JPH07141406A - Arranging and wiring device - Google Patents

Arranging and wiring device

Info

Publication number
JPH07141406A
JPH07141406A JP5287940A JP28794093A JPH07141406A JP H07141406 A JPH07141406 A JP H07141406A JP 5287940 A JP5287940 A JP 5287940A JP 28794093 A JP28794093 A JP 28794093A JP H07141406 A JPH07141406 A JP H07141406A
Authority
JP
Japan
Prior art keywords
state transition
wiring
probability
placement
analysis means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5287940A
Other languages
Japanese (ja)
Inventor
Hirokazu Yonezawa
浩和 米澤
Toshiyuki Shono
敏之 庄野
Yasuhiro Tomita
泰弘 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5287940A priority Critical patent/JPH07141406A/en
Publication of JPH07141406A publication Critical patent/JPH07141406A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an arranging and wiring device for reducing the wiring capacity of an LSI and lowering the power consumption. CONSTITUTION:This device is composed of a state transition analysis means 11, a switching probability analysis means 13 and an arranging and wiring means 12. The state transition analysis means 11 obtains the probability that the same state transition of signals in a circuit is simultaneously generated, the switching probability analysis means 13 obtains the switching probability of the signals and constraint conditions are prepared from both results. The arranging and wiring means 12 preferentially arranges the signals, whose simultaneous and the same state transition probability and switching probability are large, adjacently to each other and performs wiring. Thus, a coupling capacity is reduced and the power consumption is reduced as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ASIC(Application Spe
cific Integrated Circuit)などの設計で用いられる配
置配線装置に関する。
The present invention relates to an ASIC (Application Spe
The present invention relates to a placement and routing device used in the design of a cific integrated circuit).

【0002】[0002]

【従来の技術】近年ASIC(例えばセルベースLSIやゲート
アレイLSIなど)技術はプロセス技術や設計技術などの進
歩により急速に発展してきた。LSIの高性能化および高
集積化にはCAD(Computer Aided Design)ツールが重要な
役割を演じる。カスタムLSIとは異なりASICではCADツー
ルで設計を自動化している割合が大きく、LSI性能がCAD
ツール自身の性能に大きく依存する。
2. Description of the Related Art In recent years, ASIC (eg, cell-based LSI and gate array LSI) technology has rapidly developed due to progress in process technology and design technology. CAD (Computer Aided Design) tools play an important role in high performance and high integration of LSI. Unlike custom LSIs, ASICs have a large percentage of CAD design automation, and LSI performance is CAD.
It depends largely on the performance of the tool itself.

【0003】性能と集積度の両者に深く関与するCADツ
ールに配置配線装置がある。これはセルベースLSIにお
けるセル配置とセル間配線を自動的に行うツールであ
り、集積度を維持しつつ所望の性能を実現することを目
指した活発な技術開発の対象となってきた。一般に性能
面ではLSIの動作スピードに最も重点が置かれるが、こ
の課題を解決すべく従来から使われてきた技術として
は、配置配線装置に遅延制約を与える方法が取られてき
た。回路内で動作が遅い部分を優先的に扱い、その部分
の配線長を短くして遅延を削減し、制約を満たすという
ものである。
A placement and routing device is a CAD tool that is deeply involved in both performance and integration. This is a tool that automatically performs cell placement and inter-cell wiring in cell-based LSIs, and has been the subject of active technological development aimed at achieving desired performance while maintaining the degree of integration. Generally, the most important point in terms of performance is the operation speed of the LSI, but the technique that has been used to solve this problem has been to place a delay constraint on the placement and routing equipment. In this circuit, a part that operates slowly in the circuit is preferentially treated, and the wiring length of the part is shortened to reduce the delay to satisfy the constraint.

【0004】[0004]

【発明が解決しようとする課題】しかし上記の方法で
は、単にクリティカルパスなどの信号伝搬パスの遅延の
大小関係で制約が決められてしまい、消費電力の観点が
欠けている。LSIの消費電力成分の1つは、配線容量と
そのスイッチング回数の積に比例する形で表わされるた
め、スイッチング確率が大きいパスの配線容量を削減す
ることは低消費電力化には有効である。それと同時に最
近の微細デバイスでは、配線容量は配線長のみでは決ま
らず、隣接する配線の影響を考慮した配置配線手法が要
求される。
However, in the above method, the constraint is simply determined by the magnitude relation of the delay of the signal propagation path such as the critical path, and the viewpoint of power consumption is lacking. Since one of the power consumption components of the LSI is expressed in a form proportional to the product of the wiring capacity and the number of times of switching, it is effective to reduce the wiring capacity of the path having a high switching probability. At the same time, in recent fine devices, the wiring capacitance is not determined only by the wiring length, but a placement and routing method considering the influence of adjacent wiring is required.

【0005】本発明は上記のような従来技術の実情を鑑
み、隣接する配線の影響およびスイッチング確率を考慮
して低消費電力化する機能を有する配置配線装置を提供
することを目的とする。
The present invention has been made in view of the above circumstances of the prior art, and an object of the present invention is to provide a placement and routing apparatus having a function of reducing the power consumption in consideration of the influence of adjacent wiring and the switching probability.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に考案された請求項1の発明は、少なくとも状態遷移解
析手段と、スイッチング確率解析手段と、配置配線手段
とを有している。状態遷移解析手段は配置配線を行うべ
き回路中の少なくとも2つの信号間の状態遷移を解析し
て同時に同じ状態遷移が生じる確率を求め、スイッチン
グ確率解析手段は前記回路中の信号のスイッチング確率
を解析して求め、前記同時同状態遷移確率と前記スイッ
チング確率との関数値を制約条件として出力する。配置
配線手段はその制約条件を参照し、前記同時同状態遷移
確率と前記スイッチング確率とが大きい信号を優先的に
隣接して配置配線するものである。
The invention of claim 1 devised to achieve the above object comprises at least a state transition analysis means, a switching probability analysis means, and a placement and routing means. The state transition analysis means analyzes the state transition between at least two signals in the circuit to be placed and routed to obtain the probability that the same state transition occurs at the same time, and the switching probability analysis means analyzes the switching probability of the signals in the circuit. Then, the function value of the simultaneous same-state transition probability and the switching probability is output as a constraint condition. The placement and routing means refers to the constraint conditions and preferentially places and routes the signals having the large simultaneous simultaneous state transition probability and the switching probability so as to be adjacent to each other.

【0007】請求項2の発明は、前記状態遷移解析手段
は信号波形の立ち上がり期間または立ち下がり期間のオ
ーバーラップする期間が一定値以上のものを同時の状態
遷移とみなすものである。
According to a second aspect of the present invention, the state transition analysis means considers that the overlapping period of the rising period or the falling period of the signal waveform is a certain value or more as a simultaneous state transition.

【0008】請求項3の発明は、前記状態遷移解析手段
は信号波形の立ち上がり期間または立ち下がり期間を、
定数K、負荷容量CL、前記信号を駆動する素子の単位容
量当たり遅延変化量Δtを用いて、K*Δt*CLで表わすも
のである。
According to a third aspect of the present invention, the state transition analysis means sets the rising period or the falling period of the signal waveform to
A constant K, a load capacitance CL, and a delay change amount Δt per unit capacitance of an element that drives the signal are used to represent K * Δt * CL.

【0009】[0009]

【作用】本発明によれば、状態遷移解析手段により回路
中に生じる同時かつ同状態の遷移確率がわかる。通常隣
接する配線間にはカップリング容量が存在している。カ
ップリング容量は、関係する配線が異なる状態遷移をす
るときに顕著になるが、同時に同じ状態遷移が生じる配
線間には存在しなくなる。本発明では同時同状態遷移確
率の大きい配線を優先的に隣接して配置配線するため、
カップリング容量が減少し、その結果消費電力の低減が
行える。
According to the present invention, the state transition analysis means can determine the simultaneous and same state transition probabilities occurring in the circuit. Usually, coupling capacitance exists between adjacent wirings. The coupling capacitance becomes remarkable when the related wirings undergo different state transitions, but does not exist between the wirings where the same state transitions occur at the same time. In the present invention, since the wiring with a large simultaneous same-state transition probability is preferentially placed and arranged adjacently,
The coupling capacity is reduced, and as a result, power consumption can be reduced.

【0010】また、消費電力はスイッチング確率の大き
い配線の配線容量を低減すると効果的であり、これも請
求項1記載の構成によって、スイッチング確率解析手段
により信号のスイッチング確率がわかる。本発明ではス
イッチング確率の大きい信号を優先的に隣接して配置配
線するため、カップリング容量が減少し、その結果消費
電力の低減が行える。
Further, it is effective to reduce the wiring capacitance of the wiring having a large switching probability with respect to power consumption, and this also enables the switching probability analysis means to know the switching probability of the signal by the configuration according to claim 1. In the present invention, signals having a high switching probability are preferentially arranged adjacent to each other, so that the coupling capacitance is reduced, and as a result, the power consumption can be reduced.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は本実施例を示すブロック図である。
図1に示すように本実施例は、論理シミュレーション手
段1と配置配線装置10とからなる。
FIG. 1 is a block diagram showing this embodiment.
As shown in FIG. 1, this embodiment comprises a logic simulation means 1 and a placement and routing apparatus 10.

【0013】まず各構成要素間のデータの流れを説明す
る。論理シミュレーション手段1は、対象となる回路の
ネットリスト2と素子ライブラリ3を参照しつつ、テス
トパターン4に従って論理シミュレーションを実行し、
結果を論理シミュレーション結果5に出力する。ここ
で、ネットリスト2は回路中の素子の接続情報などを示
したものである。また、素子ライブラリ3は素子の機
能、特性、レイアウトの情報などを有している。配置配
線装置10は、状態遷移解析手段11と、スイッチング
確率解析手段13と、配置配線手段12とからなる。状
態遷移解析手段11は、対象となる回路のネットリスト
2と素子ライブラリ3を参照しつつ、論理シミュレーシ
ョン結果5を解析して結果を制約条件6に出力する。ス
イッチング確率解析手段13は、対象となる回路のネッ
トリスト2と素子ライブラリ3を参照しつつ、論理シミ
ュレーション結果5を解析して結果を制約条件6に出力
する。配置配線手段12は、対象となる回路のネットリ
スト2と素子ライブラリ3を参照しつつ、制約条件6に
従って配置配線を実行し、結果を配置配線結果7に出力
する。
First, the data flow between the respective components will be described. The logic simulation means 1 executes the logic simulation according to the test pattern 4 while referring to the netlist 2 and the device library 3 of the target circuit,
The result is output to the logic simulation result 5. Here, the net list 2 shows connection information of elements in the circuit. Further, the element library 3 has information such as element functions, characteristics, and layout. The placement and routing apparatus 10 includes a state transition analysis unit 11, a switching probability analysis unit 13, and a placement and routing unit 12. The state transition analysis unit 11 analyzes the logic simulation result 5 and outputs the result to the constraint condition 6 while referring to the netlist 2 and the device library 3 of the target circuit. The switching probability analysis unit 13 analyzes the logic simulation result 5 and outputs the result to the constraint condition 6 while referring to the netlist 2 of the target circuit and the element library 3. The placement and routing unit 12 performs placement and routing according to the constraint condition 6 while referring to the netlist 2 and the element library 3 of the target circuit, and outputs the result to the placement and routing result 7.

【0014】次に配置配線装置10内の動作を詳細に説
明する。図4に示す回路を例にして状態遷移解析手段1
1から説明する。この回路は2入力NAND50,52とイ
ンバータ51,53とからなり、入力信号A,B,Cと出力信
号F,Gと内部信号D,Eを有する。また内部信号D,E間には
カップリング容量54が存在する。今入力信号A,B,Cに
図5に示すような信号を印加することを考える。ここ
で、図5の横軸は時間、縦軸は論理値を示している。す
ると、内部信号D,Eには図5のような結果が得られる。
状態遷移解析手段11は、図5の楕円で囲んだ部分の矢
印で示したような2信号間の同時の同じ状態遷移をカウ
ントし、その発生確率を求める。一般に2信号間の状態
遷移は、電圧波形で見ると図7に示すようになってい
る。ここで、図7の横軸は時間、縦軸は電圧を示してい
る。状態が遷移するときの位相と立ち上がりまたは立ち
下がり期間(スルーレート)は信号により異なる。このた
め本発明では状態遷移の同時性を以下のようにして決定
する。信号Xの立ち上がり期間T1(図7中ハッチング部)
と信号Yの立ち上がり期間T2(図7中ハッチング部)のオ
ーバーラップを調べる。次にこのオーバーラップ期間T3
がある一定値より大きい場合は2つの信号は同時に変化
したとみなし、一方オーバーラップ期間がある一定値よ
り小さい場合は同時とはみなさないものとする。またこ
こで用いる立ち上がり期間や立ち下がり期間は次のよう
に決める。一般に信号の波形の立ち上がりまたは立ち下
がり期間は、信号を駆動する素子の駆動能力と関係す
る。本発明では立ち上がりまたは立ち下がり期間を、K*
Δt*CLで表わす。ここで、K:定数、CL:負荷容量、駆動
する素子の単位容量当たりの遅延変化量Δtである。定
数Kは自由に選ぶことができる。このようにして、状態
遷移解析手段11は図5と同様の論理シミュレーション
結果5を解析する。求めた同時同状態遷移確率の例を
(表1)に示す。2信号の組み合わせ毎に同時同状態遷
移確率が示されている。
Next, the operation of the placement and routing apparatus 10 will be described in detail. State transition analysis means 1 using the circuit shown in FIG. 4 as an example.
It will be described from 1. This circuit is composed of two-input NANDs 50 and 52 and inverters 51 and 53, and has input signals A, B and C, output signals F and G and internal signals D and E. A coupling capacitor 54 exists between the internal signals D and E. Now, consider applying signals as shown in FIG. 5 to the input signals A, B, and C. Here, the horizontal axis of FIG. 5 represents time and the vertical axis represents logical value. Then, the results shown in FIG. 5 are obtained for the internal signals D and E.
The state transition analysis means 11 counts the same simultaneous state transition between two signals as indicated by the arrow in the part surrounded by the ellipse in FIG. 5, and obtains the occurrence probability. Generally, the state transition between two signals is as shown in FIG. 7 when viewed as a voltage waveform. Here, the horizontal axis of FIG. 7 represents time and the vertical axis represents voltage. The phase at the time of state transition and the rising or falling period (slew rate) differ depending on the signal. Therefore, in the present invention, the simultaneity of state transition is determined as follows. Rising period T1 of signal X (hatched part in Fig. 7)
And the overlap of the rising period T2 (hatched portion in FIG. 7) of the signal Y is examined. Next, this overlap period T3
Two signals are considered to have changed at the same time when a certain value is larger than a certain fixed value, while they are not considered to be simultaneous when the overlap period is smaller than a certain certain value. The rising period and the falling period used here are determined as follows. Generally, the rising or falling period of the waveform of a signal is related to the driving ability of a device that drives the signal. In the present invention, the rising or falling period is defined as K *
It is expressed as Δt * CL. Here, K is a constant, CL is a load capacitance, and a delay change amount Δt per unit capacitance of a driven element. The constant K can be chosen freely. In this way, the state transition analysis means 11 analyzes the logic simulation result 5 similar to that shown in FIG. An example of the obtained simultaneous same-state transition probabilities is shown in (Table 1). Simultaneous same-state transition probabilities are shown for each combination of two signals.

【0015】[0015]

【表1】 [Table 1]

【0016】スイッチング確率解析手段13を説明す
る。回路中、最もスイッチング頻度の大きい信号を基準
にして、必要な信号のスイッチング頻度と確率を求め
る。このようにして、スイッチング確率解析手段13は
図5と同様の論理シミュレーション結果5を解析する。
求めたスイッチング確率の例を(表2)に示す。2信号
の組み合わせ毎にスイッチング確率が示されている。
The switching probability analysis means 13 will be described. In the circuit, the switching frequency and probability of the required signal are calculated with reference to the signal with the highest switching frequency. In this way, the switching probability analysis means 13 analyzes the logic simulation result 5 similar to that shown in FIG.
An example of the obtained switching probabilities is shown in (Table 2). The switching probability is shown for each combination of the two signals.

【0017】[0017]

【表2】 [Table 2]

【0018】次に、同時同状態遷移確率とスイッチング
確率の積を求め、それを制約条件6とする。表1と表2
から積として(表3)が得られる。
Next, the product of the simultaneous same-state transition probabilities and the switching probabilities is obtained, and this is set as constraint condition 6. Table 1 and Table 2
Is obtained as a product (Table 3).

【0019】[0019]

【表3】 [Table 3]

【0020】最後に配置配線手段12を説明する。図2
に配線断面図の例を示す。ここで、20,21は2信号
の配線、22,23は配線から基板への容量、24は配
線間のカップリング容量である。カップリング容量24
は配線20と配線21の電位関係で変化する。配線20
と配線21が異なる電位で状態遷移する場合は、カップ
リング容量は存在し、配線20と配線21が等電位で状
態遷移する場合はカップリング容量24はゼロになる。
容量22の値をC22、容量23の値をC23、容量24の値
をC24とすると、例えば、配線20の論理状態が0から
1に、配線21では0または1のままの場合、全容量は
(C22+C23+C24)となる。一方、配線20の論理状態が0
から1に、配線21では1から0に変わる場合、全容量
は(C22+C23+2*C24)となる。配線20の論理状態が0か
ら1に、配線21でも0から1に変わる場合、カップリ
ング容量はゼロになり、全容量は(C22+C23)となる。こ
のため、隣接する配線間では同じ状態遷移をすることが
配線容量低減に有効である。図6に、図4の回路に対す
る本発明の配置配線装置での配置配線結果を示す。ここ
で、60はレイアウト、61は素子領域、62は配線で
ある。制約条件により、図4中の2信号D,Eに相当する
2配線62が水平に隣接して配置されており、カップリ
ング容量54は動作中に信号D,Eが同時に同じ状態遷移
をするとゼロになる。
Finally, the placement and wiring means 12 will be described. Figure 2
An example of a wiring cross-sectional view is shown in FIG. Here, 20 and 21 are wirings for two signals, 22 and 23 are capacitances from the wirings to the substrate, and 24 is a coupling capacitance between the wirings. Coupling capacity 24
Changes depending on the potential relationship between the wiring 20 and the wiring 21. Wiring 20
When the wiring 21 and the wiring 21 make a state transition at different potentials, the coupling capacitance exists, and when the wiring 20 and the wiring 21 make a state transition at the same potential, the coupling capacitance 24 becomes zero.
Assuming that the value of the capacitor 22 is C22, the value of the capacitor 23 is C23, and the value of the capacitor 24 is C24, for example, when the logic state of the wiring 20 changes from 0 to 1 and the wiring 21 remains 0 or 1, the total capacitance is
It becomes (C22 + C23 + C24). On the other hand, the logic state of the wiring 20 is 0
When the wiring 21 changes from 1 to 0, the total capacitance becomes (C22 + C23 + 2 * C24). When the logic state of the wiring 20 changes from 0 to 1 and the wiring 21 also changes from 0 to 1, the coupling capacitance becomes zero and the total capacitance becomes (C22 + C23). Therefore, it is effective to reduce the wiring capacitance by making the same state transition between the adjacent wirings. FIG. 6 shows the placement and routing result of the placement and routing apparatus of the present invention for the circuit of FIG. Here, 60 is a layout, 61 is an element region, and 62 is a wiring. Due to the constraint condition, the two wirings 62 corresponding to the two signals D and E in FIG. 4 are horizontally adjacent to each other, and the coupling capacitance 54 becomes zero when the signals D and E simultaneously make the same state transition during operation. become.

【0021】このように本実施例の配置配線装置では、
同時に同じ状態遷移をし、かつスイッチング頻度の高い
信号が優先的に互いに隣接して配置配線されるため、カ
ップリング容量が減少し、その結果低消費電力化が可能
になる。
As described above, in the placement and routing apparatus of this embodiment,
Signals that have the same state transition at the same time and have a high switching frequency are preferentially placed adjacent to each other, so that the coupling capacitance is reduced, and as a result, low power consumption can be achieved.

【0022】なお本実施例では、図2に示すように配線
を基板に対して水平に隣接させて配置配線する方法をと
ったが、図3に示すように配線を基板に垂直に隣接させ
て配置配線させる方法でもよい。ここで、30,31は
配線、32,33,34は配線容量である。図2の場合と
同様に、信号が同時に同じ状態遷移をすればカップリン
グ容量である32がゼロになる。これによって、上層配
線30では下層配線31によるシールド効果も合わせて
著しい容量低減が可能となる。
In this embodiment, the wiring is arranged horizontally adjacent to the substrate as shown in FIG. 2, but the wiring is arranged vertically adjacent to the substrate as shown in FIG. It may be arranged and wired. Here, 30 and 31 are wirings, and 32, 33 and 34 are wiring capacitances. As in the case of FIG. 2, if the signals simultaneously undergo the same state transition, the coupling capacitance 32 becomes zero. As a result, in the upper layer wiring 30, the shielding effect of the lower layer wiring 31 can be combined and the capacity can be remarkably reduced.

【0023】また本実施例では、2信号間の状態遷移に
ついて制約条件を設けていたが、3信号以上の間の状態
遷移についても同様に扱えばよい。その場合、対象とな
る配線群を水平に隣接させる場合は図8に示すように、
また垂直に隣接させる場合は図9に示すように配置配線
を行えばよい。
In this embodiment, the constraint condition is set for the state transition between two signals, but the state transition between three or more signals may be treated in the same manner. In that case, when the target wiring groups are horizontally adjacent to each other, as shown in FIG.
Further, in the case of vertically adjoining, placement and wiring may be performed as shown in FIG.

【0024】また本実施例では、制約条件である関数値
に同時同状態遷移確率とスイッチング確率の積を用いた
が、他の関数を用いてもよい。
Further, in this embodiment, the product of the simultaneous same-state transition probability and the switching probability is used as the function value which is the constraint condition, but another function may be used.

【0025】また本実施例では、制約条件は同時同状態
遷移確率とスイッチング確率とからなっているが、従来
の遅延制約条件により配線長を制御する方法との併用で
もよい。
Further, in this embodiment, the constraint condition is composed of the simultaneous same-state transition probability and the switching probability, but it may be used together with the conventional method of controlling the wiring length by the delay constraint condition.

【0026】[0026]

【発明の効果】請求項1記載の配置配線装置によれば、
状態遷移解析手段とスイッチング確率解析手段とにより
回路の信号の中で同時に同じ状態遷移をする確率が大き
く、かつスイッチング頻度の高い信号が選ばれて優先的
に互いに隣接して配置配線されるため、カップリング容
量が減少し、その結果、従来困難であった低消費電力化
が可能になる。また、カップリング容量が減少した配線
については遅延も減少するため高速化も達成でき、さら
にカップリングノイズも低減できる。
According to the placement and routing apparatus of the first aspect,
The state transition analysis means and the switching probability analysis means have a high probability of simultaneously making the same state transition among the signals of the circuit, and a signal with a high switching frequency is selected and preferentially arranged and wired adjacent to each other. The coupling capacity is reduced, and as a result, it is possible to reduce the power consumption, which was difficult in the past. Further, with respect to the wiring having the reduced coupling capacitance, the delay is also reduced, so that the speedup can be achieved and the coupling noise can be reduced.

【0027】請求項2記載の配置配線装置によれば、各
信号の状態遷移の同時性が遷移のオーバーラップ期間の
一定値に対する大小関係でのみ決められるため簡単に処
理でき、その結果処理時間が短縮できる。
According to the placement and routing apparatus of the second aspect, since the simultaneity of the state transition of each signal is determined only by the magnitude relation with respect to the constant value of the overlap period of the transition, the processing can be easily performed, and as a result, the processing time can be increased. Can be shortened.

【0028】請求項3記載の配置配線装置によれば、信
号の負荷容量と信号を駆動する素子の駆動能力のみから
立ち上がり期間や立ち下がり期間を簡易的に決定でき、
その結果処理時間の短縮も可能となる。
According to the arrangement and wiring device of the third aspect, the rising period and the falling period can be easily determined only from the load capacity of the signal and the driving capability of the element for driving the signal.
As a result, the processing time can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における構成を示すブロック図FIG. 1 is a block diagram showing a configuration in an embodiment of the present invention.

【図2】本発明の実施例における配線容量の影響を説明
する断面図
FIG. 2 is a sectional view for explaining the influence of wiring capacitance in the embodiment of the present invention.

【図3】本発明の実施例における配線容量の影響を説明
する断面図
FIG. 3 is a sectional view for explaining the influence of wiring capacitance in the embodiment of the present invention.

【図4】本発明の実施例における回路例の回路図FIG. 4 is a circuit diagram of a circuit example according to an embodiment of the present invention.

【図5】本発明の実施例における回路例の動作を説明す
るタイミング図
FIG. 5 is a timing diagram illustrating the operation of the circuit example according to the embodiment of the invention.

【図6】本発明の実施例における回路例の配置配線後の
レイアウト図
FIG. 6 is a layout diagram of a circuit example according to an embodiment of the present invention after placement and routing.

【図7】本発明の実施例における2信号の電圧波形図FIG. 7 is a voltage waveform diagram of two signals in the embodiment of the present invention.

【図8】本発明の実施例における多配線系での配置配線
例の断面図
FIG. 8 is a sectional view of an example of arrangement and wiring in a multi-wiring system according to an embodiment of the present invention.

【図9】本発明の実施例における多配線系での配置配線
例の断面図
FIG. 9 is a cross-sectional view of a placement and wiring example in a multi-wiring system according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 論理シミュレーション手段 2 ネットリスト 3 素子ライブラリ 4 テストパターン 5 論理シミュレーション結果 6 制約条件 7 配置配線結果 10 配置配線装置 11 状態遷移解析手段 12 配置配線手段 13 スイッチング確率解析手段 20,21,30,31,62 配線 22,23,24,32,33,34 配線容量 50,52 2入力NAND 51,53 インバータ 54 カップリング容量 60 レイアウト 61 素子領域 DESCRIPTION OF SYMBOLS 1 logic simulation means 2 netlist 3 element library 4 test pattern 5 logic simulation result 6 constraint condition 7 placement and routing result 10 placement and routing device 11 state transition analysis means 12 placement and routing means 13 switching probability analysis means 20, 21, 30, 31, 62 wiring 22,23,24,32,33,34 wiring capacitance 50,52 2-input NAND 51,53 inverter 54 coupling capacitance 60 layout 61 element area

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】配置配線を行うべき回路中の少なくとも2
つの信号間の状態遷移を解析して同時に同じ状態遷移が
生じる確率を求める状態遷移解析手段と、 前記回路中の信号のスイッチング確率を解析して求め、
前記同時同状態遷移確率と前記スイッチング確率との関
数値を制約条件として出力するスイッチング確率解析手
段と、 前記制約条件を参照し、前記同時同状態遷移確率と前記
スイッチング確率とが大きい信号を優先的に隣接して配
置配線する配置配線手段とを備えた配置配線装置。
1. At least two of the circuits to be placed and routed.
State transition analysis means for determining the probability that the same state transition occurs at the same time by analyzing the state transition between two signals, and by analyzing the switching probability of the signal in the circuit,
Switching probability analysis means for outputting a function value of the simultaneous same-state transition probability and the switching probability as a constraint condition, and referring to the constraint condition, preferentially a signal with a large simultaneous simultaneous-state transition probability and the switching probability. And a placement and routing device for placing and routing adjacent to the wiring.
【請求項2】前記状態遷移解析手段は、信号の波形の立
ち上がり期間または立ち下がり期間のオーバーラップす
る期間が一定値以上のものを同時の状態遷移とみなすこ
とを特徴とする請求項1記載の配置配線装置。
2. The state transition analysis means considers that the overlapping period of the rising period or the falling period of the signal waveform is a certain value or more as a simultaneous state transition. Placement and wiring equipment.
【請求項3】前記状態遷移解析手段は、信号の波形の立
ち上がり期間または立ち下がり期間を、定数K、負荷容
量CL、前記信号を駆動する素子の単位容量当たり遅延変
化量Δtを用いて、K*Δt*CLで表わすことを特徴とする
請求項2記載の配置配線装置。
3. The state transition analysis means uses a constant K, a load capacitance CL, and a delay change amount Δt per unit capacitance of a device that drives the signal as K during the rising period or the falling period of a signal waveform. 3. The placement and routing device according to claim 2, wherein the placement and routing is represented by * Δt * CL.
JP5287940A 1993-11-17 1993-11-17 Arranging and wiring device Pending JPH07141406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5287940A JPH07141406A (en) 1993-11-17 1993-11-17 Arranging and wiring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5287940A JPH07141406A (en) 1993-11-17 1993-11-17 Arranging and wiring device

Publications (1)

Publication Number Publication Date
JPH07141406A true JPH07141406A (en) 1995-06-02

Family

ID=17723712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5287940A Pending JPH07141406A (en) 1993-11-17 1993-11-17 Arranging and wiring device

Country Status (1)

Country Link
JP (1) JPH07141406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388277B1 (en) 1998-07-14 2002-05-14 Mitsubishi Denki Kabushiki Kaisha Auto placement and routing device and semiconductor integrated circuit
US6985004B2 (en) 2001-02-12 2006-01-10 International Business Machines Corporation Wiring optimizations for power

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943814U (en) * 1972-07-20 1974-04-17
JPS5026826A (en) * 1973-04-30 1975-03-19
JPS535517B2 (en) * 1974-07-22 1978-02-28

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943814U (en) * 1972-07-20 1974-04-17
JPS5026826A (en) * 1973-04-30 1975-03-19
JPS535517B2 (en) * 1974-07-22 1978-02-28

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388277B1 (en) 1998-07-14 2002-05-14 Mitsubishi Denki Kabushiki Kaisha Auto placement and routing device and semiconductor integrated circuit
US6985004B2 (en) 2001-02-12 2006-01-10 International Business Machines Corporation Wiring optimizations for power
US7346875B2 (en) 2001-02-12 2008-03-18 International Business Machines Corporation Wiring optimizations for power
US7469395B2 (en) 2001-02-12 2008-12-23 International Business Machines Corporation Wiring optimizations for power

Similar Documents

Publication Publication Date Title
Brayton et al. Cross-talk noise immune VLSI design using regular layout fabrics
JP3983480B2 (en) Electronic circuit device and design method thereof
US6434731B1 (en) Automated placement of signal distribution to diminish skew among same capacitance targets in integrated circuits
JPH0749903A (en) Simulation method and layout method of integrated circuit
JP2004260093A (en) Semiconductor integrated circuit device, design automating device and method, and program
EP0197646B1 (en) Cmos circuit design automation system
US6260181B1 (en) Integrated circuit and the design method thereof
US6074429A (en) Optimizing combinational circuit layout through iterative restructuring
JPH06302694A (en) Semiconductor device
JPH07141406A (en) Arranging and wiring device
JPH0793386A (en) Lsi package designing system
JP3107207B2 (en) Logic circuit improvement method and logic circuit improvement method
JP2985833B2 (en) Clock distribution system and method
JPH06310601A (en) Layout design method
JPH09232436A (en) Method and apparatus for logic synthesis, and method for designing semiconductor integrated circuit
JP3193802B2 (en) Method and apparatus for designing semiconductor integrated circuit
JP2000029923A (en) Automatic layout and wiring device and semiconductor integrated circuit
JPH08221460A (en) Circuit simulation method and inter-wiring capacity extraction device
JPH07153844A (en) Semiconductor integrated circuit device
JP3305176B2 (en) Automatic element placement device
JP2737620B2 (en) Semiconductor integrated circuit wiring method
JP3644413B2 (en) Element and wiring arrangement determination method
JP2788763B2 (en) Semiconductor design apparatus and method
JP3722666B2 (en) Signal propagation circuit design method
EP0352523A2 (en) Method of providing a layout for a data path block