’の成膜にはア
ルゴンガスを用い、ガスの圧力は0.5〜1.5Pa、
基板温度200℃、成膜速度毎分3〜5nmの条件で形
成した。Cr下地膜53,53’、Co合金磁性膜5
2,52’及びカーボン保護膜51,51’の成膜は実
施例1と同様の条件で行った。磁性膜52,52’の形
成に用いるターゲットの組成はCo−12at.%Cr
−4at.%Taとした。各膜の膜厚は、SrF2 下地
膜が50nm、Cr下地膜が50nm、Co合金磁性膜
が30nm、カーボン保護膜が10nmとした。上記の
膜形成はすべて同一の真空槽内で真空を破ることなく連
続して行った。
Argon gas was used to form the SrF 2 base films 54 and 54 ', and the gas pressure was 0.5 to 1.5 Pa.
It was formed under the conditions of a substrate temperature of 200 ° C. and a film forming rate of 3 to 5 nm per minute. Cr underlayer films 53, 53 ', Co alloy magnetic film 5
The film formation of 2, 52 'and the carbon protective films 51, 51' was performed under the same conditions as in Example 1. The composition of the target used for forming the magnetic films 52 and 52 'is Co-12 at. % Cr
-4 at. % Ta. The film thickness of each film was 50 nm for the SrF 2 underlayer film, 50 nm for the Cr underlayer film, 30 nm for the Co alloy magnetic film, and 10 nm for the carbon protective film. The above film formation was continuously performed in the same vacuum chamber without breaking the vacuum.

【0023】作製した試料の結晶配向をX線回折によっ
て、磁気特性を試料振動型磁力計(VSM)を用いてそ
れぞれ測定した。その結果、本実施例の磁気記録媒体
は、SrF2 下地膜を設けない他は全く同様の条件で作
製した磁気記録媒体と比較して、Cr下地膜の{11
0}配向、Co合金磁性膜の{1101}配向ともに著
しく改善され、膜面内方向の保磁力が11%(120O
e)向上し、角形比が8.6%(0.07)向上した。
The crystal orientation of the produced sample was measured by X-ray diffraction, and the magnetic characteristics were measured by using a sample vibrating magnetometer (VSM). As a result, the magnetic recording medium of this example has a Cr underlayer film {11} compared with the magnetic recording medium produced under exactly the same conditions except that the SrF 2 underlayer film is not provided.
0} orientation and the {1101} orientation of the Co alloy magnetic film were significantly improved, and the coercive force in the in-plane direction of the film was 11% (120O).
e) improved, and the squareness ratio improved by 8.6% (0.07).

【0024】さらに上記実施例においてCr下地膜に代
えてV,Mo,W又はCr−3at.%Si合金を用い
た他は全く同様の磁気記録媒体を作成した。これらの各
磁気記録媒体についても、SrF2 下地膜を設けないそ
れぞれの比較例に比べてbcc下地膜の{110}配
向、Co合金磁性膜の{1101}配向ともに改善が認
められ、保磁力、角形比も向上した。これらの結果を表
1に示す。
Further, in the above-mentioned embodiment, V, Mo, W or Cr-3 at. A magnetic recording medium was prepared in exactly the same manner except that a% Si alloy was used. With respect to each of these magnetic recording media, improvement in both the {110} orientation of the bcc underlayer and the {1101} orientation of the Co alloy magnetic film was observed as compared with the respective comparative examples in which the SrF 2 underlayer was not provided. The squareness ratio has also improved. The results are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】また、第1下地膜にNb,Ta,Cr−5
at.%Nb合金又はCr−10at.%Mo合金を用
いた磁気記録媒体についても、SrF2 下地膜を設けな
いそれぞれの比較例に比べ配向性、磁気特性ともに向上
することが分かった。
Further, Nb, Ta, Cr-5 is used as the first underlayer film.
at. % Nb alloy or Cr-10 at. It was also found that the magnetic recording medium using the% Mo alloy has improved orientation and magnetic properties as compared with the respective comparative examples in which the SrF 2 underlayer is not provided.

【0027】〔実施例3〕直径3.5インチのガラス基
板を用い、前記実施例と同様に図5に示すような断面構
造を持つ磁気記録媒体を高周波マグネトロンスパッタリ
ング法によって作製した。ガラス基板55の両面に、C
aF2 型結晶構造を持つCaF2 下地膜54,54’、
bcc構造を持つCr下地膜53,53’、hcp構造
を持つCo合金磁性膜52,52’、及びカーボン保護
膜51,51’をこの順序で形成する。
[Embodiment 3] Using a glass substrate having a diameter of 3.5 inches, a magnetic recording medium having a sectional structure as shown in FIG. 5 was produced by a high frequency magnetron sputtering method as in the above embodiment. C on both sides of the glass substrate 55
CaF 2 base films 54, 54 ′ having an aF 2 type crystal structure,
Cr underlayer films 53 and 53 ′ having a bcc structure, Co alloy magnetic films 52 and 52 ′ having an hcp structure, and carbon protective films 51 and 51 ′ are formed in this order.

【0028】CaF2 下地膜54,54’はアルゴンガ
スを用い、ガスの圧力は0.5〜1.5Pa、基板温度
200℃、成膜速度毎分3〜5nmの条件で形成した。
Cr下地膜53,53’、Co合金磁性膜52,52’
及びカーボン保護膜51,51’の成膜は実施例1と同
様の条件で行った。磁性膜52,52’の形成に用いる
ターゲットの組成は本実施例ではCo−16at.%C
r−6at.%Ptとした。各膜の膜厚は、CaF2
地膜が50nm、Cr下地膜が50nm、Co合金磁性
膜が30nm、カーボン保護膜が10nmとした。上記
の膜形成はすべて同一の真空槽内で真空を破ることなく
連続して行った。
The CaF 2 base films 54 and 54 'were formed by using argon gas under the conditions of a gas pressure of 0.5 to 1.5 Pa, a substrate temperature of 200 ° C., and a film forming rate of 3 to 5 nm per minute.
Cr underlayer films 53, 53 ', Co alloy magnetic films 52, 52'
The carbon protective films 51 and 51 ′ were formed under the same conditions as in Example 1. The composition of the target used for forming the magnetic films 52 and 52 ′ is Co-16 at. % C
r-6 at. % Pt. The film thickness of each film was 50 nm for the CaF 2 underlayer film, 50 nm for the Cr underlayer film, 30 nm for the Co alloy magnetic film, and 10 nm for the carbon protective film. The above film formation was continuously performed in the same vacuum chamber without breaking the vacuum.

【0029】また上記と同様の条件で、CaF2 下地膜
の代わりに、同じCaF2 型結晶構造を持つBaF2
SrCl2 を用いた磁気記録媒体を作製した。作製した
試料の結晶配向をX線回折によって、磁気特性を試料振
動型磁力計(VSM)を用いてそれぞれ測定した。その
結果本実施例の磁気記録媒体は、いずれもCaF2 型結
晶構造を持つ下地膜を設けない他は全く同様の条件で作
製した磁気記録媒体と比較して、Cr下地膜の{11
0}配向、Co合金磁性膜の{1101}配向ともに著
しく改善され、膜面内方向の保磁力、角形比の向上が見
られた。これらの結果を表2に示す。
Under the same conditions as above, instead of the CaF 2 underlayer, BaF 2 having the same CaF 2 type crystal structure,
A magnetic recording medium using SrCl 2 was prepared. The crystal orientation of the produced sample was measured by X-ray diffraction, and the magnetic characteristics were measured by using a sample vibrating magnetometer (VSM). As a result, the magnetic recording medium of this example has a Cr underlayer film {11} compared with the magnetic recording medium produced under exactly the same conditions except that no underlayer film having a CaF 2 type crystal structure is provided.
Both the 0} orientation and the {1101} orientation of the Co alloy magnetic film were remarkably improved, and the coercive force in the in-plane direction and the squareness ratio were improved. The results are shown in Table 2.

【0030】[0030]

【表2】 [Table 2]

【0031】さらに、第2下地膜に(Ca,Sr)F2
混晶を用いた磁気記録媒体を製造した。この磁気記録媒
体についても同様の効果があることが分かった。
Further, (Ca, Sr) F 2 is formed on the second base film.
A magnetic recording medium using a mixed crystal was manufactured. It was found that this magnetic recording medium also has the same effect.

【0032】〔実施例4〕図6は、磁気記録装置の一実
施例の模式図である。磁気記録媒体61は、モータによ
り回転する保持具により保持され、それぞれの各磁性膜
に対応して情報の書き込み、読み出しのための磁気抵抗
効果素子再生複合ヘッド62が配置されている。この磁
気抵抗効果素子再生複合ヘッド62の磁気記録媒体61
に対する位置をアクチュエータ63とボイスコイルモー
タ64により移動させる。さらにこれらを制御するため
に記録再生回路65、位置決め回路66、インターフェ
ース制御回路67が設けられている。前記各実施例で製
造した磁気記録媒体を用い、この磁気記録装置に適用し
たところ、いずれも、高いS/N比で高密度の記録がで
きた。
[Embodiment 4] FIG. 6 is a schematic view of an embodiment of the magnetic recording apparatus. The magnetic recording medium 61 is held by a holder rotated by a motor, and a magnetoresistive effect element reproducing composite head 62 for writing and reading information is arranged corresponding to each magnetic film. The magnetic recording medium 61 of the magnetoresistive effect element reproducing composite head 62
The position with respect to is moved by the actuator 63 and the voice coil motor 64. Further, a recording / reproducing circuit 65, a positioning circuit 66, and an interface control circuit 67 are provided to control these. When the magnetic recording medium manufactured in each of the above-mentioned Examples was used and applied to this magnetic recording apparatus, all of them were capable of high-density recording with a high S / N ratio.

【0033】[0033]

【発明の効果】本発明によれば、磁性膜結晶粒の磁化容
易軸を膜面から約28゜傾いた方向に高配向させること
によって、面内方向の保磁力、角形比が向上し、より高
密度磁気記録に適した磁気記録媒体が提供できる。ま
た、高いS/N比で高密度の記録が可能の磁気記録装置
が提供できる。
According to the present invention, the coercive force in the in-plane direction and the squareness ratio are improved by orienting the easy axis of magnetization of the crystal grains of the magnetic film highly in the direction inclined by about 28 ° from the film surface. A magnetic recording medium suitable for high-density magnetic recording can be provided. Further, it is possible to provide a magnetic recording device capable of high density recording with a high S / N ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による磁気記録媒体の一例の断面図。FIG. 1 is a sectional view of an example of a magnetic recording medium according to the present invention.

【図2】hcp構造において、{1101}面を示す斜
視図。
FIG. 2 is a perspective view showing a {1101} plane in the hcp structure.

【図3】hcp構造の{1101}面とbcc構造の
{110}面の整合関係を表す平面図。
FIG. 3 is a plan view showing the matching relationship between the {1101} plane of the hcp structure and the {110} plane of the bcc structure.

【図4】bcc構造の{110}面とCaF2 型構造の
{111}面の整合関係を表す平面図。
FIG. 4 is a plan view showing a matching relationship between a {110} plane of a bcc structure and a {111} plane of a CaF 2 type structure.

【図5】本発明の一実施例1による磁気記録媒体の断面
図。
FIG. 5 is a sectional view of the magnetic recording medium according to the first embodiment of the present invention.

【図6】本発明による磁気記録装置の一実施例の模式
図。
FIG. 6 is a schematic diagram of an embodiment of a magnetic recording device according to the present invention.

【符号の説明】[Explanation of symbols]

11…保護膜 12…磁性膜 13…第1下地膜 14…第2下地膜 15…非磁性基板 51,51’…保護膜 52,52’…hcp構造を有する磁性膜 53,53’…bcc構造を有する下地膜 54,54’…CaF2 型構造を有する下地膜 55…ガラス基板 61…磁気記録媒体 62…磁気抵抗効果素子再生複合ヘッド 63…アクチュエータ 64…ボイスコイルモータ 65…記録再生回路 66…位置決め回路 67…インターフェース制御回路11 ... Protective film 12 ... Magnetic film 13 ... 1st Underlayer film 14 ... 2nd Underlayer film 15 ... Nonmagnetic substrate 51, 51 '... Protective film 52, 52' ... Magnetic film 53, 53 '... hcc structure bcc structure Underlayer film 54, 54 'having ... CaF 2 type underlayer film 55 Glass substrate 61 Magnetic recording medium 62 Magnetoresistive element reproducing composite head 63 Actuator 64 Voice coil motor 65 Recording reproducing circuit 66 Positioning circuit 67 ... Interface control circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲葉 信幸 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuyuki Inaba 1-280 Higashi Koigakubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板と該非磁性基板上に設けられ
た少なくとも2層の下地膜と該2層の下地膜上に設けら
れた磁性膜とを有する磁気記録媒体であって、前記磁性
膜は六方最密充填構造を持ち、前記2層の下地膜のうち
磁性膜の直下に設けられた第1下地膜は体心立方構造を
持ち、該第1下地膜の直下に設けられた第2下地膜はC
aF2 型結晶構造を持つことを特徴とする磁気記録媒
体。
1. A magnetic recording medium comprising a non-magnetic substrate, at least two underlayer films provided on the non-magnetic substrate, and a magnetic film provided on the two underlayer films, the magnetic film Has a hexagonal close-packed structure, and a first underlayer film provided directly under the magnetic film of the two-layer underlayer film has a body-centered cubic structure and a second underlayer film provided directly under the first underlayer film. The base film is C
A magnetic recording medium having an aF 2 type crystal structure.
【請求項2】 前記磁性膜は優先配向面が{1101}
であり、前記第1下地膜は優先配向面が{110}であ
り、前記第2下地膜は優先配向面が{111}であるこ
とを特徴とする請求項1記載の磁気記録媒体。
2. A preferred orientation plane of the magnetic film is {1101}.
2. The magnetic recording medium according to claim 1, wherein the first underlayer has a preferential orientation plane of {110} and the second underlayer has a preferential orientation plane of {111}.
【請求項3】 前記第1下地膜及び上記第2下地膜は、
いずれも非磁性材料からなることを特徴とする請求項1
又は2記載の磁気記録媒体。
3. The first base film and the second base film,
Both are made of a non-magnetic material.
Or the magnetic recording medium according to 2.
【請求項4】 前記磁性膜は、Co又はCoを主成分と
する合金からなることを特徴とする請求項1〜3のいず
れか1項記載の磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein the magnetic film is made of Co or an alloy containing Co as a main component.
【請求項5】 前記第1下地膜は、Cr,Mo,W,
V,Nb,Ta又はこれらの元素を主成分とする合金か
らなる群から選ばれた少なくとも一種の材料からなるこ
とを特徴とする請求項1〜4のいずれか1項記載の磁気
記録媒体。
5. The first underlayer is made of Cr, Mo, W,
5. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is made of at least one material selected from the group consisting of V, Nb, Ta, and alloys containing these elements as a main component.
【請求項6】 前記第2下地膜は、CaF2 ,Sr
2 ,BaF2 ,SrCl2 又はこれらの無機化合物を
主成分とする混晶からなる群から選ばれた少なくとも一
種の材料からなることを特徴とする請求項1〜5のいず
れか1項記載の磁気記録媒体。
6. The second underlayer film is made of CaF 2 , Sr.
F 2, BaF 2, SrCl 2 or any one of claims 1 to 5, characterized in that it consists of at least one material selected these inorganic compounds from the group consisting of a mixed crystal whose main component Magnetic recording medium.
【請求項7】 前記磁性膜はCo又はCoを主成分とす
る合金からなり、前記第1下地膜はCr又はCrを主成
分とする合金からなることを特徴とする請求項1〜3の
いずれか1項記載の磁気記録媒体。
7. The magnetic film is made of Co or an alloy containing Co as a main component, and the first underlayer is made of Cr or an alloy containing Cr as a main component. 2. A magnetic recording medium according to item 1.
【請求項8】 前記第1下地膜はCr又はCrを主成分
とする合金からなり、前記第2下地膜はCaF2 ,Sr
2 又はこれらの無機化合物を主成分とする混晶からな
ることを特徴とする請求項1〜3のいずれか1項記載の
磁気記録媒体。
8. The first underlayer film is made of Cr or an alloy containing Cr as a main component, and the second underlayer film is made of CaF 2 , Sr.
The magnetic recording medium according to any one of claims 1 to 3, which is composed of F 2 or a mixed crystal containing these inorganic compounds as a main component.
【請求項9】 前記磁性膜の結晶構造のa軸の格子定数
をa(hcp)とし、前記第1下地膜の結晶構造のa軸
の格子定数をa(bcc)とするとき、 −0.1≦{a(hcp)×2−a(bcc)×
1/2 }/a(bcc)×31/2 ≦0.1 であることを特徴とする請求項1〜8のいずれか1項記
載の磁気記録媒体。
9. When the a-axis lattice constant of the crystal structure of the magnetic film is a (hcp) and the a-axis lattice constant of the crystal structure of the first underlayer is a (bcc), −0. 1 ≦ {a (hcp) × 2-a (bcc) ×
The magnetic recording medium according to claim 1, wherein 3 1/2 } / a (bcc) × 3 1/2 ≦ 0.1.
【請求項10】 前記磁性膜上に保護膜を有することを
特徴とする請求項1〜9のいずれか1項記載の磁気記録
媒体。
10. The magnetic recording medium according to claim 1, further comprising a protective film on the magnetic film.
【請求項11】 請求項1〜10のいずれか1項記載の
磁気記録媒体と、該磁気記録媒体を保持するための保持
具と、磁気記録媒体の磁性膜上に配置され、情報を記
録、再生するための磁気ヘッドと、磁気ヘッドと磁気記
録媒体の相対的位置を移動させるための移動手段と、こ
れらを制御するための制御手段とを備えることを特徴と
する磁気記録装置。
11. A magnetic recording medium according to claim 1, a holder for holding the magnetic recording medium, and a magnetic film of the magnetic recording medium for recording information. A magnetic recording apparatus comprising: a magnetic head for reproducing, a moving means for moving a relative position between the magnetic head and the magnetic recording medium, and a control means for controlling these.
JP28673693A 1993-11-16 1993-11-16 Magnetic recording medium and magnetic recorder Pending JPH07141639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28673693A JPH07141639A (en) 1993-11-16 1993-11-16 Magnetic recording medium and magnetic recorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28673693A JPH07141639A (en) 1993-11-16 1993-11-16 Magnetic recording medium and magnetic recorder

Publications (1)

Publication Number Publication Date
JPH07141639A true JPH07141639A (en) 1995-06-02

Family

ID=17708360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28673693A Pending JPH07141639A (en) 1993-11-16 1993-11-16 Magnetic recording medium and magnetic recorder

Country Status (1)

Country Link
JP (1) JPH07141639A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244684A (en) * 2005-02-04 2006-09-14 Fujitsu Ltd Magnetic recording medium and its manufacturing method, and magnetic storage device
US7566507B2 (en) 2003-05-02 2009-07-28 Fujitsu Limited Magnetic recording medium, magnetic storage apparatus and method of producing magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7566507B2 (en) 2003-05-02 2009-07-28 Fujitsu Limited Magnetic recording medium, magnetic storage apparatus and method of producing magnetic recording medium
JP2006244684A (en) * 2005-02-04 2006-09-14 Fujitsu Ltd Magnetic recording medium and its manufacturing method, and magnetic storage device
US7736769B2 (en) 2005-02-04 2010-06-15 Showa Denko K.K. Magnetic recording medium, method of producing the same, and magnetic storage apparatus

Similar Documents

Publication Publication Date Title
US5738927A (en) Perpendicular magnetic recording media and magnetic recording device
US5851643A (en) Magnetic recording media and magnetic recording read-back system which uses such media
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
US7282278B1 (en) Tilted recording media with L10 magnetic layer
US20040043258A1 (en) Perpendicular magnetic recording medium and magnetic storage apparatus using the same
KR20080012108A (en) Perpendicular magnetic recording medium and magnetic storage apparatus
JP3612087B2 (en) Magnetic recording medium
JP2002208126A (en) Magnetic recording medium, manufacturing method for magnetic recording medium, and magnetic recording device
JP2005190538A (en) Magnetic recording medium, and its manufacturing method and apparatus
US7521136B1 (en) Coupling enhancement for medium with anti-ferromagnetic coupling
US6541131B1 (en) Perpendicular recording media with enhanced coercivity
JP3370720B2 (en) Magnetic recording medium and magnetic recording device
JP2991672B2 (en) Magnetic recording media
US20060210836A1 (en) Magnetic recording medium and magnetic storage unit
JPH07134820A (en) Magnetic recording medium and magnetic recorder using the medium
JP3018551B2 (en) In-plane magnetic recording media
JP3345199B2 (en) Perpendicular magnetic recording medium and magnetic recording device
JPH07141639A (en) Magnetic recording medium and magnetic recorder
JP2004227717A (en) Magnetic recording medium and its manufacturing method
Kang et al. Structural and magnetic properties of FePt-Ag composite film with perpendicular magnetic anisotropy
US7314675B1 (en) Magnetic media with high Ms magnetic layer
JP3222141B2 (en) Magnetic recording medium and magnetic storage device
JPH11134634A (en) Perpendicular magnetic record medium and its production
JP2004310944A (en) Vertical magnetic recording medium and magnetic storage device
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device