JPH11134634A - Perpendicular magnetic record medium and its production - Google Patents

Perpendicular magnetic record medium and its production

Info

Publication number
JPH11134634A
JPH11134634A JP30065997A JP30065997A JPH11134634A JP H11134634 A JPH11134634 A JP H11134634A JP 30065997 A JP30065997 A JP 30065997A JP 30065997 A JP30065997 A JP 30065997A JP H11134634 A JPH11134634 A JP H11134634A
Authority
JP
Japan
Prior art keywords
film
lattice
plane
substrate
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30065997A
Other languages
Japanese (ja)
Other versions
JP3052915B2 (en
Inventor
Hirotaka Norihashi
宏高 法橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9300659A priority Critical patent/JP3052915B2/en
Publication of JPH11134634A publication Critical patent/JPH11134634A/en
Application granted granted Critical
Publication of JP3052915B2 publication Critical patent/JP3052915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce medium noise in recording and reproduction and to improve characteristics of reproduction output voltage to recording density by sequentially forming a soft magnetic film having a crystal structure with a body-centered cubic lattice as a space lattice and having designated lattice planes as oriented faces and a perpendicularly magnetized film having a crystal structure with a hexagonal close-packed lattice as a space lattice. SOLUTION: A soft magnetic film 13 of 'Sendust(R)' and a perpendicularly magnetized film 14 of CoCrTa consisting of 78 at.% Co, 19 at.% Cr and 3 at.% Ta and having a hexagonal close-packed lattice as a space lattice are successively formed on a glass substrate 12 to obtain the objective perpendicular magnetic record medium 11. The temp. of the substrate is set at 200 deg.C in forming the Sendust film, the Sendust film has lattice planes (200) as oriented faces and the half-width Δθ50 of the CoCrTa film is halved as compared with that at <200 deg.C temp. of the substrate when forming the Sendust film. The lattice matchability of the lattice planes (200) of the Sendust film and the lattice planes (001) of the CoCrTa film is satisfactory and high quality and high recording density are easily attained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、垂直磁気記録媒
体及びその製造方法に関し、詳しくは、コンピュ−タ等
の記憶装置の1つであり、各種データを垂直磁気記録方
式で記憶する磁気ディスク等に用いて好適な垂直磁気記
録媒体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perpendicular magnetic recording medium and a method of manufacturing the same, and more particularly, to one of storage devices such as a computer, and a magnetic disk for storing various data in a perpendicular magnetic recording system. The present invention relates to a perpendicular magnetic recording medium suitable for use in the present invention and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、パ−ソナルコンピュ−タやワ−ク
ステ−ション等の処理の高速化や処理データの大規模化
ないしは装置の小型化に伴って、それらの記憶装置の1
つである磁気ディスクを大容量化・小型化する必要があ
り、磁気ディスクはさらなる高記録密度化が要求されて
いる。しかし、現在広く普及している、磁性層の水平方
向(膜面方向)に磁化してデータを記憶する水平磁気記
録方式で高記録密度化しようとすると、記録ビットの微
細化に伴う記録磁化の熱揺らぎの問題や、記録ヘッドの
記録能力を超えかねない高保磁力化の問題が発生してし
まう。すなわち、高記録密度化を実現するためには、必
然的に記録ビットが小さくなるが、記録ビットがあまり
にも小さくなると、記録時に発生する熱エネルギの影響
が無視できなくなり、記録磁化が熱によって容易に動
き、記録磁化が消失してしまう場合がある。この記録磁
化が熱のために動き易くなる現象を記録磁化の熱揺らぎ
という。また、水平磁気記録方式で高記録密度化する場
合、記録媒体の高保磁力化は避けられないが、その保磁
力以上の磁場を発生させなければならない記録ヘッドの
記録能力に限界があるため、記録媒体の保磁力をあまり
高くできない。したがって、水平磁気記録方式での高記
録密度化には限界があるのである。
2. Description of the Related Art In recent years, as the speed of processing of personal computers, workstations, and the like has been increased, and the scale of processing data has been increased or the size of apparatuses has been reduced, one of these storage devices has been developed.
It is necessary to increase the capacity and size of the magnetic disk, which is one of the two types, and the magnetic disk is required to have a higher recording density. However, in order to increase the recording density with the horizontal magnetic recording method, which is widely used today and stores data by magnetizing the magnetic layer in the horizontal direction (film surface direction), the recording magnetization due to the miniaturization of the recording bit is increased. The problem of thermal fluctuation and the problem of high coercive force, which may exceed the recording capability of the recording head, occur. In other words, in order to realize a high recording density, the recording bits are inevitably reduced, but if the recording bits are too small, the influence of the heat energy generated during recording cannot be ignored, and the recording magnetization is easily reduced by heat. And the recorded magnetization may disappear. This phenomenon in which the recording magnetization easily moves due to heat is called thermal fluctuation of the recording magnetization. Also, when increasing the recording density by the horizontal magnetic recording method, it is inevitable to increase the coercive force of the recording medium, but since the recording capability of the recording head which must generate a magnetic field exceeding the coercive force is limited, the recording is limited. The coercive force of the medium cannot be too high. Therefore, there is a limit to increasing the recording density in the horizontal magnetic recording system.

【0003】そこで、これらの問題を解決しつつ、磁気
ディスクの記録密度を大幅に向上できる記録方式とし
て、従来から、磁性層の垂直方向(膜厚方向)に磁化し
てデータを記憶する垂直磁気記録方式が検討されてい
る。この垂直磁気記録方式に用いられる垂直磁気記録媒
体の1つとして、例えば、「日本応用磁気学会誌、Vol.
8,No.1,1984,p.17」に開示されているよう
に、高透磁率の軟磁性膜と高い垂直異方性を有する垂直
磁化膜とからなる2層膜構造の垂直磁気記録媒体があ
る。図47は、上記文献に開示された従来の垂直磁気記
録媒体1の概略構造を示す要部断面図である。垂直磁気
記録媒体1は、ガラスやアルミニウム(Al)等の非磁
性材料からなる基板2上に、例えば、パーマロイ(ニッ
ケル(Ni)及び鉄(Fe)からなる合金)膜で構成さ
れた軟磁性膜(裏打ち層)3と、例えば、コバルト(C
o)やクロム(Cr)を含んだ合金膜で構成された垂直
磁化膜4とが順に形成されて構成されている。しかしな
がら、上記垂直磁気記録媒体1においては、垂直磁化膜
4の結晶粒がC軸(垂直軸)を磁化容易軸として持つ度
合いを示す垂直配向性が悪いため、垂直磁化膜4自体の
垂直方向の保持力HC⊥が小さくなり、その結果、デー
タの記録特性や再生出力が低下する等、記録再生特性が
劣化してしまうという欠点があった。
Therefore, as a recording method capable of greatly improving the recording density of a magnetic disk while solving these problems, conventionally, a perpendicular magnetic recording method in which data is stored by magnetizing the magnetic layer in a perpendicular direction (film thickness direction). Recording methods are being studied. As one of the perpendicular magnetic recording media used in the perpendicular magnetic recording method, for example, “Journal of the Japan Society of Applied Magnetics, Vol.
8, No. 1, 1984, p. 17 ", a perpendicular magnetic recording medium having a two-layer film structure comprising a soft magnetic film having a high magnetic permeability and a perpendicular magnetic film having a high perpendicular anisotropy. There is. FIG. 47 is a cross-sectional view of a principal part showing a schematic structure of a conventional perpendicular magnetic recording medium 1 disclosed in the above-mentioned document. The perpendicular magnetic recording medium 1 is a soft magnetic film made of, for example, a permalloy (an alloy made of nickel (Ni) and iron (Fe)) on a substrate 2 made of a nonmagnetic material such as glass or aluminum (Al). (Backing layer) 3 and, for example, cobalt (C
o) and a perpendicular magnetization film 4 made of an alloy film containing chromium (Cr). However, in the perpendicular magnetic recording medium 1, since the perpendicular magnetic film 4 has poor vertical orientation indicating the degree to which the crystal grains have the C axis (vertical axis) as the easy axis of magnetization, the perpendicular magnetic film 4 itself has a perpendicular direction. The coercive force H C小 さ く becomes small, and as a result, there is a disadvantage that the recording / reproducing characteristics are deteriorated, such as the data recording characteristics and the reproduction output are lowered.

【0004】そこで、上記垂直磁化膜の垂直配向性を改
善するために、特開昭61−34722号公報には、ポ
リアミド系の耐熱性フィルム等の非磁性材料からなる基
板上に、パーマロイ膜で構成された軟磁性膜と、チタン
(Ti)、酸化シリコン(SiO2)、あるいはアモル
ファス等で構成された非磁性薄膜と、CoCr膜で構成
された垂直磁化膜とが順に形成された垂直磁気記録媒体
が開示されている。また、特開平6−103555号公
報には、Al等の非磁性基板上に、パーマロイ膜で構成
された軟磁性膜と、Co、Cr及びタンタル(Ta)か
らなり、Co,Cr,Taの各組成量を膜厚方向に変化
させたCoCrTa膜で構成された垂直磁化膜とが順に
形成された垂直磁気記録媒体が開示されている。CoC
rTa膜は、B−Hループの角張り性が良く、垂直方向
の保持力HC⊥が高く、結晶学的な垂直配向性を示す指
数が小さいことが知られている(「Masauki Sagoi eta
l., J.Appl. Phys. 67(10), 15 May 1990」参照)。し
かし、上記いずれの垂直磁気記録媒体も、軟磁性膜とし
てパーマロイ膜を用いている以上、垂直磁化膜の垂直配
向性はさほど改善されない。また、特開平6−1035
55号公報に開示された垂直磁気記録媒体を例えばスパ
ッタ法により作製するには、CoCrTa膜の膜厚方向
における各Co,Cr,Taの組成に合わせた複数種類
のターゲットを用意する必要があり、材料費がその分増
加すると共に、複数種類のターゲットを適時切り替えて
スパッタすることができる専用のスパッタ装置が必要で
ある。
In order to improve the vertical orientation of the perpendicular magnetization film, Japanese Patent Application Laid-Open No. 61-34722 discloses a permalloy film on a substrate made of a non-magnetic material such as a polyamide heat-resistant film. Perpendicular magnetic recording in which a soft magnetic film composed of a non-magnetic thin film composed of titanium (Ti), silicon oxide (SiO 2 ) or amorphous, and a perpendicular magnetic film composed of a CoCr film are formed in this order. A medium is disclosed. JP-A-6-103555 discloses that a soft magnetic film composed of a permalloy film and Co, Cr and tantalum (Ta) are formed on a non-magnetic substrate such as Al. There is disclosed a perpendicular magnetic recording medium in which a perpendicular magnetization film composed of a CoCrTa film whose composition amount is changed in the film thickness direction is formed in order. CoC
It is known that an rTa film has a good BH loop angularity, a high vertical coercive force H C 、, and a small index indicating crystallographic vertical orientation (“Masauki Sagoi eta”).
l., J. Appl. Phys. 67 (10), 15 May 1990 "). However, in any of the above-described perpendicular magnetic recording media, since the permalloy film is used as the soft magnetic film, the perpendicular orientation of the perpendicular magnetization film is not significantly improved. Also, JP-A-6-1035
In order to manufacture the perpendicular magnetic recording medium disclosed in Japanese Patent No. 55-155 by, for example, a sputtering method, it is necessary to prepare a plurality of types of targets according to the compositions of Co, Cr, and Ta in the thickness direction of the CoCrTa film. Along with the increase in material cost, a dedicated sputtering apparatus capable of appropriately switching a plurality of types of targets and performing sputtering is required.

【0005】これに対して、特開昭57−36435号
公報には、ガラス等で構成された基板上に、センダスト
(シリコン(Si)、Fe及びAlからなる合金)膜で
構成された軟磁性膜と、CoCr膜で構成された垂直磁
化膜とが順に形成された垂直磁気記録媒体が開示されて
いる。この垂直磁気記録媒体においては、基板上に、体
心立方格子(body-centeredcubic lattice)を空間格子
とした結晶構造を有するセンダスト膜が結晶最密面であ
る格子面(110)面を配向面として形成され、その配
向面上に、六方最密充填(hcp;hexagonal closest
packing)格子を空間格子とした結晶構造を有するCo
Cr膜が格子面(001)面(C面、垂直方向)を配向
面として形成されている。また、本出願人は、特願平0
9−030523号に開示されているように、ガラス基
板やNiP/Al合金基板上に、NiP膜やFe膜等で
構成された第1の軟磁性膜と、センダスト膜で構成され
た第2の軟磁性膜と、CoCrTa膜やCoCr膜で構
成された垂直磁化膜とが順に形成された垂直磁気記録媒
体を提案している。
On the other hand, Japanese Patent Application Laid-Open No. 57-36435 discloses a soft magnetic film made of a sendust (alloy composed of silicon (Si), Fe and Al) film on a substrate made of glass or the like. There is disclosed a perpendicular magnetic recording medium in which a film and a perpendicular magnetization film made of a CoCr film are sequentially formed. In this perpendicular magnetic recording medium, a sendust film having a crystal structure in which a body-centered cubic lattice (body-centered cubic lattice) is a space lattice is formed on a substrate with a lattice plane (110) plane, which is a crystal closest plane, as an orientation plane. Hexagonal closest packing (hcp; hexagonal closest packing)
packing) Co having a crystal structure with a lattice as a spatial lattice
The Cr film is formed with the lattice plane (001) plane (C plane, vertical direction) as the orientation plane. In addition, the applicant filed Japanese Patent Application No.
As disclosed in Japanese Patent Application No. 9-030523, a first soft magnetic film composed of a NiP film or an Fe film and a second soft magnetic film composed of a sendust film are formed on a glass substrate or a NiP / Al alloy substrate. A perpendicular magnetic recording medium has been proposed in which a soft magnetic film and a perpendicular magnetic film composed of a CoCrTa film or a CoCr film are sequentially formed.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記特開昭
57−36435号公報に開示された従来の垂直磁気記
録媒体においては、センダスト膜の格子面(110)面
とCoCr膜の格子面(001)面との格子整合性、す
なわち、センダスト膜とCoCr膜の界面における相性
が良好でないため、垂直磁化膜が所望の比率となる完全
なCoCr膜として成長するまでに必要な、結晶性の乱
れた成長初期層の膜厚が大きくなってしまうが、この成
長初期層は膜厚が厚いほど結晶粒の増大を促進するた
め、記録再生の際の媒体ノイズが大きくなるという欠点
があった。また、センダスト膜の格子面(110)面と
CoCr膜の格子面(001)面との格子整合性が良好
でないことにより、CoCr膜の垂直配向性が悪いた
め、データを高密度で記録した場合、隣接する記録ビッ
トからの干渉が大きくなり、再生出力電圧が早く減衰し
てしまう、すなわち、再生出力電圧の記録密度に対する
特性が良好でないという問題があった。これに対して、
上記特願平09−030523号に開示された従来の垂
直磁気記録媒体は、多層構造にしたりアニール処理する
必要があるため、その分製造工程及び製造時間が増え、
垂直磁気記録媒体の価格が上昇してしまうという欠点が
あった。
In the conventional perpendicular magnetic recording medium disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 57-36435, the lattice plane (110) of the sendust film and the lattice plane (001) of the CoCr film are used. ) The lattice matching with the plane, that is, the compatibility at the interface between the sendust film and the CoCr film is not good, so that the crystallinity required for the perpendicular magnetization film to grow as a complete CoCr film having a desired ratio is disturbed. Although the film thickness of the initial growth layer becomes large, the thicker the initial growth layer, the larger the thickness of the crystal layer is. Further, since the lattice alignment between the lattice plane (110) of the sendust film and the lattice plane (001) of the CoCr film is not good, the perpendicular orientation of the CoCr film is poor. In addition, there is a problem that interference from adjacent recording bits increases and the reproduction output voltage attenuates quickly, that is, the characteristics of the reproduction output voltage with respect to the recording density are not good. On the contrary,
The conventional perpendicular magnetic recording medium disclosed in Japanese Patent Application No. 09-030523 needs to have a multilayer structure or an annealing treatment.
There is a disadvantage that the price of the perpendicular magnetic recording medium increases.

【0007】この発明は、上述の事情に鑑みてなされた
もので、安価かつ簡単に作製できると共に、記録再生の
際の媒体ノイズを低減でき、しかも再生出力電圧の記録
密度に対する特性を向上させることができる垂直磁気記
録媒体及びその製造方法を提供することを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and can be manufactured at low cost and easily, can reduce medium noise at the time of recording and reproduction, and improve the characteristics of the reproduction output voltage with respect to the recording density. It is an object of the present invention to provide a perpendicular magnetic recording medium and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明に係る垂直磁気記録媒体は、基
板上に、体心立方格子を空間格子とした結晶構造を有
し、格子面(200)面を配向面として形成された軟磁
性膜と、六方最密充填格子を空間格子とした結晶構造を
有する垂直磁化膜とが順に形成されてなることを特徴と
している。
In order to solve the above-mentioned problems, a perpendicular magnetic recording medium according to the present invention has a crystal structure in which a body-centered cubic lattice is a space lattice on a substrate, A soft magnetic film having a lattice plane (200) as an orientation plane and a perpendicular magnetization film having a crystal structure having a hexagonal close-packed lattice as a spatial lattice are sequentially formed.

【0009】また、請求項2記載の発明に係る垂直磁気
記録媒体は、基板上に、体心立方格子を空間格子とした
結晶構造を有し、格子面(200)面を配向面として形
成された結晶配向性制御膜と、体心立方格子を空間格子
とした結晶構造を有し、格子面(200)面を配向面と
して形成された軟磁性膜と、六方最密充填格子を空間格
子とした結晶構造を有する垂直磁化膜とが順に形成され
てなることを特徴としている。
A perpendicular magnetic recording medium according to a second aspect of the present invention has a crystal structure in which a body-centered cubic lattice is a spatial lattice on a substrate, and is formed with a lattice plane (200) plane as an orientation plane. A crystal orientation control film, a soft magnetic film having a crystal structure with a body-centered cubic lattice as a spatial lattice, and having a lattice plane (200) oriented as an orientation plane, and a hexagonal close-packed lattice as a spatial lattice. And a perpendicular magnetization film having the above-described crystal structure.

【0010】請求項3記載の発明は、請求項2記載の垂
直磁気記録媒体に係り、上記結晶配向性制御膜は、バナ
ジウム、クロム、ニオブ、モリブデンのうち、いずれか
1つの元素からなる膜、いずれか2つ以上の元素からな
る合金膜、あるいはいずれか少なくとも1つの元素とこ
れら以外の少なくとも1つの元素とかなる合金膜である
ことを特徴としている。
According to a third aspect of the present invention, there is provided the perpendicular magnetic recording medium according to the second aspect, wherein the crystal orientation control film is a film made of any one element of vanadium, chromium, niobium, and molybdenum. It is characterized by being an alloy film composed of any two or more elements, or an alloy film composed of at least one element and at least one other element.

【0011】また、請求項4記載の発明は、請求項1乃
至3のいずれか1に記載の垂直磁気記録媒体に係り、上
記垂直磁化膜は、クロムの原子百分率が30パーセント
以下のコバルト、クロム及びタンタルからなる合金膜、
又は、クロムの原子百分率が30パーセント以下のコバ
ルト及びクロムからなる合金膜であることを特徴として
いる。
According to a fourth aspect of the present invention, there is provided the perpendicular magnetic recording medium according to any one of the first to third aspects, wherein the perpendicular magnetic film comprises cobalt and chromium having an atomic percentage of chromium of 30% or less. And an alloy film made of tantalum,
Alternatively, the alloy film is characterized by being an alloy film made of cobalt and chromium in which the atomic percentage of chromium is 30% or less.

【0012】請求項5記載の発明は、請求項1乃至4の
いずれか1に記載の垂直磁気記録媒体に係り、上記軟磁
性膜は、鉄、シリコン、アルミニウム、チタン、ルテニ
ウム、コバルト、窒素のいずれか2つ以上の元素からな
る合金膜であることを特徴としている。
According to a fifth aspect of the present invention, there is provided the perpendicular magnetic recording medium according to any one of the first to fourth aspects, wherein the soft magnetic film is made of iron, silicon, aluminum, titanium, ruthenium, cobalt, or nitrogen. It is characterized in that it is an alloy film composed of any two or more elements.

【0013】請求項6記載の発明は、請求項1乃至5の
いずれか1に記載の垂直磁気記録媒体に係り、上記基板
は、ニッケル、リン及びアルミニウムからなる合金基
板、ガラス基板、カーボン基板、シリコン基板、又は、
サファイア基板であることを特徴としている。
According to a sixth aspect of the present invention, there is provided the perpendicular magnetic recording medium according to any one of the first to fifth aspects, wherein the substrate is an alloy substrate made of nickel, phosphorus and aluminum, a glass substrate, a carbon substrate, Silicon substrate, or
It is a sapphire substrate.

【0014】また、請求項7記載の発明に係る垂直磁気
記録媒体の製造方法は、基板上に、基板温度を200゜
C以上の所定の温度に保持しつつ、体心立方格子を空間
格子とした結晶構造を有する軟磁性膜を格子面(20
0)面を配向面として形成する第1の工程と、上記軟磁
性膜上に、六方最密充填格子を空間格子とした結晶構造
を有する垂直磁化膜を形成する第2の工程とからなるこ
とを特徴としている。
Further, in the method of manufacturing a perpendicular magnetic recording medium according to the present invention, the body-centered cubic lattice is formed as a spatial lattice on the substrate while maintaining the substrate temperature at a predetermined temperature of 200 ° C. or more. The soft magnetic film having the modified crystal structure is placed on the lattice plane (20
0) a first step of forming a plane as an orientation plane, and a second step of forming a perpendicular magnetization film having a crystal structure with a hexagonal close-packed lattice as a space lattice on the soft magnetic film. It is characterized by.

【0015】請求項8記載の発明に係る垂直磁気記録媒
体の製造方法は、基板上に、基板温度を所定の温度に保
持すると共に、スパッタ法によりアルゴンガスのガス圧
を30mTorr以下の所定のガス圧に設定して、体心立方
格子を空間格子とした結晶構造を有する軟磁性膜を格子
面(200)面を配向面として形成する第1の工程と、
上記軟磁性膜上に、六方最密充填格子を空間格子とした
結晶構造を有する垂直磁化膜を形成する第2の工程とか
らなることを特徴としている。
According to a second aspect of the present invention, there is provided a method for manufacturing a perpendicular magnetic recording medium, comprising: maintaining a substrate temperature at a predetermined temperature on a substrate; A first step of forming a soft magnetic film having a crystal structure having a body-centered cubic lattice as a spatial lattice with the lattice plane (200) oriented as an orientation plane;
A second step of forming a perpendicular magnetization film having a crystal structure using a hexagonal close-packed lattice as a space lattice on the soft magnetic film.

【0016】請求項9記載の発明は、請求項7又は8記
載の垂直磁気記録媒体の製造方法に係り、上記第1の工
程の前に、基板上に、基板温度を所定の温度に保持しつ
つ、体心立方格子を空間格子とした結晶構造を有する結
晶配向性制御膜を格子面(200)面を配向面として形
成する第3の工程を行うことを特徴としている。
According to a ninth aspect of the present invention, there is provided a method for manufacturing a perpendicular magnetic recording medium according to the seventh or eighth aspect, wherein the substrate temperature is maintained at a predetermined temperature on the substrate before the first step. In addition, a third step of forming a crystal orientation control film having a crystal structure using a body-centered cubic lattice as a spatial lattice with a lattice plane (200) plane as an orientation plane is performed.

【0017】請求項10記載の発明は、請求項9記載の
垂直磁気記録媒体の製造方法に係り、上記結晶配向性制
御膜は、バナジウム、クロム、ニオブ、モリブデンのい
ずれか1つの元素からなる膜、いずれか2つ以上の元素
からなる合金膜、あるいはいずれか少なくとも1つの元
素とこれら以外の少なくとも1つの元素とかなる合金膜
であることを特徴としている。
According to a tenth aspect of the present invention, there is provided the method for manufacturing a perpendicular magnetic recording medium according to the ninth aspect, wherein the crystal orientation control film is a film made of any one element of vanadium, chromium, niobium, and molybdenum. , An alloy film composed of any two or more elements, or an alloy film composed of at least one element and at least one other element.

【0018】請求項11記載の発明は、請求項7乃至1
0のいずれか1に記載の垂直磁気記録媒体の製造方法に
係り、上記垂直磁化膜は、クロムの原子百分率が30パ
ーセント以下のコバルト、クロム及びタンタルからなる
合金膜、又は、クロムの原子百分率が30パーセント以
下のコバルト及びクロムからなる合金膜であることを特
徴としている。
[0018] The eleventh aspect of the present invention is the seventh aspect of the present invention.
0, wherein the perpendicular magnetization film has an atomic percentage of chromium of 30% or less, an alloy film made of cobalt, chromium, and tantalum, or an atomic percentage of chromium. It is characterized in that it is an alloy film composed of 30% or less of cobalt and chromium.

【0019】請求項12記載の発明は、請求項7乃至1
1のいずれか1に記載の垂直磁気記録媒体の製造方法に
係り、上記軟磁性膜は、鉄、シリコン、アルミニウム、
チタン、ルテニウム、コバルト、窒素のいずれか2つ以
上の元素からなる合金膜であることを特徴としている。
The twelfth aspect of the present invention is the seventh aspect of the present invention.
1. The method of manufacturing a perpendicular magnetic recording medium according to claim 1, wherein the soft magnetic film is made of iron, silicon, aluminum,
It is characterized by being an alloy film composed of any two or more elements of titanium, ruthenium, cobalt and nitrogen.

【0020】請求項13記載の発明は、請求項7乃至1
2のいずれか1に記載の垂直磁気記録媒体の製造方法に
係り、上記基板は、ニッケル、リン及びアルミニウムか
らなる合金基板、ガラス基板、カーボン基板、シリコン
基板、又は、サファイア基板であることを特徴としてい
る。
The invention according to claim 13 is the invention according to claims 7 to 1
2. The method for manufacturing a perpendicular magnetic recording medium according to any one of items 2, wherein the substrate is an alloy substrate made of nickel, phosphorus, and aluminum, a glass substrate, a carbon substrate, a silicon substrate, or a sapphire substrate. And

【0021】[0021]

【作用】この発明の構成によれば、軟磁性膜を、単独で
又は結晶配向性制御膜と共に、垂直磁化膜の格子面(0
01)面と格子整合性が良好な格子面(200)面を配
向面として形成しているので、垂直磁化膜の垂直配向性
が改善されると共に、垂直磁化膜の成長初期層の膜厚を
薄くすることができる。また、この垂直磁気記録媒体
は、多くても3層構造である。さらに、この発明の構成
による製造方法によれば、アニール処理したり、垂直磁
化膜を構成する各元素の各組成量を膜厚方向に変化させ
る必要はない。したがって、垂直磁気記録媒体を安価か
つ簡単に作製できると共に、記録再生の際の媒体ノイズ
を低減でき、しかも再生出力電圧の記録密度に対する特
性を向上させることができる。
According to the structure of the present invention, the soft magnetic film is used alone or together with the crystal orientation control film to form the lattice plane (0) of the perpendicular magnetization film.
Since the lattice plane (200) having good lattice matching with the (01) plane is formed as the orientation plane, the perpendicular orientation of the perpendicular magnetization film is improved, and the thickness of the initial growth layer of the perpendicular magnetization film is reduced. Can be thin. The perpendicular magnetic recording medium has a three-layer structure at most. Further, according to the manufacturing method having the configuration of the present invention, it is not necessary to perform annealing or change the composition of each element constituting the perpendicular magnetization film in the film thickness direction. Therefore, the perpendicular magnetic recording medium can be manufactured inexpensively and easily, the medium noise during recording and reproduction can be reduced, and the characteristics of the reproduction output voltage with respect to the recording density can be improved.

【0022】[0022]

【発明の実施の形態】以下、図面を参照して、この発明
の実施の形態について説明する。説明は、実施例を用い
て具体的に行う。 A.第1の実施例 図1はこの発明の第1の実施例である垂直磁気記録媒体
11の概略構造を示す要部断面図である。垂直磁気記録
媒体11は、直径2.5インチの円形のガラス基板12
上に、センダスト膜で構成された軟磁性膜13と、C
o:78at%,Cr:19at%,Ta:3at%の
組成を有し、六方最密充填格子を空間格子とした結晶構
造を有するCoCrTa膜で構成された垂直磁化膜14
とが順に形成されて構成されている。ここで、at%と
は、原子百分率(atomic percent)をいい、物質全体の
原子数を100とした場合のある元素の原子数をいう。
今の場合、Coの原子数が78、Crの原子数が19、
Taの原子数が3である。以下、この垂直磁気記録媒体
11の製造方法について説明する。まず、ガラス基板1
2上にスパッタ法により6インチのFeSiAlタ−ゲ
ットを用いて、基板温度を200゜C〜300゜Cの範
囲内の所定の温度に保持しつつ、センダスト膜で構成さ
れた軟磁性膜13を500nm成膜する。成膜条件は、初
期真空度5×10-7mTorrにおいて、投入電力0.5k
w、アルゴン(Ar)ガス圧4mTorr、成膜速度3nm/sec
とした。次に、軟磁性膜13上に、Co:78at%,
Cr:19at%,Ta:3at%の組成を有するCo
CrTaタ−ゲットを用いてスパッタ法によりCoCr
Ta膜で構成された垂直磁化膜14を100nmを成膜す
る。
Embodiments of the present invention will be described below with reference to the drawings. The description will be specifically made using an embodiment. A. First Embodiment FIG. 1 is a sectional view showing a main part of a schematic structure of a perpendicular magnetic recording medium 11 according to a first embodiment of the present invention. The perpendicular magnetic recording medium 11 has a circular glass substrate 12 having a diameter of 2.5 inches.
On top, a soft magnetic film 13 composed of a sendust film and C
o: 78 at%, Cr: 19 at%, Ta: 3 at%, and a perpendicular magnetization film 14 composed of a CoCrTa film having a crystal structure having a hexagonal close-packed lattice as a spatial lattice.
Are sequentially formed. Here, “at%” refers to atomic percent, which is the number of atoms of a certain element when the number of atoms in the entire substance is set to 100.
In this case, Co has 78 atoms, Cr has 19 atoms,
Ta has 3 atoms. Hereinafter, a method of manufacturing the perpendicular magnetic recording medium 11 will be described. First, the glass substrate 1
A soft magnetic film 13 composed of a sendust film is formed on a substrate 2 by sputtering using a 6-inch FeSiAl target while maintaining the substrate temperature at a predetermined temperature in the range of 200 ° C. to 300 ° C. A 500 nm film is formed. The film formation conditions are as follows: an initial vacuum degree of 5 × 10 −7 mTorr and an input power of 0.5 k
w, Argon (Ar) gas pressure 4 mTorr, deposition rate 3 nm / sec
And Next, on the soft magnetic film 13, Co: 78 at%,
Co having a composition of Cr: 19 at% and Ta: 3 at%
CoCr by sputtering using a CrTa target.
A perpendicular magnetization film 14 composed of a Ta film is formed to a thickness of 100 nm.

【0023】ここで、図2に、センダスト膜を成膜した
時の基板温度と、センダスト膜の結晶配向性及びCoC
rTa膜の垂直配向性との関係を示す。センダスト膜の
結晶配向性はX線回折法を用いて測定しており、図2に
示す数値は、センダスト膜の格子面(110)面及び
(200)面それぞれから反射されたX線の回折強度
(単位:カウント/秒、cps;counts per second)であ
る。このX線の回折強度が大きいということは、その格
子面の方向にセンダスト膜の結晶粒が配向していること
を意味する。また、CoCrTa膜の垂直配向性もX線
回折法を用いて測定しており、単色のX線を、CoCr
Ta膜の格子面(002)面(C面、垂直方向)により
X線が反射された場合の回折強度がピークになる方向か
らCoCrTa膜の表面に入射させ、垂直磁気記録媒体
をブラック角の付近で回転させたときに得られる回折強
度のX線の反射角(2θ)に対する変化を測定する。こ
の回折強度のX線の反射角(2θ)に対する変化を表す
曲線をロッキングカーブといい、ある結晶軸の回りの結
晶配向性(今の場合、C軸の回りの結晶配向性、すなわ
ち、垂直配向性)の分散を表しており、図2に示す数値
は、このロッキングカ−ブにおいて回折強度が1/2に
低下する角度幅(半値幅)Δθ50(図2では簡単にCo
CrTa膜の半値幅Δθ50と表示、以下この表現を用い
る。)である。したがって、このCoCrTa膜の半値
幅Δθ50の値が小さいほど、CoCrTa膜の結晶粒は
C軸方向に配向しており、その配向性の分散が小さい、
すなわち、垂直配向性が良好であるということになる。
FIG. 2 shows the substrate temperature when the sendust film was formed, the crystal orientation of the sendust film, and the CoC.
The relation with the vertical orientation of the rTa film is shown. The crystal orientation of the Sendust film is measured using an X-ray diffraction method, and the numerical values shown in FIG. 2 are the diffraction intensities of the X-rays reflected from the lattice planes (110) and (200), respectively. (Unit: count / second, cps; counts per second). The fact that the X-ray diffraction intensity is high means that the crystal grains of the sendust film are oriented in the direction of the lattice plane. The vertical orientation of the CoCrTa film was also measured using an X-ray diffraction method.
When the X-rays are reflected by the lattice plane (002) plane (C plane, vertical direction) of the Ta film, the diffraction intensity is made incident on the surface of the CoCrTa film from the direction in which the diffraction intensity peaks, and the perpendicular magnetic recording medium is caused to be near the black angle. Then, the change in the diffraction intensity obtained when the sample is rotated with respect to the X-ray reflection angle (2θ) is measured. A curve representing the change in the diffraction intensity with respect to the X-ray reflection angle (2θ) is called a rocking curve, and the crystal orientation around a certain crystal axis (in this case, the crystal orientation around the C axis, that is, the vertical orientation) The numerical value shown in FIG. 2 is the angular width (half width) Δθ 50 at which the diffraction intensity is reduced to half in this locking curve (in FIG.
The half-width Δθ 50 of the CrTa film is indicated, and this expression is used hereinafter. ). Therefore, as the value of the half width Δθ 50 of the CoCrTa film is smaller, the crystal grains of the CoCrTa film are oriented in the C-axis direction, and the dispersion of the orientation is smaller.
That is, the vertical orientation is good.

【0024】図2から分かるように、センダスト膜を成
膜した時の基板温度を100゜Cから変化させ、200
゜C以上にすることによって、センダスト膜は格子面
(110)面から格子面(200)面に配向性を変えて
いる。そして、CoCrTa膜の半値幅Δθ50は、セン
ダスト膜成膜時の基板温度が200゜C以上、すなわ
ち、センダスト膜が格子面(200)面を配向面として
形成されている場合では、センダスト膜成膜時の基板温
度が200゜C未満、すなわち、センダスト膜が格子面
(110)面を配向面として形成されている場合に比べ
て、ほぼ半減している。これは、センダスト膜の格子面
(200)面とCoCrTa膜の格子面(001)面と
の格子整合性が良好であることを表している。つまり、
センダスト膜を、CoCrTa膜の格子面(001)面
と格子整合性が良好な格子面(200)面を配向面とし
て形成することにより、CoCrTa膜の半値幅Δθ50
がほぼ半減していることから、CoCrTa膜の垂直配
向性が改善されていると考えられる。
As can be seen from FIG. 2, the substrate temperature when the sendust film was formed was changed from 100 ° C. to 200 ° C.
By setting the temperature to ゜ C or more, the sendust film changes the orientation from the lattice plane (110) plane to the lattice plane (200) plane. The half-width Δθ 50 of the CoCrTa film is such that when the substrate temperature during the formation of the sendust film is 200 ° C. or higher, that is, when the sendust film is formed with the lattice plane (200) plane as the orientation plane, The substrate temperature at the time of film formation is less than 200 ° C., that is, almost halved as compared with the case where the sendust film is formed with the lattice plane (110) plane as the orientation plane. This indicates that the lattice matching between the lattice plane (200) of the sendust film and the lattice plane (001) of the CoCrTa film is good. That is,
The half-width Δθ 50 of the CoCrTa film is obtained by forming the sendust film with the lattice plane (200) having good lattice matching with the lattice plane (001) of the CoCrTa film as an orientation plane.
Is almost halved, it is considered that the vertical orientation of the CoCrTa film is improved.

【0025】ここで、図3〜図5に、上記製造方法で作
製した垂直磁気記録媒体の記録再生特性、すなわち、記
録密度に対する、媒体ノイズ、再生出力電圧及び媒体S
/Nの特性を示す。図3〜図5において、各曲線aは、
成膜時の基板温度を200゜C〜300゜Cの範囲内の
所定の温度でセンダスト膜を形成後、CoCrTa膜を
形成した場合の特性を表す曲線、各曲線bは、成膜時の
基板温度を200゜C未満の所定の温度でセンダスト膜
を形成後、CoCrTa膜を形成した場合の特性を表す
曲線である。また、記録密度の単位は、kFRPI(kilo Fl
ux Reverse PerInch)であり、例えば、1kFRPIは垂直
磁気記録媒体の1インチ当たり1,000回磁化反転の
あるデジタル信号の記録状態を意味している。これらの
記録再生特性は、記録用のリングヘッドと再生用の磁気
抵抗素子とが複合されたID/MR(Inductive / Magn
etoresistive)複合ヘッドを用いて測定し、記録トラッ
ク幅は4mm、再生トラック幅は3mm、記録ギャップ長は
0.4mm、再生ギャップ長は0.32mmである。そし
て、記録電流の振幅を10mA、センス電流を12mA、周
速度を12.7m/s、浮上量を45nm、ノイズのバンド
帯域を45MHzとした条件下で評価した。
Here, FIGS. 3 to 5 show the recording / reproducing characteristics of the perpendicular magnetic recording medium manufactured by the above-mentioned manufacturing method, that is, the medium noise, the reproducing output voltage and the medium S with respect to the recording density.
/ N characteristics. 3 to 5, each curve a is
Curves representing the characteristics when a CoCrTa film is formed after forming a sendust film at a predetermined temperature within the range of 200 ° C. to 300 ° C. during the film formation. It is a curve showing the characteristic when a CoCrTa film is formed after forming a sendust film at a predetermined temperature of less than 200 ° C. The unit of recording density is kFRPI (kilo Fl
ux Reverse PerInch), for example, 1 kFRPI means a recording state of a digital signal having a magnetization reversal 1,000 times per inch on a perpendicular magnetic recording medium. These recording / reproducing characteristics are based on ID / MR (Inductive / Magnet) in which a recording ring head and a reproducing magnetoresistive element are combined.
The recording track width was 4 mm, the reproduction track width was 3 mm, the recording gap length was 0.4 mm, and the reproduction gap length was 0.32 mm. The evaluation was performed under the conditions that the amplitude of the recording current was 10 mA, the sense current was 12 mA, the peripheral speed was 12.7 m / s, the flying height was 45 nm, and the noise band band was 45 MHz.

【0026】図3によれば、センダスト膜成膜時の基板
温度を、200゜C〜300゜Cの範囲内とすることに
より(曲線a)、200゜未満にする場合(曲線b)に
比較して、全記録密度において媒体ノイズが小さく、ノ
イズ特性が非常に優れていることが分かる。これは、セ
ンダスト膜を、CoCrTa膜の格子面(001)面と
格子整合性が良好な格子面(200)面を配向面として
形成することにより、CoCrTa膜の成長初期層の膜
厚を薄くすることができ、低ノイズ化が実現できたもの
と考えられる。また、図4によれば、センダスト膜成膜
時の基板温度を、200゜C〜300゜Cの範囲内とす
ることにより(曲線a)、200゜未満にする場合(曲
線b)に比較して、記録密度の増大に伴う再生出力電圧
の減衰が遅く、高記録密度まで高い再生出力電圧を確保
でき、高記録密度の実現が容易となることが分かる。こ
れは、センダスト膜を、CoCrTa膜の格子面(00
1)面と格子整合性が良好な格子面(200)面を配向
面として形成することにより、CoCrTa膜の垂直配
向性が改善され、再生出力電圧の記録密度に対する特性
が向上したものと考えられる。さらに、図5によれば、
センダスト膜成膜時の基板温度を、200゜C〜300
゜Cの範囲内とすることにより(曲線a)、200゜未
満にする場合(曲線b)に比較して、全記録密度におい
て媒体S/Nが2〜6dB良好であり、高品質で高記録密
度を実現できることが分かる。すなわち、センダスト膜
を、CoCrTa膜の格子面(001)面と格子整合性
が良好な格子面(200)面を配向面として形成するこ
とにより、高品質の高記録密度の実現が容易となる。
According to FIG. 3, the substrate temperature during the formation of the sendust film is set in the range of 200 ° C. to 300 ° C. (curve a), and compared with the case where the substrate temperature is less than 200 ° C. (curve b). Thus, it can be seen that the medium noise is small and the noise characteristics are very excellent at all recording densities. This is because the sendust film is formed with the lattice plane (200) plane having good lattice matching with the lattice plane (001) plane of the CoCrTa film as an orientation plane, thereby reducing the thickness of the initial growth layer of the CoCrTa film. It is considered that the noise reduction was realized. Further, according to FIG. 4, the substrate temperature during the formation of the sendust film is set in the range of 200 ° C. to 300 ° C. (curve a), compared with the case where the substrate temperature is less than 200 ° (curve b). Thus, it can be seen that the decay of the reproduction output voltage with the increase in the recording density is slow, a high reproduction output voltage can be secured up to a high recording density, and it is easy to realize a high recording density. This means that the sendust film is formed by the lattice plane (00) of the CoCrTa film.
It is considered that the vertical orientation of the CoCrTa film is improved by forming the lattice plane (200) plane having good lattice matching with the 1) plane as the orientation plane, and the characteristics of the read output voltage with respect to the recording density are improved. . Further, according to FIG.
The substrate temperature at the time of Sendust film formation is 200 ° C. to 300 ° C.
By setting it within the range of {C (curve a), the medium S / N is better by 2 to 6 dB at all recording densities and higher quality and higher recording than in the case of less than 200 ° (curve b). It can be seen that the density can be achieved. That is, by forming the sendust film with the lattice plane (200) plane having good lattice matching with the lattice plane (001) plane of the CoCrTa film as the orientation plane, it is easy to realize high quality and high recording density.

【0027】B.第2の実施例 次に、第2の実施例について説明する。この例の垂直磁
気記録媒体は、図1に示す構造と同様の概略構造を有
し、その製造方法、垂直磁化膜の組成及び軟磁性膜の成
膜条件も6インチのFeSiタ−ゲットを用いる他は上
記した第1の実施例と同様であり、直径2.5インチの
円形のガラス基板上に、膜厚500nmのFeSi膜で構
成された軟磁性膜と、膜厚100nmのCoCrTa膜で
構成された垂直磁化膜とが順に形成されて構成されてい
る。
B. Second Embodiment Next, a second embodiment will be described. The perpendicular magnetic recording medium of this example has a schematic structure similar to the structure shown in FIG. 1, and uses a 6 inch FeSi target for the manufacturing method, the composition of the perpendicular magnetic film, and the conditions for forming the soft magnetic film. The other components are the same as those of the first embodiment described above. The soft magnetic film is composed of a 500-nm-thick FeSi film and the 100-nm-thick CoCrTa film on a 2.5-inch-diameter circular glass substrate. And a perpendicular magnetization film formed in this order.

【0028】図6に、FeSi膜を成膜した時の基板温
度と、FeSi膜の結晶配向性及びCoCrTa膜の垂
直配向性との関係を示す。測定方法及び図6に示す各数
値の意味は上記第1の実施例と同様である。図6から分
かるように、FeSi膜を成膜した時の基板温度を10
0゜Cから変化させ、200゜C以上にすることによっ
て、上記第1の実施例のセンダスト膜の場合と同様、上
記基板温度200゜Cを境に、FeSi膜は格子面(1
10)面から格子面(200)面に配向性を変えてお
り、それに伴って、CoCrTa膜の半値幅Δθ50も、
上記第1の実施例の場合と同様、ほぼ半減している。す
なわち、上記基板温度を200゜C以上とすることによ
り、FeSi膜の配向面がCoCrTa膜の格子面(0
01)面との格子整合性が良好な格子面(200)面に
変化し、CoCrTa膜の垂直配向性が改善されている
と考えられる。
FIG. 6 shows the relationship between the substrate temperature when the FeSi film is formed, the crystal orientation of the FeSi film, and the vertical orientation of the CoCrTa film. The measurement method and the meaning of each numerical value shown in FIG. 6 are the same as in the first embodiment. As can be seen from FIG. 6, the substrate temperature when the FeSi film was
By changing the temperature from 0 ° C. to 200 ° C. or more, the FeSi film becomes a lattice plane (1) at the substrate temperature 200 ° C. as in the case of the sendust film of the first embodiment.
The orientation is changed from the 10) plane to the lattice plane (200) plane. Accordingly, the half width Δθ 50 of the CoCrTa film is also
As in the case of the above-mentioned first embodiment, it is almost halved. That is, by setting the substrate temperature to 200 ° C. or higher, the orientation plane of the FeSi film is shifted to the lattice plane (0%) of the CoCrTa film.
It is considered that the lattice matching with the (01) plane changed to the lattice plane (200) plane with good lattice orientation, and the vertical orientation of the CoCrTa film was improved.

【0029】次に、図7〜図9に、上記製造方法で作製
した垂直磁気記録媒体の記録再生特性、すなわち、記録
密度に対する、媒体ノイズ、再生出力電圧及び媒体S/
Nの特性を示す。図7〜図9において、各曲線aは、成
膜時の基板温度を200゜C〜300゜Cの範囲内の所
定の温度でFeSi膜を形成後、CoCrTa膜を形成
した場合の特性を表す曲線、各曲線bは、成膜時の基板
温度を200゜C未満の所定の温度でFeSi膜を形成
後、CoCrTa膜を形成した場合の特性を表す曲線で
ある。これらの記録再生特性を測定するヘッドその他の
測定条件及び評価条件は上記第1の実施例と同様であ
る。図7によれば、FeSi膜成膜時の基板温度を、2
00゜C〜300゜Cの範囲内とすることにより(曲線
a)、200゜未満にする場合(曲線b)に比較して、
全記録密度において媒体ノイズが小さく、ノイズ特性が
非常に優れていることが分かる。これは、FeSi膜
を、CoCrTa膜の格子面(001)面と格子整合性
が良好な格子面(200)面を配向面として形成するこ
とにより、CoCrTa膜の成長初期層の膜厚を薄くす
ることができ、低ノイズ化が実現できたものと考えられ
る。また、図8によれば、FeSi膜成膜時の基板温度
を、200゜C〜300゜Cの範囲内とすることにより
(曲線a)、200゜未満にする場合(曲線b)に比較
して、記録密度の増大に伴う再生出力電圧の減衰が遅
く、高記録密度まで高い再生出力電圧を確保でき、高記
録密度の実現が容易となることが分かる。これは、Fe
Si膜を、CoCrTa膜の格子面(001)面と格子
整合性が良好な格子面(200)面を配向面として形成
することにより、CoCrTa膜の垂直配向性が改善さ
れ、再生出力電圧の記録密度に対する特性が向上したも
のと考えられる。さらに、図9によれば、FeSi膜成
膜時の基板温度を、200゜C〜300゜Cの範囲内と
することにより(曲線a)、200゜未満にする場合
(曲線b)に比較して、全記録密度において媒体S/N
が1〜2dB良好であり、高品質で高記録密度を実現でき
ることが分かる。すなわち、FeSi膜を、CoCrT
a膜の格子面(001)面と格子整合性が良好な格子面
(200)面を配向面として形成することにより、高品
質の高記録密度の実現が容易となる。
Next, FIGS. 7 to 9 show the recording / reproducing characteristics of the perpendicular magnetic recording medium manufactured by the above-mentioned manufacturing method, that is, the medium noise, the reproducing output voltage and the medium S / V with respect to the recording density.
The characteristics of N are shown. 7 to 9, each curve a represents a characteristic in a case where a CoCrTa film is formed after forming an FeSi film at a predetermined substrate temperature in a range of 200 ° C. to 300 ° C. during film formation. The curves, each curve b, are characteristics representing the characteristics when a CoCrTa film is formed after forming an FeSi film at a predetermined substrate temperature of less than 200 ° C. during film formation. The head and other measurement conditions and evaluation conditions for measuring these recording / reproducing characteristics are the same as in the first embodiment. According to FIG. 7, the substrate temperature at the time of forming the FeSi film is 2
By setting it within the range of 00 ° C. to 300 ° C. (curve a), as compared with the case where the temperature is less than 200 ° (curve b),
It can be seen that the medium noise is small at all recording densities and the noise characteristics are very excellent. This is because the FeSi film is formed with the lattice plane (200) having good lattice matching with the lattice plane (001) of the CoCrTa film as an orientation plane, thereby reducing the thickness of the initial growth layer of the CoCrTa film. It is considered that the noise reduction was realized. Further, according to FIG. 8, the substrate temperature during the formation of the FeSi film is set in the range of 200 ° C. to 300 ° C. (curve a), compared with the case where the substrate temperature is less than 200 ° (curve b). Thus, it can be seen that the decay of the reproduction output voltage with the increase in the recording density is slow, a high reproduction output voltage can be secured up to a high recording density, and it is easy to realize a high recording density. This is Fe
The vertical orientation of the CoCrTa film is improved by forming the Si film as the orientation plane with the lattice plane (200) having good lattice matching with the lattice plane (001) of the CoCrTa film, and the reproduction output voltage is recorded. It is considered that the characteristics with respect to the density were improved. Further, according to FIG. 9, by setting the substrate temperature at the time of forming the FeSi film in the range of 200 ° C. to 300 ° C. (curve a), it is compared with the case where the substrate temperature is less than 200 ° (curve b). The medium S / N at all recording densities
Is 1 to 2 dB, which means that high quality and high recording density can be realized. That is, the FeSi film is formed of CoCrT
By forming the lattice plane (200) plane having good lattice matching with the lattice plane (001) plane of the a film as the orientation plane, it is easy to realize high quality and high recording density.

【0030】C.第3の実施例 次に、第3の実施例について説明する。この例の垂直磁
気記録媒体は、図1に示す構造と同様の概略構造を有
し、その製造方法、垂直磁化膜の組成及び軟磁性膜の成
膜条件も6インチのFeAlタ−ゲットを用いる他は上
記した第1の実施例と同様であり、直径2.5インチの
円形のガラス基板上に、膜厚500nmのFeAl膜で構
成された軟磁性膜と、膜厚100nmのCoCrTa膜で
構成された垂直磁化膜とが順に形成されて構成されてい
る。
C. Third Embodiment Next, a third embodiment will be described. The perpendicular magnetic recording medium of this example has a schematic structure similar to that shown in FIG. 1, and uses a 6-inch FeAl target for the manufacturing method, the composition of the perpendicular magnetic film, and the conditions for forming the soft magnetic film. The other components are the same as those of the first embodiment described above. A soft magnetic film composed of a 500 nm thick FeAl film and a 100 nm thick CoCrTa film are formed on a circular glass substrate having a diameter of 2.5 inches. And a perpendicular magnetization film formed in this order.

【0031】図10に、FeAl膜を成膜した時の基板
温度と、FeAl膜の結晶配向性及びCoCrTa膜の
垂直配向性との関係を示す。測定方法及び図10に示す
各数値の意味は上記第1の実施例と同様である。図10
から分かるように、FeAl膜を成膜した時の基板温度
を100゜Cから変化させ、200゜C以上にすること
によって、第1の実施例のセンダスト膜の場合と同様、
上記基板温度200゜Cを境に、FeAl膜は格子面
(110)面から格子面(200)面に配向性を変えて
おり、これに伴って、CoCrTa膜の半値幅Δθ
50も、第1の実施例の場合と同様、ほぼ半減している。
すなわち、上記基板温度を200゜C以上とすることに
より、FeAl膜の配向面がCoCrTa膜の格子面
(001)面との格子整合性が良好な格子面(200)
面に変化し、CoCrTa膜の垂直配向性が改善されて
いると考えられる。
FIG. 10 shows the relationship between the substrate temperature when the FeAl film is formed, the crystal orientation of the FeAl film, and the vertical orientation of the CoCrTa film. The measurement method and the meaning of each numerical value shown in FIG. 10 are the same as those in the first embodiment. FIG.
As can be seen from the figure, by changing the substrate temperature at the time of forming the FeAl film from 100 ° C. to 200 ° C. or more, similar to the case of the sendust film of the first embodiment,
At the substrate temperature of 200 ° C., the orientation of the FeAl film changes from the lattice plane (110) to the lattice plane (200), and accordingly, the half width Δθ of the CoCrTa film changes.
50 is almost halved as in the case of the first embodiment.
That is, by setting the substrate temperature to 200 ° C. or higher, the lattice plane (200) in which the orientation plane of the FeAl film has good lattice matching with the lattice plane (001) plane of the CoCrTa film.
It is considered that the orientation changed to a plane, and the vertical orientation of the CoCrTa film was improved.

【0032】次に、図11〜図13に、上記製造方法で
作製した垂直磁気記録媒体の記録再生特性、すなわち、
記録密度に対する、媒体ノイズ、再生出力電圧及び媒体
S/Nの特性を示す。図11〜図13において、各曲線
aは、成膜時の基板温度を200゜C〜300゜Cの範
囲内の所定の温度でFeAl膜を形成後、CoCrTa
膜を形成した場合の特性を表す曲線、各曲線bは、成膜
時の基板温度を200゜C未満の所定の温度でFeAl
膜を形成後、CoCrTa膜を形成した場合の特性を表
す曲線である。これらの記録再生特性を測定するヘッド
その他の測定条件及び評価条件は上記第1の実施例と同
様である。図11によれば、FeAl膜成膜時の基板温
度を、200゜C〜300゜Cの範囲内とすることによ
り(曲線a)、200゜未満にする場合(曲線b)に比
較して、全記録密度において媒体ノイズが小さく、ノイ
ズ特性が非常に優れていることが分かる。これは、Fe
Al膜を、CoCrTa膜の格子面(001)面と格子
整合性が良好な格子面(200)面を配向面として形成
することにより、CoCrTa膜の成長初期層の膜厚を
薄くすることができ、低ノイズ化が実現できたものと考
えられる。また、図12によれば、FeAl膜成膜時の
基板温度を、200゜C〜300゜Cの範囲内とするこ
とにより(曲線a)、200゜未満にする場合(曲線
b)に比較して、記録密度の増大に伴う再生出力電圧の
減衰が遅く、高記録密度まで高い再生出力電圧を確保で
き、高記録密度の実現が容易となることが分かる。これ
は、FeAl膜を、CoCrTa膜の格子面(001)
面と格子整合性が良好な格子面(200)面を配向面と
して形成することにより、CoCrTa膜の垂直配向性
が改善され、再生出力電圧の記録密度に対する特性が向
上したものと考えられる。さらに、図13によれば、F
eAl膜成膜時の基板温度を、200゜C〜300゜C
の範囲内とすることにより(曲線a)、200゜未満に
する場合(曲線b)に比較して、全記録密度において媒
体S/Nが2〜5dB良好であり、高品質で高記録密度を
実現できることが分かる。すなわち、FeAl膜を、C
oCrTa膜の格子面(001)面と格子整合性が良好
な格子面(200)面を配向面として形成することによ
り、高品質の高記録密度の実現が容易となる。
Next, FIGS. 11 to 13 show recording / reproducing characteristics of the perpendicular magnetic recording medium manufactured by the above-mentioned manufacturing method, that is, FIG.
6 shows characteristics of a medium noise, a reproduction output voltage, and a medium S / N with respect to a recording density. 11 to 13, each curve a indicates that the substrate temperature at the time of film formation is a CoCrTa film after a FeAl film is formed at a predetermined temperature within a range of 200 ° C. to 300 ° C.
Curves representing the characteristics when the film is formed, each curve b indicates that the substrate temperature at the time of film formation is reduced at a predetermined temperature of less than 200 ° C.
It is a curve showing the characteristic when a CoCrTa film is formed after forming a film. The head and other measurement conditions and evaluation conditions for measuring these recording / reproducing characteristics are the same as in the first embodiment. According to FIG. 11, by setting the substrate temperature during the formation of the FeAl film in the range of 200 ° C. to 300 ° C. (curve a), the substrate temperature is lower than 200 ° C. (curve b). It can be seen that the medium noise is small at all recording densities and the noise characteristics are very excellent. This is Fe
By forming the Al film with the lattice plane (200) plane having good lattice matching with the lattice plane (001) plane of the CoCrTa film as the orientation plane, the thickness of the initial growth layer of the CoCrTa film can be reduced. It is considered that low noise was realized. According to FIG. 12, by setting the substrate temperature at the time of forming the FeAl film in the range of 200 ° C. to 300 ° C. (curve a), it is compared with the case where the substrate temperature is less than 200 ° (curve b). Thus, it can be seen that the decay of the reproduction output voltage with the increase in the recording density is slow, a high reproduction output voltage can be secured up to a high recording density, and it is easy to realize a high recording density. This is because the FeAl film is replaced with the lattice plane (001) of the CoCrTa film.
It is considered that by forming the lattice plane (200) plane having good lattice matching with the plane as the orientation plane, the perpendicular orientation of the CoCrTa film was improved, and the characteristics of the read output voltage with respect to the recording density were improved. Further, according to FIG.
The substrate temperature at the time of forming the eAl film is set to 200 ° C. to 300 ° C.
(Curve a), the medium S / N is 2 to 5 dB better at all recording densities, and high quality and high recording density can be achieved as compared with the case where the angle is less than 200 ° (curve b). It can be seen that it can be realized. That is, the FeAl film is
By forming the lattice plane (200) plane having good lattice matching with the lattice plane (001) plane of the oCrTa film as the orientation plane, it is easy to realize high quality and high recording density.

【0033】D.第4の実施例 次に、第4の実施例について説明する。この例の垂直磁
気記録媒体は、図1に示す構造と同様の概略構造を有
し、その製造方法及び垂直磁化膜の組成は上記した第1
の実施例と同様であり、軟磁性膜の成膜条件も基板温度
を100゜Cに設定すると共に、Arガスのガス圧を1
0〜30mTorrの範囲内の所定のガス圧に設定する他
は、上記した第1の実施例と同様であり、直径2.5イ
ンチの円形のガラス基板上に、膜厚500nmのセンダス
ト膜で構成された軟磁性膜と、膜厚100nmのCoCr
Ta膜で構成された垂直磁化膜とが順に形成されて構成
されている。
D. Fourth Embodiment Next, a fourth embodiment will be described. The perpendicular magnetic recording medium of this example has a schematic structure similar to the structure shown in FIG. 1, and the manufacturing method and the composition of the perpendicular magnetic film are the same as those of the first embodiment.
The conditions for forming the soft magnetic film were set at a substrate temperature of 100 ° C. and a gas pressure of Ar gas of 1
Except that the gas pressure is set within a range of 0 to 30 mTorr, it is the same as the first embodiment described above, and is formed of a 500-nm thick sendust film on a circular glass substrate having a diameter of 2.5 inches. Soft magnetic film and 100 nm thick CoCr
And a perpendicular magnetization film made of a Ta film.

【0034】図14に、センダスト膜を成膜した時のA
rガスのガス圧と、センダスト膜の結晶配向性及びCo
CrTa膜の垂直配向性との関係を示す。測定方法及び
図14に示す各数値の意味は上記第1の実施例と同様で
ある。図14から分かるように、センダスト膜を成膜し
た時のArガスのガス圧を40mTorrから変化させ、3
0mTorr以下にすることによって、上記ガス圧30mTorr
を境に、センダスト膜は格子面(110)面から格子面
(200)面に配向性を変えており、それに伴って、C
oCrTa膜の半値幅Δθ50も、上記第1の実施例の場
合と同様、ほぼ半減している。すなわち、上記Arガス
のガス圧を30mTorr以下とすることにより、センダス
ト膜の配向面がCoCrTa膜の格子面(001)面と
の格子整合性が良好な格子面(200)面に変化し、C
oCrTa膜の垂直配向性が改善されていると考えられ
る。
FIG. 14 shows A when the sendust film was formed.
Gas pressure of r gas, crystal orientation of Sendust film and Co
The relationship with the vertical orientation of the CrTa film is shown. The measurement method and the meaning of each numerical value shown in FIG. 14 are the same as those in the first embodiment. As can be seen from FIG. 14, the gas pressure of Ar gas when the sendust film was formed was changed from 40 mTorr to 3
By controlling the gas pressure to 30 mTorr or less by setting the pressure to 0 mTorr or less.
At the boundary, the sendust film changes orientation from the lattice plane (110) plane to the lattice plane (200) plane.
The half width Δθ 50 of the oCrTa film is also almost halved as in the case of the first embodiment. That is, by setting the gas pressure of the Ar gas to 30 mTorr or less, the orientation plane of the sendust film changes to a lattice plane (200) plane having good lattice matching with the lattice plane (001) plane of the CoCrTa film.
It is considered that the vertical orientation of the oCrTa film was improved.

【0035】次に、図15〜図17に、上記製造方法で
作製した垂直磁気記録媒体の記録再生特性、すなわち、
記録密度に対する、媒体ノイズ、再生出力電圧及び媒体
S/Nの特性を示す。図15〜図17において、各曲線
aは、成膜時のArガスのガス圧を10mTorrとしてセ
ンダスト膜を形成後、CoCrTa膜を形成した場合の
特性を表す曲線、各曲線bは、成膜時のArガスのガス
圧を40mTorrとしてセンダスト膜を形成後、CoCr
Ta膜を形成した場合の特性を表す曲線である。これら
の記録再生特性を測定するヘッドその他の測定条件及び
評価条件は上記第1の実施例と同様である。図15によ
れば、センダスト膜成膜時のArガスのガス圧を10mT
orrとすることにより(曲線a)、40mTorrとする場合
(曲線b)に比較して、全記録密度において媒体ノイズ
が小さく、ノイズ特性が非常に優れていることが分か
る。これは、センダスト膜を、CoCrTa膜の格子面
(001)面と格子整合性が良好な格子面(200)面
を配向面として形成することにより、CoCrTa膜の
成長初期層の膜厚を薄くすることができ、低ノイズ化が
実現できたものと考えられる。また、図16によれば、
センダスト膜成膜時のArガスのガス圧を10mTorrと
することにより(曲線a)、40mTorrとする場合(曲
線b)に比較して、記録密度の増大に伴う再生出力電圧
の減衰が遅く、高記録密度まで高い再生出力電圧を確保
でき、高記録密度の実現が容易となることが分かる。こ
れは、センダスト膜を、CoCrTa膜の格子面(00
1)面と格子整合性が良好な格子面(200)面を配向
面として形成することにより、CoCrTa膜の垂直配
向性が改善され、再生出力電圧の記録密度に対する特性
が向上したものと考えられる。さらに、図17によれ
ば、センダスト膜成膜時のArガスのガス圧を10mTor
rとすることにより(曲線a)、40mTorrとする場合
(曲線b)に比較して、全記録密度において媒体S/N
が2〜3dB良好であり、高品質で高記録密度を実現でき
ることが分かる。すなわち、センダスト膜を、CoCr
Ta膜の格子面(001)面と格子整合性が良好な格子
面(200)面を配向面として形成することにより、高
品質の高記録密度の実現が容易となる。
Next, FIGS. 15 to 17 show the recording / reproducing characteristics of the perpendicular magnetic recording medium manufactured by the above-described manufacturing method, that is, FIG.
6 shows characteristics of a medium noise, a reproduction output voltage, and a medium S / N with respect to a recording density. 15 to 17, each curve a represents a characteristic when a CoCrTa film is formed after a sendust film is formed at an Ar gas pressure of 10 mTorr during the film formation, and each curve b is a curve during the film formation. After forming a sendust film with the Ar gas pressure of 40 mTorr, CoCr
It is a curve showing the characteristic when a Ta film is formed. The head and other measurement conditions and evaluation conditions for measuring these recording / reproducing characteristics are the same as in the first embodiment. According to FIG. 15, the gas pressure of Ar gas at the time of forming the sendust film was 10 mT.
At orr (curve a), the medium noise is small at all recording densities, and the noise characteristics are very excellent as compared to the case of 40 mTorr (curve b). This is because the sendust film is formed with the lattice plane (200) plane having good lattice matching with the lattice plane (001) plane of the CoCrTa film as an orientation plane, thereby reducing the thickness of the initial growth layer of the CoCrTa film. It is considered that the noise reduction was realized. Also, according to FIG.
When the gas pressure of the Ar gas at the time of forming the sendust film is 10 mTorr (curve a), the decay of the reproduction output voltage with the increase in the recording density is slower and higher than when the gas pressure is 40 mTorr (curve b). It can be seen that a high reproduction output voltage can be secured up to the recording density, and it is easy to realize a high recording density. This means that the sendust film is formed by the lattice plane (00) of the CoCrTa film.
It is considered that the vertical orientation of the CoCrTa film is improved by forming the lattice plane (200) plane having good lattice matching with the 1) plane as the orientation plane, and the characteristics of the read output voltage with respect to the recording density are improved. . Further, according to FIG. 17, the gas pressure of the Ar gas at the time of forming the sendust film was set to 10 mTorr.
r (curve a), compared to the case of 40 mTorr (curve b), the medium S / N at all recording densities
Is 2 to 3 dB, which means that high quality and high recording density can be realized. That is, the Sendust film is made of CoCr.
By forming the lattice plane (200) plane having good lattice matching with the lattice plane (001) plane of the Ta film as the orientation plane, it is easy to realize high quality and high recording density.

【0036】E.第5の実施例 次に、第5の実施例について説明する。この例の垂直磁
気記録媒体は、図1に示す構造と同様の概略構造を有
し、その製造方法、垂直磁化膜の組成及び軟磁性膜の成
膜条件も6インチのFe、Si、Al、ルテニウム(R
u)及びTiからなるタ−ゲットを用いる他は上記した
第4の実施例と同様であり、直径2.5インチの円形の
ガラス基板上に、膜厚500nmのFeSiAlRuTi
膜で構成された軟磁性膜と、膜厚100nmのCoCrT
a膜で構成された垂直磁化膜とが順に形成されて構成さ
れている。
E. Fifth Embodiment Next, a fifth embodiment will be described. The perpendicular magnetic recording medium of this example has a schematic structure similar to the structure shown in FIG. 1, and the manufacturing method, the composition of the perpendicular magnetization film, and the conditions for forming the soft magnetic film are 6 inches, such as Fe, Si, Al, Ruthenium (R
u) and a target made of Ti, except that a target made of Ti is used, and a 500-nm thick FeSiAlRuTi film is formed on a circular glass substrate having a diameter of 2.5 inches.
Soft magnetic film composed of a film and 100 nm thick CoCrT
and a perpendicular magnetization film made of an a film.

【0037】図18に、FeSiAlRuTi膜を成膜
した時のArガスのガス圧と、FeSiAlRuTi膜
の結晶配向性及びCoCrTa膜の垂直配向性との関係
を示している。測定方法及び図18に示す各数値の意味
は、上記第1の実施例と同様である。同図から分かるよ
うに、FeSiAlRuTi膜を成膜した時のArガス
のガス圧を40mTorrから変化させ、30mTorr以下にす
ることによって、上記ガス圧30mTorrを境に、FeS
iAlRuTi膜は格子面(110)面から格子面(2
00)面に配向性を変えており、それに伴って、CoC
rTa膜の半値幅Δθ50も、上記第1の実施例の場合と
同様、ほぼ半減している。すなわち、上記Arガスのガ
ス圧を30mTorr以下とすることにより、FeSiAl
RuTi膜の配向面がCoCrTa膜の格子面(00
1)面との格子整合性が良好な格子面(200)面に変
化し、CoCrTa膜の垂直配向性が改善されていると
考えられる。
FIG. 18 shows the relationship between the gas pressure of Ar gas when the FeSiAlRuTi film is formed, the crystal orientation of the FeSiAlRuTi film, and the vertical orientation of the CoCrTa film. The measurement method and the meaning of each numerical value shown in FIG. 18 are the same as those in the first embodiment. As can be seen from the figure, the gas pressure of the Ar gas when the FeSiAlRuTi film was formed was changed from 40 mTorr to 30 mTorr or less, so that the FeS
The iAlRuTi film changes from the lattice plane (110) plane to the lattice plane (2).
00) plane, the orientation of CoC
The half-value width Δθ 50 of the rTa film is almost halved as in the case of the first embodiment. That is, by setting the gas pressure of the Ar gas to 30 mTorr or less, the FeSiAl
The orientation plane of the RuTi film is the lattice plane (00) of the CoCrTa film.
It is considered that the lattice matching with the (1) plane changed to a lattice plane (200) plane with good lattice plane, and the vertical orientation of the CoCrTa film was improved.

【0038】次に、図19〜図21に、上記製造方法で
作製した垂直磁気記録媒体の記録再生特性、すなわち、
記録密度に対する、媒体ノイズ、再生出力電圧及び媒体
S/Nの特性を示す。図19〜図21において、各曲線
aは、成膜時のArガスのガス圧を10mTorrとしてF
eSiAlRuTi膜を形成後、CoCrTa膜を形成
した場合の特性を表す曲線、各曲線bは、成膜時のAr
ガスのガス圧を40mTorrとしてFeSiAlRuTi
膜を形成後、CoCrTa膜を形成した場合の特性を表
す曲線である。これらの記録再生特性を測定するヘッド
その他の測定条件及び評価条件は上記第1の実施例と同
様である。図19によれば、FeSiAlRuTi膜成
膜時のArガスのガス圧を10mTorrとすることにより
(曲線a)、40mTorrとする場合(曲線b)に比較し
て、全記録密度において媒体ノイズが小さく、ノイズ特
性が非常に優れていることが分かる。これは、FeSi
AlRuTi膜を、CoCrTa膜の格子面(001)
面と格子整合性が良好な格子面(200)面を配向面と
して形成することにより、CoCrTa膜の成長初期層
の膜厚を薄くすることができ、低ノイズ化が実現できた
ものと考えられる。また、図20によれば、FeSiA
lRuTi膜成膜時のArガスのガス圧を10mTorrと
することにより(曲線a)、40mTorrとする場合(曲
線b)に比較して、記録密度の増大に伴う再生出力電圧
の減衰が遅く、高記録密度まで高い再生出力電圧を確保
でき、高記録密度の実現が容易となることが分かる。こ
れは、FeSiAlRuTi膜を、CoCrTa膜の格
子面(001)面と格子整合性が良好な格子面(20
0)面を配向面として形成することにより、CoCrT
a膜の垂直配向性が改善され、再生出力電圧の記録密度
に対する特性が向上したものと考えられる。さらに、図
21によれば、FeSiAlRuTi膜成膜時のArガ
スのガス圧を10mTorrとすることにより(曲線a)、
40mTorrとする場合(曲線b)に比較して、全記録密
度において媒体S/Nが1〜2dB良好であり、高品質で
高記録密度を実現できることが分かる。すなわち、Fe
SiAlRuTi膜を、CoCrTa膜の格子面(00
1)面と格子整合性が良好な格子面(200)面を配向
面として形成することにより、高品質の高記録密度の実
現が容易となる。
Next, FIG. 19 to FIG. 21 show recording / reproducing characteristics of the perpendicular magnetic recording medium manufactured by the above-mentioned manufacturing method, that is, FIG.
6 shows characteristics of a medium noise, a reproduction output voltage, and a medium S / N with respect to a recording density. 19 to 21, each curve “a” represents F assuming that the gas pressure of Ar gas during film formation is 10 mTorr.
The curves representing the characteristics when the CoCrTa film is formed after the formation of the eSiAlRuTi film, and each curve b represents the Ar at the time of film formation.
FeSiAlRuTi with a gas pressure of 40 mTorr
It is a curve showing the characteristic when a CoCrTa film is formed after forming a film. The head and other measurement conditions and evaluation conditions for measuring these recording / reproducing characteristics are the same as in the first embodiment. According to FIG. 19, when the gas pressure of the Ar gas at the time of forming the FeSiAlRuTi film is set to 10 mTorr (curve a), the medium noise is smaller at all recording densities than when the gas pressure is set to 40 mTorr (curve b). It can be seen that the noise characteristics are very excellent. This is FeSi
Replace the AlRuTi film with the lattice plane (001) of the CoCrTa film.
It is considered that by forming the lattice plane (200) plane having good lattice matching with the plane as the orientation plane, the thickness of the initial growth layer of the CoCrTa film can be reduced, and low noise can be realized. . According to FIG. 20, the FeSiA
When the gas pressure of the Ar gas during the formation of the lRuTi film is 10 mTorr (curve a), the decay of the reproduction output voltage with the increase in the recording density is slower and higher than when the gas pressure is 40 mTorr (curve b). It can be seen that a high reproduction output voltage can be secured up to the recording density, and it is easy to realize a high recording density. This is because the FeSiAlRuTi film is made to have a lattice plane (20) having good lattice matching with the lattice plane (001) plane of the CoCrTa film.
By forming the 0) plane as an orientation plane, CoCrT
It is considered that the vertical orientation of the a film was improved, and the characteristics of the read output voltage with respect to the recording density were improved. Further, according to FIG. 21, by setting the gas pressure of the Ar gas at the time of forming the FeSiAlRuTi film to 10 mTorr (curve a),
Compared with the case of 40 mTorr (curve b), the medium S / N is better by 1 to 2 dB at all recording densities, and it can be seen that high quality and high recording density can be realized. That is, Fe
The SiAlRuTi film is formed on the lattice plane (00) of the CoCrTa film.
1) By forming the lattice plane (200) having good lattice matching with the plane as the orientation plane, it is easy to realize high quality and high recording density.

【0039】F.第6の実施例 次に、第6の実施例について説明する。この例の垂直磁
気記録媒体は、図1に示す構造と同様の概略構造を有
し、その製造方法、垂直磁化膜の組成及び軟磁性膜の成
膜条件も6インチのFe、Ta及び窒素(N)からなる
タ−ゲットを用いる他は上記した第4の実施例と同様で
あり、直径2.5インチの円形のガラス基板上に、膜厚
500nmのFeTaN膜で構成された軟磁性膜と、膜厚
100nmのCoCrTa膜で構成された垂直磁化膜とが
順に形成されて構成されている。
F. Sixth Embodiment Next, a sixth embodiment will be described. The perpendicular magnetic recording medium of this example has a schematic structure similar to the structure shown in FIG. 1, and the manufacturing method, the composition of the perpendicular magnetization film, and the film forming conditions of the soft magnetic film are 6 inches of Fe, Ta, and nitrogen ( A fourth embodiment is the same as the fourth embodiment except that a target made of N) is used. A soft magnetic film composed of a 500 nm-thick FeTaN film is formed on a circular glass substrate having a diameter of 2.5 inches. And a perpendicular magnetization film made of a CoCrTa film having a thickness of 100 nm.

【0040】図22に、FeTaN膜を成膜した時のA
rガスのガス圧と、FeTaN膜の結晶配向性及びCo
CrTa膜の垂直配向性との関係を示す。測定方法及び
図22に示す各数値の意味は上記第1の実施例と同様で
ある。図22から分かるように、FeTaN膜を成膜し
た時のArガスのガス圧を40mTorrから変化させ、3
0mTorr以下にすることによって、上記ガス圧30mTorr
を境に、FeTaN膜は格子面(110)面から格子面
(200)面に配向性を変えており、それに伴って、C
oCrTa膜の半値幅Δθ50も、上記第1の実施例の場
合と同様、ほぼ半減している。すなわち、上記Arガス
のガス圧を30mTorr以下とすることにより、FeTa
N膜の配向面がCoCrTa膜の格子面(001)面と
の格子整合性が良好な格子面(200)面に変化し、C
oCrTa膜の垂直配向性が改善されていると考えられ
る。
FIG. 22 shows the A when the FeTaN film was formed.
Gas pressure of r gas, crystal orientation of FeTaN film and Co
The relationship with the vertical orientation of the CrTa film is shown. The measurement method and the meaning of each numerical value shown in FIG. 22 are the same as those in the first embodiment. As can be seen from FIG. 22, the gas pressure of the Ar gas when the FeTaN film was formed was changed from 40 mTorr to 3
By controlling the gas pressure to 30 mTorr or less by setting the pressure to 0 mTorr or less.
At the boundary, the orientation of the FeTaN film changes from the lattice plane (110) to the lattice plane (200).
The half width Δθ 50 of the oCrTa film is also almost halved as in the case of the first embodiment. That is, by setting the gas pressure of the Ar gas to 30 mTorr or less, FeTa
The orientation plane of the N film changes to a lattice plane (200) plane having good lattice matching with the lattice plane (001) plane of the CoCrTa film, and C
It is considered that the vertical orientation of the oCrTa film was improved.

【0041】次に、図23〜図25に、上記製造方法で
作製した垂直磁気記録媒体の記録再生特性、すなわち、
記録密度に対する、媒体ノイズ、再生出力電圧及び媒体
S/Nの特性を示す。図23〜図25において、各曲線
aは、成膜時のArガスのガス圧を10mTorrとしてF
eTaN膜を形成後、CoCrTa膜を形成した場合の
特性を表す曲線、各曲線bは、成膜時のArガスのガス
圧を40mTorrとしてFeTaN膜を形成後、CoCr
Ta膜を形成した場合の特性を表す曲線である。これら
の記録再生特性を測定するヘッドその他の測定条件及び
評価条件は上記第1の実施例と同様である。図23によ
れば、FeTaN膜成膜時のArガスのガス圧を10mT
orrとすることにより(曲線a)、40mTorrとする場合
(曲線b)に比較して、全記録密度において媒体ノイズ
が小さく、ノイズ特性が非常に優れていることが分か
る。これは、FeTaN膜を、CoCrTa膜の格子面
(001)面と格子整合性が良好な格子面(200)面
を配向面として形成することにより、CoCrTa膜の
成長初期層の膜厚を薄くすることができ、低ノイズ化が
実現できたものと考えられる。また、図24によれば、
FeTaN膜成膜時のArガスのガス圧を10mTorrと
することにより(曲線a)、40mTorrとする場合(曲
線b)に比較して、記録密度の増大に伴う再生出力電圧
の減衰が遅く、高記録密度まで高い再生出力電圧を確保
でき、高記録密度の実現が容易となることが分かる。こ
れは、FeTaN膜を、CoCrTa膜の格子面(00
1)面と格子整合性が良好な格子面(200)面を配向
面として形成することにより、CoCrTa膜の垂直配
向性が改善され、再生出力電圧の記録密度に対する特性
が向上したものと考えられる。さらに、図25によれ
ば、FeTaN膜成膜時のArガスのガス圧を10mTor
rとすることにより(曲線a)、40mTorrとする場合
(曲線b)に比較して、全記録密度において媒体S/N
が1〜4dB良好であり、高品質で高記録密度を実現でき
ることが分かる。すなわち、FeTaN膜を、CoCr
Ta膜の格子面(001)面と格子整合性が良好な格子
面(200)面を配向面として形成することにより、高
品質の高記録密度の実現が容易となる。
Next, FIGS. 23 to 25 show the recording / reproducing characteristics of the perpendicular magnetic recording medium manufactured by the above-mentioned manufacturing method, that is, FIG.
6 shows characteristics of a medium noise, a reproduction output voltage, and a medium S / N with respect to a recording density. In FIGS. 23 to 25, each curve “a” represents F at a gas pressure of Ar gas of 10 mTorr during film formation.
Curves representing the characteristics in the case where a CoCrTa film is formed after forming an eTaN film, and each curve b represents a CoCrTa film after forming an FeTaN film with an Ar gas pressure of 40 mTorr during film formation.
It is a curve showing the characteristic when a Ta film is formed. The head and other measurement conditions and evaluation conditions for measuring these recording / reproducing characteristics are the same as in the first embodiment. According to FIG. 23, the gas pressure of Ar gas at the time of forming the FeTaN film was 10 mT
At orr (curve a), the medium noise is small at all recording densities, and the noise characteristics are very excellent as compared to the case of 40 mTorr (curve b). This is because the FeTaN film is formed with the lattice plane (200) plane having good lattice matching with the lattice plane (001) plane of the CoCrTa film as an orientation plane, thereby reducing the thickness of the initial growth layer of the CoCrTa film. It is considered that the noise reduction was realized. According to FIG. 24,
When the gas pressure of the Ar gas at the time of forming the FeTaN film is 10 mTorr (curve a), the decay of the reproduction output voltage with the increase in the recording density is slower and higher than when the gas pressure is 40 mTorr (curve b). It can be seen that a high reproduction output voltage can be secured up to the recording density, and it is easy to realize a high recording density. This means that the FeTaN film is replaced with the lattice plane (00) of the CoCrTa film.
It is considered that the vertical orientation of the CoCrTa film is improved by forming the lattice plane (200) plane having good lattice matching with the 1) plane as the orientation plane, and the characteristics of the read output voltage with respect to the recording density are improved. . Furthermore, according to FIG. 25, the gas pressure of the Ar gas at the time of forming the FeTaN film was set to 10 mTorr.
r (curve a), compared to the case of 40 mTorr (curve b), the medium S / N at all recording densities
Is 1 to 4 dB, which means that high quality and high recording density can be realized. That is, the FeTaN film is made of CoCr.
By forming the lattice plane (200) plane having good lattice matching with the lattice plane (001) plane of the Ta film as the orientation plane, it is easy to realize high quality and high recording density.

【0042】G.第7の実施例 次に、第7の実施例について説明する。この例の垂直磁
気記録媒体は、図1に示す構造と同様の概略構造を有
し、その製造方法、垂直磁化膜の組成及び軟磁性膜の成
膜条件も6インチのFeCoタ−ゲットを用いる他は上
記した第4の実施例と同様であり、直径2.5インチの
円形のガラス基板上に、膜厚500nmのFeCo膜で構
成された軟磁性膜と、膜厚100nmのCoCrTa膜で
構成された垂直磁化膜とが順に形成されて構成されてい
る。
G. Seventh Embodiment Next, a seventh embodiment will be described. The perpendicular magnetic recording medium of this example has a schematic structure similar to the structure shown in FIG. 1, and uses a 6-inch FeCo target for the manufacturing method, the composition of the perpendicular magnetic film, and the conditions for forming the soft magnetic film. The other features are the same as those of the fourth embodiment described above. The soft magnetic film is composed of a 500-nm-thick FeCo film and a 100-nm-thick CoCrTa film on a 2.5-inch-diameter circular glass substrate. And a perpendicular magnetization film formed in this order.

【0043】図26に、FeCo膜を成膜した時のAr
ガスのガス圧と、FeCo膜の結晶配向性及びCoCr
Ta膜の垂直配向性との関係を示す。測定方法及び図2
6に示す各数値の意味は上記第1の実施例と同様であ
る。図26から分かるように、FeCo膜を成膜した時
のArガスのガス圧を40mTorrから変化させ、30mTo
rr以下にすることによって、上記ガス圧30mTorrを境
に、FeCo膜は格子面(110)面から格子面(20
0)面に配向性を変えており、それに伴って、CoCr
Ta膜の半値幅Δθ50も、上記第1の実施例の場合と同
様、ほぼ半減している。すなわち、上記Arガスのガス
圧を30mTorr以下とすることにより、FeCo膜の配
向面がCoCrTa膜の格子面(001)面との格子整
合性が良好な格子面(200)面に変化し、CoCrT
a膜の垂直配向性が改善されていると考えられる。
FIG. 26 is a graph showing the relationship between Ar and the FeCo film.
Gas pressure, crystal orientation of FeCo film and CoCr
The relationship with the vertical orientation of the Ta film is shown. Measurement method and FIG.
The meaning of each numerical value shown in FIG. 6 is the same as in the first embodiment. As can be seen from FIG. 26, the gas pressure of the Ar gas when the FeCo film was formed was changed from 40 mTorr to
rr or less, the FeCo film moves from the lattice plane (110) plane to the lattice plane (20) at the gas pressure of 30 mTorr.
0) The orientation is changed to the plane, and accordingly, CoCr
The half width Δθ 50 of the Ta film is also almost halved as in the case of the first embodiment. That is, when the gas pressure of the Ar gas is set to 30 mTorr or less, the orientation plane of the FeCo film changes to the lattice plane (200) having good lattice matching with the lattice plane (001) of the CoCrTa film, and the CoCrT
It is considered that the vertical orientation of the a film was improved.

【0044】次に、図27〜図29に、上記製造方法で
作製した垂直磁気記録媒体の記録再生特性、すなわち、
記録密度に対する、媒体ノイズ、再生出力電圧及び媒体
S/Nの特性を示す。図27〜図29において、各曲線
aは、成膜時のArガスのガス圧を10mTorrとしてF
eCo膜を形成後、CoCrTa膜を形成した場合の特
性を表す曲線、各曲線bは、成膜時のArガスのガス圧
を40mTorrとしてFeCo膜を形成後、CoCrTa
膜を形成した場合の特性を表す曲線である。これらの記
録再生特性を測定するヘッドその他の測定条件及び評価
条件は上記第1の実施例と同様である。図27によれ
ば、FeCo膜成膜時のArガスのガス圧を10mTorr
とすることにより(曲線a)、40mTorrとする場合
(曲線b)に比較して、全記録密度において媒体ノイズ
が小さく、ノイズ特性が非常に優れていることが分か
る。これは、FeCo膜を、CoCrTa膜の格子面
(001)面と格子整合性が良好な格子面(200)面
を配向面として形成することにより、CoCrTa膜の
成長初期層の膜厚を薄くすることができ、低ノイズ化が
実現できたものと考えられる。また、図28によれば、
FeCo膜成膜時のArガスのガス圧を10mTorrとす
ることにより(曲線a)、40mTorrとする場合(曲線
b)に比較して、記録密度の増大に伴う再生出力電圧の
減衰が遅く、高記録密度まで高い再生出力電圧を確保で
き、高記録密度の実現が容易となることが分かる。これ
は、FeCo膜を、CoCrTa膜の格子面(001)
面と格子整合性が良好な格子面(200)面を配向面と
して形成することにより、CoCrTa膜の垂直配向性
が改善され、再生出力電圧の記録密度に対する特性が向
上したものと考えられる。さらに、図29によれば、F
eCo膜成膜時のArガスのガス圧を10mTorrとする
ことにより(曲線a)、40mTorrとする場合(曲線
b)に比較して、全記録密度において媒体S/Nが3〜
8dB良好であり、高品質で高記録密度を実現できること
が分かる。すなわち、FeCo膜を、CoCrTa膜の
格子面(001)面と格子整合性が良好な格子面(20
0)面を配向面として形成することにより、高品質の高
記録密度の実現が容易となる。
Next, FIGS. 27 to 29 show the recording / reproducing characteristics of the perpendicular magnetic recording medium manufactured by the above-described manufacturing method, that is, FIG.
6 shows characteristics of a medium noise, a reproduction output voltage, and a medium S / N with respect to a recording density. 27 to FIG. 29, each curve a represents F at a gas pressure of Ar gas of 10 mTorr during film formation.
Curves representing the characteristics when the CoCrTa film is formed after the formation of the eCo film, and each curve b represents the CoCrTa film after forming the FeCo film with the Ar gas pressure at the time of film formation being 40 mTorr.
It is a curve showing the characteristic at the time of forming a film. The head and other measurement conditions and evaluation conditions for measuring these recording / reproducing characteristics are the same as in the first embodiment. According to FIG. 27, the gas pressure of Ar gas at the time of forming the FeCo film was set to 10 mTorr.
It can be seen that the medium noise is small and the noise characteristics are very excellent at all recording densities as compared with the case (curve a) and the case of 40 mTorr (curve b). This is because the FeCo film is formed with a lattice plane (200) plane having good lattice matching with the lattice plane (001) plane of the CoCrTa film as an orientation plane, thereby reducing the thickness of the initial growth layer of the CoCrTa film. It is considered that the noise reduction was realized. According to FIG. 28,
When the gas pressure of the Ar gas at the time of forming the FeCo film is 10 mTorr (curve a), the decay of the reproduction output voltage with the increase in the recording density is slower and higher than when the gas pressure is 40 mTorr (curve b). It can be seen that a high reproduction output voltage can be secured up to the recording density, and it is easy to realize a high recording density. This is because the FeCo film is replaced with the lattice plane (001) of the CoCrTa film.
It is considered that by forming the lattice plane (200) plane having good lattice matching with the plane as the orientation plane, the perpendicular orientation of the CoCrTa film was improved, and the characteristics of the read output voltage with respect to the recording density were improved. Further, according to FIG.
When the gas pressure of the Ar gas at the time of forming the eCo film is set to 10 mTorr (curve a), the medium S / N is 3 to 3 m at all recording densities as compared with the case of 40 mTorr (curve b).
8 dB is good, which indicates that high quality and high recording density can be realized. In other words, the FeCo film is replaced with a lattice plane (20) having good lattice matching with the lattice plane (001) plane of the CoCrTa film.
By forming the 0) plane as an orientation plane, it is easy to realize high quality and high recording density.

【0045】H.第8の実施例 次に、第8の実施例について説明する。図30はこの発
明の第8の実施例である垂直磁気記録媒体21の概略構
造を示す要部断面図である。垂直磁気記録媒体21は、
直径2.5インチの円形のガラス基板22上に、体心立
方格子を空間格子とした結晶構造を有するバナジウム
(V)膜で構成された結晶配向性制御膜23と、FeS
i膜で構成された軟磁性膜24と、Co:78at%,
Cr:19at%,Ta:3at%の組成を有するCo
CrTa膜で構成された垂直磁化膜25とが順に形成さ
れて構成されている。以下、この垂直磁気記録媒体21
の製造方法について説明する。まず、ガラス基板22上
にスパッタ法により6インチのVタ−ゲットを用いて、
基板温度を200゜Cに保持しつつ、V膜で構成された
結晶配向性制御膜23を20nm成膜した後、スパッタ法
により6インチのFeSiタ−ゲットを用いて、基板温
度を100゜Cに保持しつつ、FeSi膜で構成された
軟磁性膜24を500nm成膜する。成膜条件は、上記し
た第1の実施例と同様である。次に、軟磁性膜24上
に、Co:78at%,Cr:19at%,Ta:3a
t%の組成を有するCoCrTaタ−ゲットを用いてス
パッタ法によりCoCrTa膜で構成された垂直磁化膜
25を100nmを成膜する。
H. Eighth Embodiment Next, an eighth embodiment will be described. FIG. 30 is a cross-sectional view of a principal part showing a schematic structure of a perpendicular magnetic recording medium 21 according to an eighth embodiment of the present invention. The perpendicular magnetic recording medium 21
A crystal orientation control film 23 composed of a vanadium (V) film having a crystal structure having a body-centered cubic lattice as a spatial lattice, on a circular glass substrate 22 having a diameter of 2.5 inches;
a soft magnetic film 24 composed of an i-film, Co: 78 at%,
Co having a composition of Cr: 19 at% and Ta: 3 at%
A perpendicular magnetization film 25 made of a CrTa film is sequentially formed. Hereinafter, the perpendicular magnetic recording medium 21
A method of manufacturing the device will be described. First, using a 6-inch V target on the glass substrate 22 by sputtering,
After maintaining the substrate temperature at 200 ° C., a crystal orientation control film 23 composed of a V film is formed to a thickness of 20 nm, and then the substrate temperature is adjusted to 100 ° C. by using a 6-inch FeSi target by sputtering. Is formed, a soft magnetic film 24 made of a FeSi film is formed to a thickness of 500 nm. The film forming conditions are the same as in the first embodiment. Next, on the soft magnetic film 24, Co: 78 at%, Cr: 19 at%, Ta: 3a
Using a CoCrTa target having a composition of t%, a perpendicular magnetization film 25 made of a CoCrTa film is formed to a thickness of 100 nm by a sputtering method.

【0046】図31に、結晶配向性制御膜23としてV
膜を設けた場合と設けなかった場合の、FeSi膜の結
晶配向性及びCoCrTa膜の垂直配向性について示
す。測定方法及び図31に示す各数値の意味は上記第1
の実施例と同様である。図31から分かるように、Fe
Si膜を形成する前にV膜を形成することによって、F
eSi膜は、基板温度を100゜Cに保持しつつ形成し
ても、格子面(110)面から格子面(200)面に配
向性を変えており、それに伴って、CoCrTa膜の半
値幅Δθ50は、著しくて低下している。すなわち、上記
V膜を設けることにより、FeSi膜の配向面がCoC
rTa膜の格子面(001)面との格子整合性が良好な
格子面(200)面に変化し、CoCrTa膜の垂直配
向性が改善されていると考えられる。これは、V膜が格
子面(200)面を配向面として形成され、その配向面
上に、FeSi膜がエピタキシャル成長するためと考え
られる。
FIG. 31 shows that the crystal orientation control film 23 has V
The crystal orientation of the FeSi film and the vertical orientation of the CoCrTa film with and without the film are shown. The measurement method and the meaning of each numerical value shown in FIG.
This is the same as the embodiment. As can be seen from FIG.
By forming a V film before forming a Si film, F
Even if the eSi film is formed while maintaining the substrate temperature at 100 ° C., the orientation changes from the lattice plane (110) plane to the lattice plane (200) plane, and accordingly, the half width Δθ of the CoCrTa film is changed. 50 is significantly lower. That is, by providing the V film, the orientation surface of the FeSi film is changed to CoC.
It is considered that the lattice matching with the lattice plane (001) of the rTa film was changed to the lattice plane (200), and the vertical orientation of the CoCrTa film was improved. This is presumably because the V film is formed with the lattice plane (200) plane as the orientation plane, and the FeSi film is epitaxially grown on the orientation plane.

【0047】次に、図32〜図34に、上記製造方法で
作製した垂直磁気記録媒体の記録再生特性、すなわち、
記録密度に対する媒体ノイズ、再生出力電圧及び媒体S
/Nの特性を示す。これらの図において、各曲線aは、
V膜を設けた場合の特性を表す曲線、各曲線bは、V膜
を設けなかった場合の特性を表す曲線である。これらの
記録再生特性を測定するヘッドその他の測定条件及び評
価条件は上記第1の実施例と同様である。図32によれ
ば、V膜を設けることにより(曲線a)、V膜を設けな
かった場合(曲線b)に比較して、全記録密度において
媒体ノイズが小さく、ノイズ特性が非常に優れているこ
とが分かる。これは、FeSi膜を、CoCrTa膜の
格子面(001)面と格子整合性が良好な格子面(20
0)面を配向面として形成することにより、CoCrT
a膜の成長初期層の膜厚を薄くすることができ、低ノイ
ズ化が実現できたものと考えられる。また、図33によ
れば、V膜を設けることにより(曲線a)、V膜を設け
なかった場合(曲線b)に比較して、記録密度の増大に
伴う再生出力電圧の減衰が遅く、高記録密度まで高い再
生出力電圧を確保でき、高記録密度の実現が容易となる
ことが分かる。これは、FeSi膜を、CoCrTa膜
の格子面(001)面と格子整合性が良好な格子面(2
00)面を配向面として形成することにより、CoCr
Ta膜の垂直配向性が改善され、再生出力電圧の記録密
度に対する特性が向上したものと考えられる。さらに、
図34によれば、V膜を設けることにより(曲線a)、
V膜を設けなかった場合(曲線b)に比較して、全記録
密度において媒体S/Nが2〜6dB良好であり、高品質
で高記録密度を実現できることが分かる。すなわち、F
eSi膜を、CoCrTa膜の格子面(001)面と格
子整合性が良好な格子面(200)面を配向面として形
成することにより、高品質の高記録密度の実現が容易と
なる。
Next, FIG. 32 to FIG. 34 show the recording / reproducing characteristics of the perpendicular magnetic recording medium manufactured by the above manufacturing method, that is, FIG.
Medium noise with respect to recording density, reproduction output voltage and medium S
/ N characteristics. In these figures, each curve a is
A curve representing characteristics when the V film is provided, and each curve b is a curve representing characteristics when the V film is not provided. The head and other measurement conditions and evaluation conditions for measuring these recording / reproducing characteristics are the same as in the first embodiment. According to FIG. 32, when the V film is provided (curve a), the medium noise is small at all recording densities and the noise characteristics are very excellent as compared with the case where no V film is provided (curve b). You can see that. This is because the FeSi film has a lattice plane (20) having good lattice matching with the lattice plane (001) plane of the CoCrTa film.
By forming the 0) plane as an orientation plane, CoCrT
It is considered that the thickness of the initial growth layer of the a-film can be reduced, and the noise can be reduced. According to FIG. 33, by providing the V film (curve a), the decay of the reproduction output voltage with the increase in the recording density is slower and higher than when the V film is not provided (curve b). It can be seen that a high reproduction output voltage can be secured up to the recording density, and it is easy to realize a high recording density. This is because the FeSi film has a lattice plane (2) having good lattice matching with the lattice plane (001) plane of the CoCrTa film.
By forming the (00) plane as the orientation plane, CoCr
It is considered that the vertical orientation of the Ta film was improved, and the characteristics of the read output voltage with respect to the recording density were improved. further,
According to FIG. 34, by providing a V film (curve a),
Compared with the case where the V film was not provided (curve b), the medium S / N was good by 2 to 6 dB at all recording densities, and it can be seen that high quality and high recording density can be realized. That is, F
By forming the eSi film with the lattice plane (200) plane having good lattice matching with the lattice plane (001) plane of the CoCrTa film as the orientation plane, it is easy to realize high quality and high recording density.

【0048】I.第9の実施例 次に、第9の実施例について説明する。この例の垂直磁
気記録媒体は、図30に示す構造と同様の概略構造を有
しており、直径2.5インチの円形のガラス基板上に、
体心立方格子を空間格子とした結晶構造を有し、Cr:
50at%,ニオブ(Nb):50at%の組成を有す
るCrNb膜で構成された結晶配向性制御膜と、FeC
o膜で構成された軟磁性膜と、Co:78at%,C
r:19at%,Ta:3at%の組成を有するCoC
rTa膜で構成された垂直磁化膜とが順に形成されて構
成されている。以下、この垂直磁気記録媒体の製造方法
について説明する。まず、ガラス基板上にスパッタ法に
よりCr:50at%,Nb:50at%の組成を有す
る6インチのCrNbタ−ゲットを用いて、基板温度を
200゜Cに保持しつつ、CrNb膜で構成された結晶
配向性制御膜を20nm成膜した後、スパッタ法により6
インチのFeCoタ−ゲットを用いて、基板温度を10
0゜Cに保持しつつ、FeCo膜で構成された軟磁性膜
を500nm成膜する。成膜条件は、上記した第1の実施
例と同様である。次に、軟磁性膜上に、Co:78at
%,Cr:19at%,Ta:3at%の組成を有する
CoCrTaタ−ゲットを用いてスパッタ法によりCo
CrTa膜で構成された垂直磁化膜を100nmを成膜す
る。
I. Ninth Embodiment Next, a ninth embodiment will be described. The perpendicular magnetic recording medium of this example has a schematic structure similar to the structure shown in FIG. 30, and is formed on a circular glass substrate having a diameter of 2.5 inches.
It has a crystal structure with a body-centered cubic lattice as a spatial lattice, and has a Cr:
A crystal orientation control film composed of a CrNb film having a composition of 50 at% and niobium (Nb): 50 at%;
a soft magnetic film composed of an O film and Co: 78 at%, C
CoC having a composition of r: 19 at% and Ta: 3 at%
and a perpendicular magnetization film made of an rTa film. Hereinafter, a method for manufacturing the perpendicular magnetic recording medium will be described. First, a 6-inch CrNb target having a composition of Cr: 50 at% and Nb: 50 at% was formed on a glass substrate by a sputtering method and a CrNb film was formed while maintaining the substrate temperature at 200 ° C. After depositing a crystal orientation control film of 20 nm, 6
Using an inch FeCo target, a substrate temperature of 10
While maintaining the temperature at 0 ° C., a soft magnetic film made of a FeCo film is formed to a thickness of 500 nm. The film forming conditions are the same as in the first embodiment. Next, on the soft magnetic film, Co: 78 at
%, Cr: 19 at%, and Ta: 3 at% using a CoCrTa target having a composition of Co by sputtering.
A perpendicular magnetization film made of a CrTa film is formed to a thickness of 100 nm.

【0049】図35に、結晶配向性制御膜としてCrN
b膜を設けた場合と設けなかった場合のFeCo膜の結
晶配向性及びCoCrTa膜の垂直配向性についてそれ
ぞれ示す。測定方法及び図35に示す各数値の意味は第
1の実施例と同様である。同図から分かるように、Fe
Co膜を形成する前にCrNb膜を形成することによっ
て、FeCo膜は、基板温度を100゜Cに保持しつつ
形成しても、格子面(110)面から格子面(200)
面に配向性を変えており、それに伴って、CoCrTa
膜の半値幅Δθ50は、著しくて低下している。すなわ
ち、上記CrNb膜を設けることにより、FeCo膜の
配向面がCoCrTa膜の格子面(001)面との格子
整合性が良好な格子面(200)面に変化し、CoCr
Ta膜の垂直配向性が改善されていると考えられる。こ
れは、CrNb膜が格子面(200)面を配向面として
形成され、その配向面上に、FeCo膜がエピタキシャ
ル成長するためと考えられる。
FIG. 35 shows that CrN was used as a crystal orientation control film.
The crystal orientation of the FeCo film and the vertical orientation of the CoCrTa film with and without the b film are shown, respectively. The measurement method and the meaning of each numerical value shown in FIG. 35 are the same as in the first embodiment. As can be seen from FIG.
By forming the CrNb film before forming the Co film, the FeCo film can be formed while maintaining the substrate temperature at 100 ° C. from the lattice plane (110) plane to the lattice plane (200).
The orientation has been changed in the plane, and accordingly, CoCrTa
The half width Δθ 50 of the film is significantly reduced. In other words, by providing the CrNb film, the orientation surface of the FeCo film changes to a lattice surface (200) having good lattice matching with the lattice (001) surface of the CoCrTa film, and
It is considered that the vertical orientation of the Ta film was improved. This is presumably because the CrNb film is formed with the lattice plane (200) plane as the orientation plane, and the FeCo film grows epitaxially on the orientation plane.

【0050】次に、図36〜図38に、上記製造方法で
作製した垂直磁気記録媒体の記録再生特性、すなわち、
記録密度に対する、媒体ノイズ、再生出力電圧及び媒体
S/Nの特性を示す。図36〜図38において、各曲線
aは、CrNb膜を設けた場合の特性を表す曲線、各曲
線bは、CrNb膜を設けなかった場合の特性を表す曲
線である。これらの記録再生特性を測定するヘッドその
他の測定条件及び評価条件は上記第1の実施例と同様で
ある。図36によれば、CrNb膜を設けることにより
(曲線a)、CrNb膜を設けなかった場合(曲線b)
に比較して、全記録密度において媒体ノイズが小さく、
ノイズ特性が非常に優れていることが分かる。これは、
FeCo膜を、CoCrTa膜の格子面(001)面と
格子整合性が良好な格子面(200)面を配向面として
形成することにより、CoCrTa膜の成長初期層の膜
厚を薄くすることができ、低ノイズ化が実現できたもの
と考えられる。また、図37によれば、CrNb膜を設
けることにより(曲線a)、CrNb膜を設けなかった
場合(曲線b)に比較して、記録密度の増大に伴う再生
出力電圧の減衰が遅く、高記録密度まで高い再生出力電
圧を確保でき、高記録密度の実現が容易となることが分
かる。これは、FeCo膜を、CoCrTa膜の格子面
(001)面と格子整合性が良好な格子面(200)面
を配向面として形成することにより、CoCrTa膜の
垂直配向性が改善され、再生出力電圧の記録密度に対す
る特性が向上したものと考えられる。さらに、図38に
よれば、CrNb膜を設けることにより(曲線a)、C
rNb膜を設けなかった場合(曲線b)に比較して、全
記録密度において媒体S/Nが1〜4dB良好であり、高
品質で高記録密度を実現できることが分かる。すなわ
ち、FeCo膜を、CoCrTa膜の格子面(001)
面と格子整合性が良好な格子面(200)面を配向面と
して形成することにより、高品質の高記録密度の実現が
容易となる。
Next, FIGS. 36 to 38 show the recording / reproducing characteristics of the perpendicular magnetic recording medium manufactured by the above-described manufacturing method, that is, FIG.
6 shows characteristics of a medium noise, a reproduction output voltage, and a medium S / N with respect to a recording density. 36 to 38, each curve a is a curve representing a characteristic when a CrNb film is provided, and each curve b is a curve representing a characteristic when a CrNb film is not provided. The head and other measurement conditions and evaluation conditions for measuring these recording / reproducing characteristics are the same as in the first embodiment. According to FIG. 36, when the CrNb film was provided (curve a), no CrNb film was provided (curve b).
Media noise is smaller at all recording densities compared to
It can be seen that the noise characteristics are very excellent. this is,
By forming the FeCo film with the lattice plane (200) plane having good lattice matching with the lattice plane (001) plane of the CoCrTa film as the orientation plane, the thickness of the initial growth layer of the CoCrTa film can be reduced. It is considered that low noise was realized. Further, according to FIG. 37, the provision of the CrNb film (curve a) causes the reproduction output voltage to decay slowly with the increase in the recording density as compared with the case where the CrNb film is not provided (curve b). It can be seen that a high reproduction output voltage can be secured up to the recording density, and it is easy to realize a high recording density. This is because the vertical orientation of the CoCrTa film is improved by forming the FeCo film as the orientation plane with the lattice plane (200) having good lattice matching with the lattice plane (001) of the CoCrTa film, and the reproduction output is improved. It is considered that the characteristics of the voltage with respect to the recording density were improved. Further, according to FIG. 38, by providing a CrNb film (curve a), C
Compared with the case where the rNb film was not provided (curve b), the medium S / N was better by 1 to 4 dB at all recording densities, and it can be seen that high quality and high recording density can be realized. That is, the FeCo film is replaced with the lattice plane (001) of the CoCrTa film.
By forming the lattice plane (200) plane having good lattice matching with the plane as the orientation plane, it is easy to realize high quality and high recording density.

【0051】J.第10の実施例 次に、第10の実施例について説明する。この例の垂直
磁気記録媒体は、図30に示す構造と同様の概略構造を
有しており、直径2.5インチの円形のガラス基板上
に、体心立方格子を空間格子とした結晶構造を有し、C
r:80at%,モリブデン(Mo):20at%の組
成を有するCrMo膜で構成された結晶配向性制御膜
と、FeAl膜で構成された軟磁性膜と、Co:78a
t%,Cr:19at%,Ta:3at%の組成を有す
るCoCrTa膜で構成された垂直磁化膜とが順に形成
されて構成されている。以下、この垂直磁気記録媒体の
製造方法について説明する。まず、ガラス基板上にスパ
ッタ法によりCr:80at%,Mo:20at%の組
成を有する6インチのCrMoタ−ゲットを用いて、基
板温度を200゜Cに保持しつつ、CrMo膜で構成さ
れた結晶配向性制御膜を20nm成膜した後、スパッタ法
により6インチのFeAlタ−ゲットを用いて、基板温
度を100゜Cに保持しつつ、FeAl膜で構成された
軟磁性膜を500nm成膜する。成膜条件は、上記した第
1の実施例と同様である。次に、軟磁性膜上に、Co:
78at%,Cr:19at%,Ta:3at%の組成
を有するCoCrTaタ−ゲットを用いてスパッタ法に
よりCoCrTa膜で構成された垂直磁化膜を100nm
を成膜する。
J. Tenth Embodiment Next, a tenth embodiment will be described. The perpendicular magnetic recording medium of this example has a schematic structure similar to the structure shown in FIG. 30, and has a crystal structure using a body-centered cubic lattice as a space lattice on a 2.5-inch-diameter circular glass substrate. Has, C
r: 80 at%, molybdenum (Mo): a crystal orientation control film composed of a CrMo film having a composition of 20 at%, a soft magnetic film composed of an FeAl film, and Co: 78 a
A perpendicular magnetization film composed of a CoCrTa film having a composition of t%, Cr: 19 at%, and Ta: 3 at% is formed in order. Hereinafter, a method for manufacturing the perpendicular magnetic recording medium will be described. First, a CrMo film was formed on a glass substrate using a 6-inch CrMo target having a composition of 80 at% Cr and 20 at% Mo by sputtering, while maintaining the substrate temperature at 200 ° C. After forming a crystal orientation control film to a thickness of 20 nm, a soft magnetic film composed of a FeAl film is formed to a thickness of 500 nm by sputtering using a 6-inch FeAl target while maintaining the substrate temperature at 100 ° C. I do. The film forming conditions are the same as in the first embodiment. Next, on the soft magnetic film, Co:
Using a CoCrTa target having a composition of 78 at%, Cr: 19 at%, and Ta: 3 at%, a perpendicular magnetic film composed of a CoCrTa film is formed to a thickness of 100 nm by a sputtering method.
Is formed.

【0052】図39に、結晶配向性制御膜としてCrM
o膜を設けた場合と設けなかった場合の、FeAl膜の
結晶配向性及びCoCrTa膜の垂直配向性についてそ
れぞれ示す。測定方法及び図39に示す各数値の意味は
上記第1の実施例と同様である。同図から分かるよう
に、FeAl膜を形成する前にCrMo膜を形成するこ
とによって、FeAl膜は、基板温度を100゜Cに保
持しつつ形成しても、格子面(110)面から格子面
(200)面に配向性を変えており、それに伴って、C
oCrTa膜の半値幅Δθ50は、著しくて低下してい
る。すなわち、上記CrMo膜を設けることにより、F
eAl膜の配向面がCoCrTa膜の格子面(001)
面との格子整合性が良好な格子面(200)面に変化
し、CoCrTa膜の垂直配向性が改善されていると考
えられる。これは、CrMo膜が格子面(200)面を
配向面として形成され、その配向面上に、FeAl膜が
エピタキシャル成長するためと考えられる。
FIG. 39 shows that the crystal orientation control film was made of CrM.
The crystal orientation of the FeAl film and the vertical orientation of the CoCrTa film when the o film is provided and when it is not provided are shown. The measurement method and the meaning of each numerical value shown in FIG. 39 are the same as those in the first embodiment. As can be seen from the figure, by forming the CrMo film before forming the FeAl film, the FeAl film can be formed while maintaining the substrate temperature at 100 ° C. from the lattice plane (110) plane to the lattice plane. The orientation of the (200) plane is changed, and accordingly, C
The half width Δθ 50 of the oCrTa film is significantly reduced. That is, by providing the CrMo film, F
The orientation plane of the eAl film is the lattice plane of the CoCrTa film (001)
It is considered that the lattice matching with the plane changed to a lattice plane (200) plane having a good lattice plane, and the vertical orientation of the CoCrTa film was improved. This is considered to be because the CrMo film is formed with the lattice plane (200) plane as the orientation plane, and the FeAl film grows epitaxially on the orientation plane.

【0053】次に、図40〜図42に、上記製造方法で
作製した垂直磁気記録媒体の記録再生特性、すなわち、
記録密度に対する、媒体ノイズ、再生出力電圧及び媒体
S/Nの特性を示す。図40〜図42において、各曲線
aは、CrMo膜を設けた場合の特性を表す曲線、各曲
線bは、CrMo膜を設けなかった場合の特性を表す曲
線である。これらの記録再生特性を測定するヘッドその
他の測定条件及び評価条件は上記第1の実施例と同様で
ある。図40によれば、CrMo膜を設けることにより
(曲線a)、CrMo膜を設けなかった場合(曲線b)
に比較して、全記録密度において媒体ノイズが小さく、
ノイズ特性が非常に優れていることが分かる。これは、
FeAl膜を、CoCrTa膜の格子面(001)面と
格子整合性が良好な格子面(200)面を配向面として
形成することにより、CoCrTa膜の成長初期層の膜
厚を薄くすることができ、低ノイズ化が実現できたもの
と考えられる。また、図41によれば、CrMo膜を設
けることにより(曲線a)、CrMo膜を設けなかった
場合(曲線b)に比較して、記録密度の増大に伴う再生
出力電圧の減衰が遅く、高記録密度まで高い再生出力電
圧を確保でき、高記録密度の実現が容易となることが分
かる。これは、FeAl膜を、CoCrTa膜の格子面
(001)面と格子整合性が良好な格子面(200)面
を配向面として形成することにより、CoCrTa膜の
垂直配向性が改善され、再生出力電圧の記録密度に対す
る特性が向上したものと考えられる。さらに、図42に
よれば、CrMo膜を設けることにより(曲線a)、C
rMo膜を設けなかった場合(曲線b)に比較して、全
記録密度において媒体S/Nが1〜2dB良好であり、高
品質で高記録密度を実現できることが分かる。すなわ
ち、FeAl膜を、CoCrTa膜の格子面(001)
面と格子整合性が良好な格子面(200)面を配向面と
して形成することにより、高品質の高記録密度の実現が
容易となる。
Next, FIG. 40 to FIG. 42 show recording / reproducing characteristics of the perpendicular magnetic recording medium manufactured by the above manufacturing method, that is, FIG.
6 shows characteristics of a medium noise, a reproduction output voltage, and a medium S / N with respect to a recording density. In FIGS. 40 to 42, each curve a is a curve representing the characteristic when the CrMo film is provided, and each curve b is a curve representing the characteristic when the CrMo film is not provided. The head and other measurement conditions and evaluation conditions for measuring these recording / reproducing characteristics are the same as in the first embodiment. According to FIG. 40, when the CrMo film was provided (curve a), no CrMo film was provided (curve b).
Media noise is smaller at all recording densities compared to
It can be seen that the noise characteristics are very excellent. this is,
By forming the FeAl film with the lattice plane (200) plane having good lattice matching with the lattice plane (001) plane of the CoCrTa film as the orientation plane, it is possible to reduce the thickness of the initial growth layer of the CoCrTa film. It is considered that low noise was realized. According to FIG. 41, by providing the CrMo film (curve a), the reproduction output voltage decay with the increase in the recording density is slower and higher than when the CrMo film is not provided (curve b). It can be seen that a high reproduction output voltage can be secured up to the recording density, and it is easy to realize a high recording density. This is because the vertical orientation of the CoCrTa film is improved by forming the FeAl film as the orientation plane with the lattice plane (200) having good lattice matching with the lattice plane (001) of the CoCrTa film, thereby improving the reproduction output. It is considered that the characteristics of the voltage with respect to the recording density were improved. Further, according to FIG. 42, by providing a CrMo film (curve a), C
Compared with the case where no rMo film was provided (curve b), the medium S / N was better by 1 to 2 dB at all recording densities, and it can be seen that high recording density and high quality can be realized. That is, the FeAl film is replaced with the lattice plane (001) of the CoCrTa film.
By forming the lattice plane (200) plane having good lattice matching with the plane as the orientation plane, it is easy to realize high quality and high recording density.

【0054】K.第11の実施例 次に、第11の実施例について説明する。この例の垂直
磁気記録媒体は、図30に示す構造と同様の概略構造を
有しており、直径2.5インチの円形のガラス基板上
に、体心立方格子を空間格子とした結晶構造を有し、C
r:50at%,V:20at%,Nb:20at%,
Mo:10at%の組成を有するCrVNbMo膜で構
成された結晶配向性制御膜と、センダスト膜で構成され
た軟磁性膜と、Co:78at%,Cr:19at%,
Ta:3at%の組成を有するCoCrTa膜で構成さ
れた垂直磁化膜とが順に形成されて構成されている。以
下、この垂直磁気記録媒体の製造方法について説明す
る。まず、ガラス基板上にスパッタ法によりCr:50
at%,V:20at%,Nb:20at%,Mo:1
0at%の組成を有する6インチのCrVNbMoタ−
ゲットを用いて、基板温度を200゜Cに保持しつつ、
CrVNbMo膜で構成された結晶配向性制御膜を20
nm成膜した後、スパッタ法により6インチのFeSiA
lタ−ゲットを用いて、基板温度を100゜Cに保持し
つつ、センダスト膜で構成された軟磁性膜を500nm成
膜する。成膜条件は、上記した第1の実施例と同様であ
る。次に、軟磁性膜上に、Co:78at%,Cr:1
9at%,Ta:3at%の組成を有するCoCrTa
タ−ゲットを用いてスパッタ法によりCoCrTa膜で
構成された垂直磁化膜を100nmを成膜する。
K. Eleventh Embodiment Next, an eleventh embodiment will be described. The perpendicular magnetic recording medium of this example has a schematic structure similar to the structure shown in FIG. 30, and has a crystal structure using a body-centered cubic lattice as a space lattice on a 2.5-inch-diameter circular glass substrate. Has, C
r: 50 at%, V: 20 at%, Nb: 20 at%,
Mo: a crystal orientation control film composed of a CrVNbMo film having a composition of 10 at%, a soft magnetic film composed of a sendust film, Co: 78 at%, Cr: 19 at%,
And a perpendicular magnetization film made of a CoCrTa film having a composition of Ta: 3 at%. Hereinafter, a method for manufacturing the perpendicular magnetic recording medium will be described. First, Cr: 50 was sputtered on a glass substrate.
at%, V: 20 at%, Nb: 20 at%, Mo: 1
6 inch CrVNbMo heater with 0 at% composition
Using a get, while maintaining the substrate temperature at 200 ° C,
The crystal orientation control film composed of the CrVNbMo film is 20
6 inch FeSiA by sputtering
Using a target, a soft magnetic film made of a sendust film is formed to a thickness of 500 nm while maintaining the substrate temperature at 100 ° C. The film forming conditions are the same as in the first embodiment. Next, on the soft magnetic film, Co: 78 at%, Cr: 1
CoCrTa having a composition of 9 at% and Ta: 3 at%
Using a target, a perpendicular magnetic film made of a CoCrTa film is formed to a thickness of 100 nm by a sputtering method.

【0055】図43に、結晶配向性制御膜としてCrV
NbMo膜を設けた場合と設けなかった場合の、センダ
スト膜の結晶配向性及びCoCrTa膜の垂直配向性に
ついて示す。測定方法及び図43に示す各数値の意味は
上記第1の実施例と同様である。図43から分かるよう
に、センダスト膜を形成する前にCrVNbMo膜を形
成することによって、センダスト膜は、基板温度を10
0゜Cに保持しつつ形成しても、格子面(110)面か
ら格子面(200)面に配向性を変えており、それに伴
って、CoCrTa膜の半値幅Δθ50は、著しくて低下
している。すなわち、上記CrVNbMo膜を設けるこ
とにより、センダスト膜の配向面がCoCrTa膜の格
子面(001)面との格子整合性が良好な格子面(20
0)面に変化し、CoCrTa膜の垂直配向性が改善さ
れていると考えられる。これは、CrVNbMo膜が格
子面(200)面を配向面として形成され、その配向面
上に、センダスト膜がエピタキシャル成長するためと考
えられる。
FIG. 43 shows that the crystal orientation control film was made of CrV
The crystal orientation of the sendust film and the vertical orientation of the CoCrTa film when the NbMo film is provided and when it is not provided are shown. The measurement method and the meaning of each numerical value shown in FIG. 43 are the same as in the first embodiment. As can be seen from FIG. 43, by forming the CrVNbMo film before forming the sendust film, the sendust film has a substrate temperature of 10%.
Even when formed while maintaining the temperature at 0 ° C., the orientation changes from the lattice plane (110) plane to the lattice plane (200) plane, and the half-width Δθ 50 of the CoCrTa film is remarkably reduced. ing. That is, by providing the CrVNbMo film, the orientation plane of the sendust film has a lattice plane (20) having good lattice matching with the lattice plane (001) plane of the CoCrTa film.
It is considered that the orientation changed to the 0) plane, and the vertical orientation of the CoCrTa film was improved. This is presumably because the CrVNbMo film was formed with the lattice plane (200) plane as the orientation plane, and the sendust film was epitaxially grown on the orientation plane.

【0056】次に、図44〜図46に、上記製造方法で
作製した垂直磁気記録媒体の記録再生特性、すなわち、
記録密度に対する、媒体ノイズ、再生出力電圧及び媒体
S/Nの特性を示す。図44〜図46において、各曲線
aは、CrVNbMo膜を設けた場合の特性を表す曲
線、各曲線bは、CrVNbMo膜を設けなかった場合
の特性を表す曲線である。これらの記録再生特性を測定
するヘッドその他の測定条件及び評価条件は上記第1の
実施例と同様である。図44によれば、CrVNbMo
膜を設けることにより(曲線a)、CrVNbMo膜を
設けなかった場合(曲線b)に比較して、全記録密度に
おいて媒体ノイズが小さく、ノイズ特性が非常に優れて
いることが分かる。これは、センダスト膜を、CoCr
Ta膜の格子面(001)面と格子整合性が良好な格子
面(200)面を配向面として形成することにより、C
oCrTa膜の成長初期層の膜厚を薄くすることがで
き、低ノイズ化が実現できたものと考えられる。また、
図45によれば、CrVNbMo膜を設けることにより
(曲線a)、CrVNbMo膜を設けなかった場合(曲
線b)に比較して、記録密度の増大に伴う再生出力電圧
の減衰が遅く、高記録密度まで高い再生出力電圧を確保
でき、高記録密度の実現が容易となることが分かる。こ
れは、センダスト膜を、CoCrTa膜の格子面(00
1)面と格子整合性が良好な格子面(200)面を配向
面として形成することにより、CoCrTa膜の垂直配
向性が改善され、再生出力電圧の記録密度に対する特性
が向上したものと考えられる。さらに、図46によれ
ば、CrVNbMo膜を設けることにより(曲線a)、
CrVNbMo膜を設けなかった場合(曲線b)に比較
して、全記録密度において媒体S/Nが2〜5dB良好で
あり、高品質で高記録密度を実現できることが分かる。
すなわち、センダスト膜を、CoCrTa膜の格子面
(001)面と格子整合性が良好な格子面(200)面
を配向面として形成することにより、高品質の高記録密
度の実現が容易となる。
Next, FIG. 44 to FIG. 46 show recording / reproducing characteristics of the perpendicular magnetic recording medium manufactured by the above-mentioned manufacturing method, that is, FIG.
6 shows characteristics of a medium noise, a reproduction output voltage, and a medium S / N with respect to a recording density. In FIGS. 44 to 46, each curve a is a curve representing the characteristics when the CrVNbMo film is provided, and each curve b is a curve representing the characteristics when the CrVNbMo film is not provided. The head and other measurement conditions and evaluation conditions for measuring these recording / reproducing characteristics are the same as in the first embodiment. According to FIG. 44, CrVNbMo
By providing the film (curve a), it can be seen that the medium noise is small at all recording densities and the noise characteristics are extremely excellent as compared with the case where the CrVNbMo film is not provided (curve b). This is because the Sendust film is made of CoCr
By forming the lattice plane (200) having good lattice matching with the lattice plane (001) of the Ta film as an orientation plane, C
It is considered that the thickness of the initial growth layer of the oCrTa film can be reduced, and noise reduction can be realized. Also,
According to FIG. 45, by providing the CrVNbMo film (curve a), the decay of the reproduction output voltage with the increase in the recording density was slower than that in the case where the CrVNbMo film was not provided (curve b). It can be seen that a high reproduction output voltage can be secured up to this point, and it is easy to realize a high recording density. This means that the sendust film is formed by the lattice plane (00) of the CoCrTa film.
It is considered that the vertical orientation of the CoCrTa film is improved by forming the lattice plane (200) plane having good lattice matching with the 1) plane as the orientation plane, and the characteristics of the read output voltage with respect to the recording density are improved. . Further, according to FIG. 46, by providing the CrVNbMo film (curve a),
Compared with the case where the CrVNbMo film was not provided (curve b), the medium S / N was 2 to 5 dB better at all recording densities, and it can be seen that high quality and high recording density can be realized.
That is, by forming the sendust film with the lattice plane (200) plane having good lattice matching with the lattice plane (001) plane of the CoCrTa film as the orientation plane, it is easy to realize high quality and high recording density.

【0057】以上、この発明の実施例を図面を参照して
詳述してきたが、具体的な構成はこの実施例に限られる
ものではなく、この発明の要旨を逸脱しない範囲の設計
の変更等があってもこの発明に含まれる。例えば、上述
の実施例においては、センダスト膜その他の軟磁性膜の
組成については何等示していないが、これらはいずれも
一般的な組成のものを用いれば良い。また、軟磁性膜
は、上記各実施例において示した合金膜に限定されず、
要するに、体心立方格子を空間格子とした結晶構造を有
し、格子面(200)面を配向面として基板上に形成さ
れるものであれば良く、例えば、Fe、Si、Al、R
u、Ti、N、あるいはCoのいずれか2つ以上の元素
からなる合金膜であっても良い。また、上述の実施例に
おいては、垂直磁化膜は、全てCo:78at%,C
r:19at%,Ta:3at%の組成を有するCoC
rTa膜で構成する例を示したが、これに限定されな
い。要するに、格子面(001)面が軟磁性膜の(20
0)面に配向されるものであれば、どのようなものでも
良い。例えば、CoCrTa膜であれば、Crが30a
t%以下のもの、また、CoCr膜であれば、Crが3
3at%以下のものを用いれば良い。さらに、上述の実
施例においては、基板は、全てガラス基板で構成する例
を示したが、これに限定されない。例えば、NiP/A
l合金基板、カーボン(C)基板、Si基板、あるいは
サファイア基板でも良い。加えて、上述の実施例におい
ては、垂直磁化膜、軟磁性膜及び結晶配向性制御膜はい
ずれもArガスを用いてスパッタ法により形成する例を
示したが、これに限定されず、クリプトン(Kr)ガス
を用いても良いし、蒸着法や化学蒸着(CVD)法など
他の成膜方法でももちろん良い。
Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to the embodiments, and changes in design and the like may be made without departing from the gist of the present invention. Even if there is, it is included in the present invention. For example, in the above-described embodiments, the composition of the sendust film and other soft magnetic films is not shown at all, but any of these may be of a general composition. Further, the soft magnetic film is not limited to the alloy film shown in each of the above embodiments,
In short, any crystal may be used as long as it has a crystal structure with a body-centered cubic lattice as a spatial lattice and is formed on a substrate with the lattice plane (200) as an orientation plane. For example, Fe, Si, Al, R
An alloy film made of any two or more elements of u, Ti, N, and Co may be used. Further, in the above-described embodiment, the perpendicular magnetization films are all made of Co: 78 at%, C:
CoC having a composition of r: 19 at% and Ta: 3 at%
Although an example in which an rTa film is used has been described, the present invention is not limited to this. In short, the lattice plane (001) plane is (20) of the soft magnetic film.
Any material may be used as long as it is oriented in the 0) plane. For example, in the case of a CoCrTa film, Cr is 30a.
t% or less, and if it is a CoCr film, the Cr content is 3%.
What is less than 3 at% may be used. Further, in the above-described embodiment, an example is described in which the substrate is entirely formed of a glass substrate, but the present invention is not limited to this. For example, NiP / A
1 alloy substrate, carbon (C) substrate, Si substrate, or sapphire substrate may be used. In addition, in the above-described embodiment, an example is described in which the perpendicular magnetization film, the soft magnetic film, and the crystal orientation control film are all formed by a sputtering method using Ar gas. However, the present invention is not limited thereto. Kr) gas may be used, or another film formation method such as a vapor deposition method or a chemical vapor deposition (CVD) method may be used.

【0058】また、上述の第1〜第3の実施例において
は、軟磁性膜成膜時の基板温度を200゜C〜300゜
Cの範囲内の所定の温度に設定する例を示したが、これ
に限定されず、要するに、基板温度は200゜以上であ
って、軟磁性膜が形成できる温度であれば良い。さら
に、上述の第4〜第7の実施例においては、軟磁性膜成
膜時のArガスのガス圧を10〜30mTorrの範囲内の
所定のガス圧に設定する例を示したが、これに限定され
ず、要するに、Arガスのガス圧は30mTorr以下であ
って、軟磁性膜が形成できるガス圧であれば良い。加え
て、上述の第8〜第11の実施例においては、結晶配向
性制御膜として、V膜、CrNb膜、CrMo膜及びC
rVNbMo膜を用いる例を示したが、これに限定され
ない。例えば、Cr、Nb、Moそれぞれの単独の膜、
Cr、V、Nb、Moをそれぞれを2つ以上組み合わせ
た合金膜、あるいはCr、V、Nb、Moのいずれか、
あるいはそれぞれを2つ以上組み合わせたものと、結晶
配向性制御膜として体心立方格子を空間格子とした結晶
構造を損なわない範囲で他の元素を含む合金系膜であれ
ば良い。また、上述の第1〜第3の実施例、第4〜第7
の実施例、及び第8〜第11の第11の実施例において
は、それぞれ個別に、軟磁性膜成膜時の基板温度やAr
ガスのガス圧を設定した例について述べたが、これに限
定されず、それぞれの軟磁性膜の成膜条件を組み合わせ
ても良く、この場合には、より著しい効果が得られる。
Further, in the above-described first to third embodiments, examples have been described in which the substrate temperature during the formation of the soft magnetic film is set to a predetermined temperature within the range of 200 ° C. to 300 ° C. However, the present invention is not limited to this. In short, the substrate temperature may be 200 ° C. or higher and a temperature at which a soft magnetic film can be formed. Further, in the above-described fourth to seventh embodiments, the example in which the gas pressure of the Ar gas at the time of forming the soft magnetic film is set to a predetermined gas pressure within the range of 10 to 30 mTorr has been described. The gas pressure of the Ar gas is not limited to 30 mTorr or less, that is, any gas pressure that can form a soft magnetic film may be used. In addition, in the eighth to eleventh embodiments described above, as the crystal orientation control film, a V film, a CrNb film, a CrMo film and a C
Although the example using the rVNbMo film has been described, the present invention is not limited to this. For example, a single film of Cr, Nb, and Mo,
An alloy film combining two or more of Cr, V, Nb, and Mo; or any of Cr, V, Nb, and Mo;
Alternatively, any combination of two or more of them may be used as well as an alloy-based film containing other elements as long as the crystal structure using the body-centered cubic lattice as a spatial lattice is not damaged as a crystal orientation control film. Further, the above-described first to third embodiments, fourth to seventh embodiments
In the embodiments of the present invention and the eighth to eleventh eleventh embodiments, the substrate temperature and the Ar
Although the example in which the gas pressure of the gas is set has been described, the present invention is not limited to this, and the film forming conditions of the respective soft magnetic films may be combined. In this case, a more remarkable effect is obtained.

【0059】[0059]

【発明の効果】以上説明したように、この発明の構成に
よれば、軟磁性膜を、単独で又は結晶配向性制御膜と共
に、垂直磁化膜の格子面(001)面と格子整合性が良
好な格子面(200)面を配向面として形成しているの
で、垂直磁化膜の垂直配向性が改善されると共に、垂直
磁化膜の成長初期層の膜厚を薄くすることができる。ま
た、この垂直磁気記録媒体は、多くても3層構造であ
る。さらに、この発明の構成による製造方法によれば、
アニール処理したり、垂直磁化膜を構成する各元素の各
組成量を膜厚方向に変化させる必要はない。したがっ
て、垂直磁気記録媒体を安価かつ簡単に作製できると共
に、記録再生の際の媒体ノイズを低減でき、しかも再生
出力電圧の記録密度に対する特性を向上させることがで
きる。
As described above, according to the structure of the present invention, the soft magnetic film alone or together with the crystal orientation control film has good lattice matching with the lattice plane (001) plane of the perpendicular magnetization film. Since the lattice plane (200) plane is formed as the orientation plane, the perpendicular orientation of the perpendicular magnetization film is improved, and the thickness of the initial growth layer of the perpendicular magnetization film can be reduced. The perpendicular magnetic recording medium has a three-layer structure at most. Further, according to the manufacturing method according to the configuration of the present invention,
It is not necessary to perform annealing or change the composition of each element constituting the perpendicular magnetization film in the film thickness direction. Therefore, the perpendicular magnetic recording medium can be manufactured inexpensively and easily, the medium noise during recording and reproduction can be reduced, and the characteristics of the reproduction output voltage with respect to the recording density can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施例である垂直磁気記録媒
体の概略構造を示す要部断面図である。
FIG. 1 is a cross-sectional view of a main part showing a schematic structure of a perpendicular magnetic recording medium according to a first embodiment of the present invention.

【図2】同実施例におけるセンダスト膜成膜時の基板温
度と、センダスト膜の結晶配向性及びCoCrTa膜の
垂直配向性との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a substrate temperature when a sendust film is formed, a crystal orientation of a sendust film, and a vertical orientation of a CoCrTa film in the example.

【図3】同実施例における垂直磁気記録媒体の記録密度
に対する媒体ノイズの特性を示す図である。
FIG. 3 is a diagram showing characteristics of a medium noise with respect to a recording density of the perpendicular magnetic recording medium in the embodiment.

【図4】同実施例における垂直磁気記録媒体の記録密度
に対する再生出力電圧の特性を示す図である。
FIG. 4 is a diagram showing characteristics of a reproduction output voltage with respect to a recording density of the perpendicular magnetic recording medium in the embodiment.

【図5】同実施例における垂直磁気記録媒体の記録密度
に対する媒体S/Nの特性を示す図である。
FIG. 5 is a diagram showing characteristics of the medium S / N with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図6】この発明の第2の実施例におけるFeSi膜成
膜時の基板温度と、FeSi膜の結晶配向性及びCoC
rTa膜の垂直配向性との関係を示す図である。
FIG. 6 shows the substrate temperature, the crystal orientation of the FeSi film and the CoC in forming the FeSi film in the second embodiment of the present invention.
FIG. 4 is a diagram illustrating a relationship with the vertical orientation of an rTa film.

【図7】同実施例における垂直磁気記録媒体の記録密度
に対する媒体ノイズの特性を示す図である。
FIG. 7 is a diagram showing characteristics of medium noise with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図8】同実施例における垂直磁気記録媒体の記録密度
に対する再生出力電圧の特性を示す図である。
FIG. 8 is a diagram showing characteristics of a reproduction output voltage with respect to a recording density of the perpendicular magnetic recording medium in the example.

【図9】同実施例における垂直磁気記録媒体の記録密度
に対する媒体S/Nの特性を示す図である。
FIG. 9 is a diagram showing characteristics of the medium S / N with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図10】この発明の第3の実施例におけるFeAl膜
成膜時の基板温度と、FeAl膜の結晶配向性及びCo
CrTa膜の垂直配向性との関係を示す図である。
FIG. 10 shows the substrate temperature, the crystal orientation of the FeAl film, and the Co temperature in forming the FeAl film in the third embodiment of the present invention.
FIG. 4 is a diagram showing a relationship with the vertical orientation of a CrTa film.

【図11】同実施例における垂直磁気記録媒体の記録密
度に対する媒体ノイズの特性を示す図である。
FIG. 11 is a diagram showing characteristics of medium noise with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図12】同実施例における垂直磁気記録媒体の記録密
度に対する再生出力電圧の特性を示す図である。
FIG. 12 is a diagram showing characteristics of a reproduction output voltage with respect to a recording density of the perpendicular magnetic recording medium in the example.

【図13】同実施例における垂直磁気記録媒体の記録密
度に対する媒体S/Nの特性を示す図である。
FIG. 13 is a diagram showing characteristics of the medium S / N with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図14】この発明の第4の実施例におけるセンダスト
膜成膜時のArガスのガス圧と、センダスト膜の結晶配
向性及びCoCrTa膜の垂直配向性との関係を示す図
である。
FIG. 14 is a diagram showing the relationship between the gas pressure of Ar gas during the formation of a sendust film, the crystal orientation of the sendust film, and the vertical orientation of the CoCrTa film in the fourth embodiment of the present invention.

【図15】同実施例における垂直磁気記録媒体の記録密
度に対する媒体ノイズの特性を示す図である。
FIG. 15 is a diagram showing characteristics of medium noise with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図16】同実施例における垂直磁気記録媒体の記録密
度に対する再生出力電圧の特性を示す図である。
FIG. 16 is a diagram showing a characteristic of a reproduction output voltage with respect to a recording density of the perpendicular magnetic recording medium in the example.

【図17】同実施例における垂直磁気記録媒体の記録密
度に対する媒体S/Nの特性を示す図である。
FIG. 17 is a diagram showing characteristics of the medium S / N with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図18】この発明の第5の実施例におけるFeSiA
lRuTi膜成膜時のArガスのガス圧と、FeSiA
lRuTi膜の結晶配向性及びCoCrTa膜の垂直配
向性との関係を示す図である。
FIG. 18 shows a FeSiA according to a fifth embodiment of the present invention.
Gas pressure of Ar gas during lRuTi film formation and FeSiA
FIG. 4 is a diagram showing the relationship between the crystal orientation of an lRuTi film and the vertical orientation of a CoCrTa film.

【図19】同実施例における垂直磁気記録媒体の記録密
度に対する媒体ノイズの特性を示す図である。
FIG. 19 is a diagram showing characteristics of medium noise with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図20】同実施例における垂直磁気記録媒体の記録密
度に対する再生出力電圧の特性を示す図である。
FIG. 20 is a diagram showing characteristics of a reproduction output voltage with respect to a recording density of a perpendicular magnetic recording medium in the example.

【図21】同実施例における垂直磁気記録媒体の記録密
度に対する媒体S/Nの特性を示す図である。
FIG. 21 is a diagram showing characteristics of the medium S / N with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図22】この発明の第6の実施例におけるFeTaN
膜成膜時のArガスのガス圧と、FeTaN膜の結晶配
向性及びCoCrTa膜の垂直配向性との関係を示す図
である。
FIG. 22 shows a FeTaN according to a sixth embodiment of the present invention.
FIG. 4 is a diagram showing the relationship between the gas pressure of Ar gas at the time of film formation and the crystal orientation of a FeTaN film and the vertical orientation of a CoCrTa film.

【図23】同実施例における垂直磁気記録媒体の記録密
度に対する媒体ノイズの特性を示す図である。
FIG. 23 is a diagram showing characteristics of medium noise with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図24】同実施例における垂直磁気記録媒体の記録密
度に対する再生出力電圧の特性を示す図である。
FIG. 24 is a diagram showing characteristics of a reproduction output voltage with respect to a recording density of the perpendicular magnetic recording medium in the example.

【図25】同実施例における垂直磁気記録媒体の記録密
度に対する媒体S/Nの特性を示す図である。
FIG. 25 is a diagram showing characteristics of the medium S / N with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図26】この発明の第7の実施例におけるFeCo膜
成膜時のArガスのガス圧と、FeCo膜の結晶配向性
及びCoCrTa膜の垂直配向性との関係を示す関係図
である。
FIG. 26 is a relationship diagram showing the relationship between the gas pressure of Ar gas at the time of forming an FeCo film, the crystal orientation of the FeCo film, and the vertical orientation of the CoCrTa film in the seventh embodiment of the present invention.

【図27】同実施例における垂直磁気記録媒体の記録密
度に対する媒体ノイズの特性を示す図である。
FIG. 27 is a diagram showing characteristics of medium noise with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図28】同実施例における垂直磁気記録媒体の記録密
度に対する再生出力電圧の特性を示す図である。
FIG. 28 is a diagram showing characteristics of a reproduction output voltage with respect to a recording density of a perpendicular magnetic recording medium in the example.

【図29】同実施例における垂直磁気記録媒体の記録密
度に対する媒体S/Nの特性を示す図である。
FIG. 29 is a diagram showing characteristics of the medium S / N with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図30】この発明の第8の実施例である垂直磁気記録
媒体の概略構造を示す要部断面図である。
FIG. 30 is a fragmentary cross-sectional view showing a schematic structure of a perpendicular magnetic recording medium according to an eighth embodiment of the present invention.

【図31】同実施例において結晶配向性制御膜としてV
膜を設けた場合と、設けなかった場合の、FeSi膜の
結晶配向性及びCoCrTa膜の垂直配向性を示す図で
ある。
FIG. 31 shows V as a crystal orientation control film in the example.
FIG. 3 is a diagram showing the crystal orientation of a FeSi film and the vertical orientation of a CoCrTa film when a film is provided and when no film is provided.

【図32】同実施例における垂直磁気記録媒体の記録密
度に対する媒体ノイズの特性を示す図である。
FIG. 32 is a diagram showing characteristics of medium noise with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図33】同実施例における垂直磁気記録媒体の記録密
度に対する再生出力電圧の特性を示す図である。
FIG. 33 is a diagram showing characteristics of a reproduction output voltage with respect to a recording density of the perpendicular magnetic recording medium in the example.

【図34】同実施例における垂直磁気記録媒体の記録密
度に対する媒体S/Nの特性を示す図である。
FIG. 34 is a diagram showing characteristics of the medium S / N with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図35】この発明の第9の実施例において結晶配向性
制御膜としてCrNb膜を設けた場合と設けなかった場
合の、FeCo膜の結晶配向性及びCoCrTa膜の垂
直配向性を示す図である。
FIG. 35 is a diagram showing the crystal orientation of a FeCo film and the vertical orientation of a CoCrTa film when a CrNb film is provided as a crystal orientation control film in a ninth embodiment of the present invention and when no CrNb film is provided. .

【図36】同実施例における垂直磁気記録媒体の記録密
度に対する媒体ノイズの特性を示す図である。
FIG. 36 is a diagram showing characteristics of medium noise with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図37】同実施例における垂直磁気記録媒体の記録密
度に対する再生出力電圧の特性を示す図である。
FIG. 37 is a diagram showing characteristics of a reproduction output voltage with respect to a recording density of the perpendicular magnetic recording medium in the example.

【図38】同実施例における垂直磁気記録媒体の記録密
度に対する媒体S/Nの特性を示す図である。
FIG. 38 is a diagram showing characteristics of the medium S / N with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図39】この発明の第10の実施例において結晶配向
性制御膜としてCrMo膜を設けた場合と設けなかった
場合の、FeAl膜の結晶配向性及びCoCrTa膜の
垂直配向性を示す図である。
FIG. 39 is a view showing the crystal orientation of a FeAl film and the vertical orientation of a CoCrTa film when a CrMo film is provided as a crystal orientation control film and when no CrMo film is provided in a tenth embodiment of the present invention. .

【図40】同実施例における垂直磁気記録媒体の記録密
度に対する媒体ノイズの特性を示す図である。
FIG. 40 is a diagram showing characteristics of medium noise with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図41】同実施例における垂直磁気記録媒体の記録密
度に対する再生出力電圧の特性を示す図である。
FIG. 41 is a diagram showing characteristics of a reproduction output voltage with respect to a recording density of the perpendicular magnetic recording medium in the example.

【図42】同実施例における垂直磁気記録媒体の記録密
度に対する媒体S/Nの特性を示す図である。
FIG. 42 is a diagram showing characteristics of the medium S / N with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図43】この発明の第11の実施例において結晶配向
性制御膜としてCrVNbMo膜を設けた場合と設けな
かった場合の、センダスト膜の結晶配向性及びCoCr
Ta膜の垂直配向性を示す図である。
FIG. 43 shows the crystal orientation and CoCr of a sendust film when a CrVNbMo film is provided as a crystal orientation control film in the eleventh embodiment of the present invention and when no CrVNbMo film is provided.
FIG. 4 is a diagram showing the vertical orientation of a Ta film.

【図44】同実施例における垂直磁気記録媒体の記録密
度に対する媒体ノイズの特性を示す図である。
FIG. 44 is a diagram showing characteristics of medium noise with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図45】同実施例における垂直磁気記録媒体の記録密
度に対する再生出力電圧の特性を示す図である。
FIG. 45 is a diagram showing characteristics of a reproduction output voltage with respect to a recording density of the perpendicular magnetic recording medium in the example.

【図46】同実施例における垂直磁気記録媒体の記録密
度に対する媒体S/Nの特性を示す図である。
FIG. 46 is a diagram showing characteristics of the medium S / N with respect to the recording density of the perpendicular magnetic recording medium in the example.

【図47】従来の垂直磁気記録媒体の概略構造を示す要
部断面図である。
FIG. 47 is a cross-sectional view of a main part showing a schematic structure of a conventional perpendicular magnetic recording medium.

【符号の説明】[Explanation of symbols]

1,11,21 垂直磁気記録媒体 2,12,22 基板 3,13,24 軟磁性膜 4,14,25 垂直磁化膜 23 結晶配向性制御膜 1,11,21 Perpendicular magnetic recording medium 2,12,22 Substrate 3,13,24 Soft magnetic film 4,14,25 Perpendicular magnetization film 23 Crystal orientation control film

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、体心立方格子を空間格子とし
た結晶構造を有し、格子面(200)面を配向面として
形成された軟磁性膜と、六方最密充填格子を空間格子と
した結晶構造を有する垂直磁化膜とが順に形成されてな
ることを特徴とする垂直磁気記録媒体。
1. A soft magnetic film having a crystal structure with a body-centered cubic lattice as a spatial lattice on a substrate and having a lattice plane (200) plane as an orientation plane, and a hexagonal close-packed lattice as a spatial lattice. And a perpendicular magnetic film having a crystal structure as described above.
【請求項2】 基板上に、体心立方格子を空間格子とし
た結晶構造を有し、格子面(200)面を配向面として
形成された結晶配向性制御膜と、体心立方格子を空間格
子とした結晶構造を有し、格子面(200)面を配向面
として形成された軟磁性膜と、六方最密充填格子を空間
格子とした結晶構造を有する垂直磁化膜とが順に形成さ
れてなることを特徴とする垂直磁気記録媒体。
2. A crystal orientation control film having a crystal structure having a body-centered cubic lattice as a spatial lattice on a substrate and having a lattice plane (200) as an orientation plane, and a body-centered cubic lattice formed as a spatial lattice. A soft magnetic film having a crystal structure having a lattice and having a lattice plane (200) plane as an orientation plane and a perpendicular magnetization film having a crystal structure having a hexagonal close-packed lattice as a space lattice are sequentially formed. A perpendicular magnetic recording medium, comprising:
【請求項3】 前記結晶配向性制御膜は、バナジウム、
クロム、ニオブ、モリブデンのうち、いずれか1つの元
素からなる膜、いずれか2つ以上の元素からなる合金
膜、あるいは、いずれか少なくとも1つの元素とこれら
以外の少なくとも1つの元素とかなる合金膜であること
を特徴とする請求項2記載の垂直磁気記録媒体。
3. The crystal orientation control film according to claim 1, wherein the crystal orientation control film comprises vanadium,
A film composed of any one of chromium, niobium and molybdenum, an alloy film composed of any two or more elements, or an alloy film composed of any one or more elements and at least one other element 3. The perpendicular magnetic recording medium according to claim 2, wherein:
【請求項4】 前記垂直磁化膜は、クロムの原子百分率
が30パーセント以下のコバルト、クロム及びタンタル
からなる合金膜、又は、クロムの原子百分率が30パー
セント以下のコバルト及びクロムからなる合金膜である
ことを特徴とする請求項1乃至3のいずれか1に記載の
垂直磁気記録媒体。
4. The perpendicular magnetization film is an alloy film composed of cobalt, chromium and tantalum having an atomic percentage of chromium of 30% or less, or an alloy film composed of cobalt and chromium having an atomic percentage of chromium of 30% or less. The perpendicular magnetic recording medium according to any one of claims 1 to 3, wherein:
【請求項5】 前記軟磁性膜は、鉄、シリコン、アルミ
ニウム、チタン、ルテニウム、コバルト、窒素のいずれ
か2つ以上の元素からなる合金膜であることを特徴とす
る請求項1乃至4のいずれか1に記載の垂直磁気記録媒
体。
5. The soft magnetic film according to claim 1, wherein the soft magnetic film is an alloy film made of any two or more of iron, silicon, aluminum, titanium, ruthenium, cobalt, and nitrogen. 2. The perpendicular magnetic recording medium according to item 1.
【請求項6】 前記基板は、ニッケル、リン及びアルミ
ニウムからなる合金基板、ガラス基板、カーボン基板、
シリコン基板、又は、サファイア基板であることを特徴
とする請求項1乃至5のいずれか1に記載の垂直磁気記
録媒体。
6. The substrate according to claim 1, wherein the substrate is an alloy substrate made of nickel, phosphorus and aluminum, a glass substrate, a carbon substrate,
The perpendicular magnetic recording medium according to any one of claims 1 to 5, wherein the medium is a silicon substrate or a sapphire substrate.
【請求項7】 基板上に、基板温度を200゜C以上の
所定の温度に保持しつつ、体心立方格子を空間格子とし
た結晶構造を有する軟磁性膜を格子面(200)面を配
向面として形成する第1の工程と、 前記軟磁性膜上に、六方最密充填格子を空間格子とした
結晶構造を有する垂直磁化膜を形成する第2の工程とか
らなることを特徴とする垂直磁気記録媒体の製造方法。
7. A soft magnetic film having a crystal structure in which a body-centered cubic lattice is a spatial lattice and a lattice plane (200) plane is oriented on a substrate while maintaining the substrate temperature at a predetermined temperature of 200 ° C. or higher. A vertical step of forming a perpendicular magnetization film having a crystal structure with a hexagonal close-packed lattice as a spatial lattice on the soft magnetic film. A method for manufacturing a magnetic recording medium.
【請求項8】 基板上に、基板温度を所定の温度に保持
すると共に、スパッタ法によりアルゴンガスのガス圧を
30mTorr以下の所定のガス圧に設定して、体心立方格
子を空間格子とした結晶構造を有する軟磁性膜を格子面
(200)面を配向面として形成する第1の工程と、 前記軟磁性膜上に、六方最密充填格子を空間格子とした
結晶構造を有する垂直磁化膜を形成する第2の工程とか
らなることを特徴とする垂直磁気記録媒体の製造方法。
8. A body-centered cubic lattice is formed as a space lattice by maintaining a substrate temperature at a predetermined temperature on a substrate and setting a gas pressure of an argon gas to a predetermined gas pressure of 30 mTorr or less by a sputtering method. A first step of forming a soft magnetic film having a crystal structure with a lattice plane (200) plane as an orientation plane; and a perpendicular magnetization film having a crystal structure having a hexagonal close-packed lattice as a spatial lattice on the soft magnetic film. And a second step of forming a vertical magnetic recording medium.
【請求項9】 前記第1の工程の前に、基板上に、基板
温度を所定の温度に保持しつつ、体心立方格子を空間格
子とした結晶構造を有する結晶配向性制御膜を格子面
(200)面を配向面として形成する第3の工程を行う
ことを特徴とする請求項7又は8記載の垂直磁気記録媒
体の製造方法。
9. Prior to the first step, a crystal orientation control film having a crystal structure having a body-centered cubic lattice as a spatial lattice is formed on a substrate while maintaining the substrate temperature at a predetermined temperature. 9. The method for manufacturing a perpendicular magnetic recording medium according to claim 7, wherein a third step of forming the (200) plane as an orientation plane is performed.
【請求項10】 前記結晶配向性制御膜は、バナジウ
ム、クロム、ニオブ、モリブデンのいずれか1つの元素
からなる膜、いずれか2つ以上の元素からなる合金膜、
あるいはいずれか少なくとも1つの元素とこれら以外の
少なくとも1つの元素とかなる合金膜であることを特徴
とする請求項9記載の垂直磁気記録媒体の製造方法。
10. The crystal orientation control film is a film made of any one element of vanadium, chromium, niobium, and molybdenum, an alloy film made of any two or more elements,
10. The method for manufacturing a perpendicular magnetic recording medium according to claim 9, wherein the alloy film is an alloy film including at least one element and at least one other element.
【請求項11】 前記垂直磁化膜は、クロムの原子百分
率が30パーセント以下のコバルト、クロム及びタンタ
ルからなる合金膜、又は、クロムの原子百分率が30パ
ーセント以下のコバルト及びクロムからなる合金膜であ
ることを特徴とする請求項7乃至10のいずれか1に記
載の垂直磁気記録媒体の製造方法。
11. The perpendicular magnetization film is an alloy film composed of cobalt, chromium and tantalum having an atomic percentage of chromium of 30% or less, or an alloy film composed of cobalt and chromium having an atomic percentage of chromium of 30% or less. The method for manufacturing a perpendicular magnetic recording medium according to any one of claims 7 to 10, wherein:
【請求項12】 前記軟磁性膜は、鉄、シリコン、アル
ミニウム、チタン、ルテニウム、コバルト、窒素のいず
れか2つ以上の元素からなる合金膜であることを特徴と
する請求項7乃至11のいずれか1に記載の垂直磁気記
録媒体の製造方法。
12. The soft magnetic film according to claim 7, wherein the soft magnetic film is an alloy film made of any two or more of iron, silicon, aluminum, titanium, ruthenium, cobalt, and nitrogen. 2. The method for manufacturing a perpendicular magnetic recording medium according to item 1.
【請求項13】 前記基板は、ニッケル、リン及びアル
ミニウムからなる合金基板、ガラス基板、カーボン基
板、シリコン基板、又は、サファイア基板であることを
特徴とする請求項7乃至12のいずれか1に記載の垂直
磁気記録媒体の製造方法。
13. The substrate according to claim 7, wherein the substrate is an alloy substrate made of nickel, phosphorus, and aluminum, a glass substrate, a carbon substrate, a silicon substrate, or a sapphire substrate. Method for manufacturing a perpendicular magnetic recording medium.
JP9300659A 1997-10-31 1997-10-31 Perpendicular magnetic recording medium and method of manufacturing the same Expired - Fee Related JP3052915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9300659A JP3052915B2 (en) 1997-10-31 1997-10-31 Perpendicular magnetic recording medium and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9300659A JP3052915B2 (en) 1997-10-31 1997-10-31 Perpendicular magnetic recording medium and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11134634A true JPH11134634A (en) 1999-05-21
JP3052915B2 JP3052915B2 (en) 2000-06-19

Family

ID=17887530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9300659A Expired - Fee Related JP3052915B2 (en) 1997-10-31 1997-10-31 Perpendicular magnetic recording medium and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3052915B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003028011A1 (en) * 2001-09-21 2003-04-03 Anelva Corporation Vertical magnetic recording medium, its manufacturing method and apparatus, and magnetic recording apparatus
WO2003083842A1 (en) * 2002-03-28 2003-10-09 Anelva Corporation Vertical magnetic recording medium, magnetic recorder having same, vertical magnetic recording medium manufacturing method, and vertical magnetic recording medium manufacturing apparatus
SG108305A1 (en) * 2001-08-31 2005-01-28 Fuji Electric Co Ltd A perpendicular magnetic recording medium and a method for manufacturing same
US6884520B2 (en) 2001-12-07 2005-04-26 Fuji Electric Co., Ld. Perpendicular magnetic recording medium and method of manufacturing the same and product thereof
US7147942B2 (en) 2001-12-07 2006-12-12 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing the same and product thereof
US7183011B2 (en) 2002-01-17 2007-02-27 Fuji Electric Co., Ltd. Magnetic recording medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG108305A1 (en) * 2001-08-31 2005-01-28 Fuji Electric Co Ltd A perpendicular magnetic recording medium and a method for manufacturing same
US7067206B2 (en) 2001-08-31 2006-06-27 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and a method of manufacturing the same
USRE41282E1 (en) 2001-08-31 2010-04-27 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium and a method of manufacturing the same
WO2003028011A1 (en) * 2001-09-21 2003-04-03 Anelva Corporation Vertical magnetic recording medium, its manufacturing method and apparatus, and magnetic recording apparatus
US6884520B2 (en) 2001-12-07 2005-04-26 Fuji Electric Co., Ld. Perpendicular magnetic recording medium and method of manufacturing the same and product thereof
US7147942B2 (en) 2001-12-07 2006-12-12 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing the same and product thereof
US8252152B2 (en) 2001-12-07 2012-08-28 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing the same and product thereof
US7183011B2 (en) 2002-01-17 2007-02-27 Fuji Electric Co., Ltd. Magnetic recording medium
WO2003083842A1 (en) * 2002-03-28 2003-10-09 Anelva Corporation Vertical magnetic recording medium, magnetic recorder having same, vertical magnetic recording medium manufacturing method, and vertical magnetic recording medium manufacturing apparatus

Also Published As

Publication number Publication date
JP3052915B2 (en) 2000-06-19

Similar Documents

Publication Publication Date Title
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
US7736769B2 (en) Magnetic recording medium, method of producing the same, and magnetic storage apparatus
JP5061307B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
US20090311557A1 (en) Perpendicular magnetic recording disk and method of manufacturing the same
JP5105333B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
EP1515311A1 (en) Magnetic recording medium, magnetic storage apparatus and recording method
US7871718B2 (en) Perpendicular magnetic recording medium and magnetic storage apparatus
US20070275269A1 (en) Magnetic recording medium and magnetic storage unit
JP2009059431A (en) Magnetic recording medium and magnetic recording and reproducing apparatus
US7824785B2 (en) Perpendicular magnetic recording medium and magnetic storage apparatus
US7462410B2 (en) Magnetic recording medium and magnetic storage apparatus
JP2006155865A (en) Perpendicular magnetic recording medium and perpendicular magnetic recording/reproducing device
JP2009032356A (en) Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
JP3052915B2 (en) Perpendicular magnetic recording medium and method of manufacturing the same
US20100079911A1 (en) Magnetic recording medium, process for producing same, and magnetic recording reproducing apparatus using the magnetic recording medium
US8012613B2 (en) Magnetic recording medium, process for producing same, and magnetic recording reproducing apparatus
US6346339B1 (en) Magnetic recording media with a nialox sub-seedlayer
US20060177701A1 (en) Magnetic recording medium, method of producing the same, and magnetic storage apparatus
EP0809238B1 (en) Magnetic recording media and magnetic recording system using the same
JP3921052B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2010027110A (en) Perpendicular magnetic recording medium and magnetic recording/reproduction apparatus
JP3222141B2 (en) Magnetic recording medium and magnetic storage device
JP4782047B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP2004310944A (en) Vertical magnetic recording medium and magnetic storage device
US20110116189A1 (en) Magnetic recording medium and magnetic recording/reproducing device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees