JPH0714120A - Thin-film head with different magnetostriction region - Google Patents

Thin-film head with different magnetostriction region

Info

Publication number
JPH0714120A
JPH0714120A JP18259293A JP18259293A JPH0714120A JP H0714120 A JPH0714120 A JP H0714120A JP 18259293 A JP18259293 A JP 18259293A JP 18259293 A JP18259293 A JP 18259293A JP H0714120 A JPH0714120 A JP H0714120A
Authority
JP
Japan
Prior art keywords
magnetic
layer
region
pole tip
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18259293A
Other languages
Japanese (ja)
Inventor
Kasiraji Prakash
プラカシュ・カシラジ
Mohamad T Krounbi
モハメド・トゥーフィク・クロウンビ
Wan Pokan
ポ−カン・ワン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JPH0714120A publication Critical patent/JPH0714120A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3143Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding
    • G11B5/3146Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding magnetic layers
    • G11B5/3153Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding magnetic layers including at least one magnetic thin film coupled by interfacing to the basic magnetic thin film structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3113Details for improving the magnetic domain structure or avoiding the formation or displacement of undesirable magnetic domains

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE: To minimize unsuitable stress-induced domain arrangement and noise in the top end and rear areas of a magnetic pole by setting magnetic distortion constant and thickness of a magnetic layer so that they produce different magnetic distortion degree in the top end area and the rear area of the magnetic pole. CONSTITUTION: An inductive thin film magnetic head comprises yoke 40 which consists of two magnetic pole pieces. One piece consists of two magnetic film layers P1 and P1S, and the other consists of two magnetic film layers P2 and P2S. The layer P1 extends from an end of a rear gap part 42 which abuts an end of a rear area 44 of the yoke 40 to a far end of a magnetic pole top end area 46, and the layer P1S directly abuts the layer P1 and extends from the end of the part 42 virtually only to neighborhood of the area 46. The layer P2 directly abuts the layer P1S in the part 42, separates from the layer P1S in the rest part of the area 44 and approaches the layer P1 for the purpose of defining an exchange gap between the layers P2 and P1. The layer P2S directly abuts the layer P2 and extends virtually over only the same distance as the layer P1S from the part 42.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜磁気ヘッドに関し、
より特定化するならば前記領域で不適切な応力誘起ドメ
イン配置及び雑音を最小化するため、上記ヘッドの異な
る領域で使用される異なる磁気歪定数を有する膜を持つ
誘起性薄膜磁気ヘッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film magnetic head,
More specifically, it relates to an inductive thin film magnetic head having films with different magnetostriction constants used in different regions of the head to minimize improper stress-induced domain placement and noise in the region.

【0002】[0002]

【従来の技術】薄膜ヘッドにおいて、膜の磁化が容易な
軸は磁束が伝わる方向に対して理想的には垂直(すなわ
ち横方向)であるはずである。磁化回転がより速くより
静的であるため磁束伝導が上記回転によって主に発生
し、ドメイン境界運動によらない場合にはこのことは正
しい。上記膜が磁場中で成長し、望ましい横方向の不均
一性(Hk) を発生させるにもかかわらず、組立中の単
軸方法膜応力▽σは磁場不均一(Hstress)中での応力
誘起変化のため、特にヘッドの磁極先端領域において雑
音を発生させることがあり、磁化の容易な軸方向におけ
る変化とな留可能性がある。上記応力誘起不均一はH
stress = 3λ▽σ/Msのように表現できる。
2. Description of the Related Art In a thin film head, the axis along which the magnetization of the film is easy should ideally be perpendicular (that is, lateral) to the direction in which the magnetic flux propagates. This is true if the flux rotation occurs primarily due to the rotation because the magnetization rotation is faster and more static, and not due to domain boundary motion. Although the film grows in a magnetic field and produces the desired lateral inhomogeneity (H k ), the uniaxial method film stress ▽ σ during assembly is the stress in the magnetic field inhomogeneity (H stress ). Due to the induced change, noise may be generated especially in the magnetic pole tip region of the head, and there is a possibility that the magnetization may change easily in the axial direction. The stress-induced nonuniformity is H
It can be expressed as stress = 3λ ▽ σ / M s .

【0003】ここでλは磁気歪定数、Msは飽和磁化
度、λとMsは成分依存性がある。▽σとλは製造工程
中は制御困難であるため、薄膜ヘッドは通常、負の磁気
歪定数を有するNiFe組成を用いて組立てられる。磁
性膜がヘッドの対称軸に沿った有効単軸応力下にあり、
それゆえHstress がHkに加わる場合には上記アプロー
チは妥当である。しかしながら、高密度トラック記録時
には、薄膜ヘッドはより複雑な応力を呈する。磁性膜が
単一値の磁気歪定数λを有する場合には、応力は磁化の
容易な軸方向を、継鉄中で横方向から磁極とヘッドの背
後領域中で縦方向に、好ましくない変化をすることがあ
る。
Here, λ is the magnetostriction constant, M s is the saturation magnetization, and λ and M s are component dependent. Since .sigma. And .lamda. Are difficult to control during the manufacturing process, thin film heads are typically constructed using NiFe compositions with negative magnetostriction constants. The magnetic film is under effective uniaxial stress along the axis of symmetry of the head,
Therefore, the above approach is valid when H stress is added to H k . However, during high-density track recording, the thin film head exhibits more complicated stress. When the magnetic film has a single-valued magnetostriction constant λ, the stress causes an unfavorable change in the axial direction in which magnetization is easy, from the lateral direction in the yoke to the longitudinal direction in the magnetic pole and the area behind the head. I have something to do.

【0004】米国特許第4、750、072号では、磁
極先端領域と背後領域を有する磁気コア構造あるいは磁
気継鉄構造を持つ薄膜磁気ヘッドに関する記載がある。
両領域の中心部分は正の磁気歪定数の磁性材料からな
り、両領域の逆側の側面部分は負の磁気歪定数の磁性材
料からなる。上記背後領域は背後ギャップを持たない。
US Pat. No. 4,750,072 describes a thin film magnetic head having a magnetic core structure or magnetic yoke structure having a pole tip region and a back region.
The central portion of both regions is made of a magnetic material having a positive magnetostriction constant, and the opposite side surface portions of both regions are made of a magnetic material having a negative magnetostriction constant. The back area has no back gap.

【0005】米国特許第4、663、607号では磁気
歪(MR)要素中で逆符号の磁気歪定数をもつ層流を用
いた、磁気特性中の応力変化を消去する目的でのゼロ磁
気歪を持つMR要素を与える方法に関する記載がある。
全ての例は同じ厚さ、領域中での同一空間的広がり(す
なわち、同一サイズ)の、2つないしはそれ以上の層を
含む。また、上記特許(6列目、60から64行)では
上記提示はMRヘッドを提供するために使い得るが、そ
のようなヘッドのためのなんらの配置も指摘ないし提案
されていない。
US Pat. No. 4,663,607 uses zero laminar strain for the purpose of eliminating stress changes in magnetic properties using laminar flow with magnetostrictive constants of opposite sign in magnetostrictive (MR) elements. There is a description on a method of providing an MR element with.
All examples include two or more layers of the same thickness, coextensive in area (ie, the same size). Also, in the above patent (column 6, lines 60-64), the above presentation can be used to provide an MR head, but no arrangement for such a head is pointed out or suggested.

【0006】[0006]

【発明が解決しようとする課題】これらの前記描写記載
は、たとえ組合わされても、好ましくない応力誘起のド
メイン配置と雑音を最小化するため、背後領域の背後ギ
ャップ部分と磁極先端領域といったヘッドの異なる領域
に対して異なる磁気歪定数を選択した薄膜磁気ヘッドを
指摘あるいは提案するものではない。
Even if combined, these above-mentioned depictions are intended to minimize undesired stress-induced domain placement and noise of the head, such as the back gap portion of the back region and the pole tip region. It does not indicate or suggest a thin film magnetic head in which different magnetostriction constants are selected for different regions.

【0007】薄膜磁気誘導ヘッドとそれらを同一に作成
するプロセスの必要がある。ここで前記プロセスでは、
ヘッド組立プロセスに新規過程を加えずに、有効磁気歪
定数λの減少と、特に磁極先端領域において磁性異方性
中の応力誘起非一様変化により生じる雑音を減少させる
目的での、異なるヘッド領域ごとのλの独立最適化を可
能とする。
There is a need for thin film magnetic induction heads and a process for making them identical. Here in the process,
Without adding a new step to the head assembly process, it is possible to reduce the effective magnetostriction constant λ and, in particular, to reduce noise caused by stress-induced non-uniform changes in the magnetic anisotropy in the magnetic pole tip region. Allows independent optimization of λ.

【0008】[0008]

【課題を解決するための手段】薄膜磁気ヘッドは背後領
域の背後ギャップ部分である一端に隣接し磁極先端領域
であるもう一端にも隣接する磁気継鉄から構成される。
上記継鉄は2つの磁極片を有する。1つの磁極片は、前
記継鉄端から前記のもう一端へ至る磁性層P1と、層P
1に直接接触し、前記継鉄端から前記磁極先端領域に隣
接する端まで実質的に至る磁性層P1Sから構成され
る。もう1つの磁極片は、背後ギャップ部分で層P1S
に直接接触し、前記背後領域の他の部分では前記P1S
から離れており、前記磁極先端領域で前記P1からわず
かに離れそこでP1間とで変換ギャップを形成する磁性
層P2からなる。前記P2と直接接する磁性層P2Sは
背後領域の少なくともある部分で重層している。
A thin film magnetic head is composed of a magnetic yoke adjacent to one end which is a back gap portion of a back region and adjacent to the other end which is a magnetic pole tip region.
The yoke has two pole pieces. One magnetic pole piece is composed of a magnetic layer P1 extending from the yoke end to the other end and a layer P.
1 of the magnetic layer P1S that directly contacts the yoke 1 and substantially extends from the yoke end to the end adjacent to the magnetic pole tip region. The other pole piece is the layer P1S at the back gap.
Directly to the P1S in other parts of the back area.
And a magnetic layer P2 that is separated from P1 in the magnetic pole tip region and forms a conversion gap between P1 and P1. The magnetic layer P2S that is in direct contact with the P2 is overlaid in at least a part of the back region.

【0009】層P1、P1S、P2及びP2Sは磁気歪
定数λ1、λ1s、λ2及びλ2s、厚さt1、t1s、t2、t
2sを各々有し、これらの領域における応力誘起ドメイン
配置の各相違と雑音の効果を最小化するために、磁極先
端領域と背後領域で異なる磁気歪度を生じさせるよう選
択される。
The layers P1, P1S, P2 and P2S have magnetostriction constants λ 1 , λ 1s , λ 2 and λ 2s , thicknesses t 1 , t 1s , t 2 and t.
2s each, chosen to produce different magnetostrictions in the pole tip region and the back region to minimize the effects of noise and differences in stress-induced domain placement in these regions.

【0010】提出した具体例では、t1、t1s、t2及び
2sは3ミクロン以下であり、それゆえP1がP1S
と、しかもP2がP2Sと接する領域では層P1・P1
S及びP2・P2Sの2層は各々(t1λ1+t1sλ1s
/(t1+t1s)及び(t2λ2+t2sλ2s)/(t2+t
2s)の有効磁気歪定数λeffの単一膜層として振舞う。
In the example presented, t 1 , t 1s , t 2 and t 2s are less than 3 microns and therefore P1 is P1S.
In addition, in the region where P2 contacts P2S, the layers P1 and P1 are
The two layers of S and P2 · P2S are each (t 1 λ 1 + t 1s λ 1s )
/ (T 1 + t 1s ) and (t 2 λ 2 + t 2s λ 2s ) / (t 2 + t
It behaves as a single film layer with an effective magnetostriction constant λ eff of 2s ).

【0011】単一層P1とP2から構成される部分で
は、磁気歪定数は各々λ1とλ2である。
In the portion composed of the single layers P1 and P2, the magnetostriction constants are λ 1 and λ 2 , respectively.

【0012】t1とt2は実質的に1ミクロン、t1sとt
2sは実質的に2ミクロンとすることを推奨する。
T 1 and t 2 are substantially 1 micron, t 1s and t
It is recommended that 2s be substantially 2 microns.

【0013】[0013]

【実施例】図1、2及び3は負の磁気歪定数λを持つ誘
導薄膜磁気ヘッドに対し常套的に用いる前置き描写の継
鉄10である。継鉄10は磁極先端領域12と、背後ギ
ャップ部分16を領域内に有する背後領域14から構成
される。図1は磁化ドメイン18の典型的な配置であ
る。図2では薄膜磁気ヘッド磁化の容易な軸を示す。図
3では単軸テンソル応力成分20と、いくつかの圧縮応
力成分22を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1, 2 and 3 are yokes 10 of the introductory depiction conventionally used for induction thin film magnetic heads having a negative magnetostriction constant λ. The yoke 10 comprises a pole tip region 12 and a back region 14 having a back gap portion 16 in the region. FIG. 1 is a typical arrangement of magnetized domains 18. FIG. 2 shows the easy axis of the thin film magnetic head magnetization. In FIG. 3, a uniaxial tensor stress component 20 and several compressive stress components 22 are shown.

【0014】図4は本発明の基本概念を示す2層構造3
0の図である。2層構造30は厚さt1と磁気歪定数λ1
を有する磁性層32と、厚さt2と磁気歪定数λ2を有す
る磁性層34から構成される。
FIG. 4 shows a two-layer structure 3 showing the basic concept of the present invention.
It is a figure of 0. The two-layer structure 30 has a thickness t 1 and a magnetostriction constant λ 1
And a magnetic layer 34 having a thickness t 2 and a magnetostriction constant λ 2 .

【0015】本発明の特徴に従うと、厚さt1、t2は3
ミクロン以下であり、層32、34間に十分な磁気結合
がある。それゆえ、2結合層を有する領域Aはλeff
(t1λ1+t2λ2)/(t1+t2)で表現可能な有効磁
気歪定数λeffの単一磁性膜として振舞う。
According to a feature of the invention, the thicknesses t 1 and t 2 are 3
Submicron, there is sufficient magnetic coupling between layers 32 and 34. Therefore, the region A having two coupling layers has λ eff =
It behaves as a single magnetic film having an effective magnetostriction constant λ eff that can be expressed by (t 1 λ 1 + t 2 λ 2 ) / (t 1 + t 2 ).

【0016】しかしながら、単一磁性層32を有する領
域Bは磁気歪定数λ1 を持つ。このことは次の2つの利
点を持つ、 1. t1、λ1、t2及びλ2の適切な選択により、2領
域A・Bでは2つの別々で独立に選択可能なλの値を持
つことが可能となる。このように、上記2領域中で応力
が異なれば、各領域中の応力効果を打消すあるいは最小
化するためにλの最適化が可能となる。 2. 上記磁性膜32、34は異なる膜蒸着装置を利用
して形成でき、それゆえ2装置のプロセス変動は統計的
に独立でガウス型となる。2層領域Aに対するλeff
制御のためのプロセス分散σeffはこの時以下のように
導かれる。
However, the region B having the single magnetic layer 32 has a magnetostriction constant λ 1 . This has two advantages: 1. Proper selection of t 1 , λ 1 , t 2 and λ 2 makes it possible to have two separate and independently selectable values of λ in the two regions A and B. In this way, if the stresses are different in the two regions, it is possible to optimize λ in order to cancel or minimize the stress effect in each region. 2. The magnetic films 32, 34 can be formed using different film deposition devices, so the process variations of the two devices are statistically independent and Gaussian. The process dispersion σ eff for controlling λ eff for the two-layer region A is then derived as follows.

【数1】 [Equation 1]

【0017】ここで、σλは単一膜蒸着装置装置の分散
で、それゆえプロセス制御の効果を高める。例えば、t
1=t2σeff なるt1はσλをルート2で割った分だけ
減少する。
Where σλ is the dispersion of the single film deposition apparatus, and therefore enhances the process control effectiveness. For example, t
1 = t2σ eff t 1 is reduced by the amount obtained by dividing σλ by route 2.

【0018】この基本概念を2つの異なる薄膜ヘッドの
配置に対して適用し、以下ではその適用に関し記述す
る。
This basic concept is applied to two different thin film head arrangements, and its application is described below.

【0019】図5で示されるように、誘導薄膜磁気ヘッ
ドは2磁極片、1つはP1とP1Sの2磁性膜から、も
う1つはP2とP2Sの2磁性膜からなる継鉄40から
構成される。
As shown in FIG. 5, the induction thin film magnetic head is composed of two magnetic pole pieces, one is a two magnetic film of P1 and P1S, and the other is a yoke 40 composed of two magnetic films of P2 and P2S. To be done.

【0020】層P1は継鉄の一端からもう一端まで広が
る。つまり、背後領域44の端に隣接する背後ギャップ
部分42の端から、磁極先端領域46の遠方端までであ
る。層P1Sは層P1に直接接触し、背後ギャップ部分
42の端から磁極先端領域46の実質的な端近傍までの
み広がる。
The layer P1 extends from one end of the yoke to the other. That is, from the end of the back gap portion 42 adjacent to the end of the back region 44 to the far end of the pole tip region 46. The layer P1S is in direct contact with the layer P1 and extends only from the end of the back gap portion 42 to substantially near the end of the pole tip region 46.

【0021】層P2は背後ギャップ部分42中の層P1
Sに直接接触し、背後領域44の残り部分で層P1Sか
ら離れており、それら2層間の変換ギャップを限定する
目的でポール先端領域46で層P1に近接する。層P2
Sは層P2に直接接触し、層P1Sと実質的に同一距離
だけ背後ギャップ部分42から広がっている。
The layer P2 is the layer P1 in the back gap portion 42.
It is in direct contact with S and is separated from the layer P1S in the remainder of the back region 44 and is close to the layer P1 in the pole tip region 46 for the purpose of limiting the conversion gap between the two layers. Layer P2
S directly contacts layer P2 and extends from back gap portion 42 by substantially the same distance as layer P1S.

【0022】以後用いるあるいは前記請求項で用いた
「実質的に」という用語の利用に当たり、常套的な薄膜
パターン蒸着技術を採用した組立プロセスにおける許容
範囲に内で上記P1SとP2Sの正確な長さに相違が生
じることを考慮している。
In using the term "substantially" as used hereinafter or in the claims, the exact lengths of P1S and P2S are within the tolerances of the assembly process employing conventional thin film pattern deposition techniques. Considering that there is a difference in.

【0023】この薄膜磁気ヘッドでは、描写した前置き
図で示した内容の典型であるが、層P1とP1Sをわず
かに負の磁気歪とし、層P2とP2Sをより負の磁気歪
とする常套的方法をとる。この理由は、層P2とP2S
中のより高レベル応力のためと、P1及びP2の磁気歪
定数・符号・厚さを同一値にするが層P1S及びP2S
のそれらの値とは異なる値とする都合による。
In this thin-film magnetic head, which is typical of the contents shown in the drawn front view, it is conventional that the layers P1 and P1S have a slightly negative magnetostriction and the layers P2 and P2S have a more negative magnetostriction. Take the way. The reason for this is that layers P2 and P2S
Due to the higher level stress in the middle, the magnetostriction constant, sign and thickness of P1 and P2 are the same, but the layers P1S and P2S
It is due to the fact that they are different from those values of.

【0024】図3で描写したように、応力プロファイル
標準型をここで考え、ヘッドは図5で示す配置を持つも
のとする。本発明に従うと、磁極先端領域46をより小
さなあるいは等しいわずかに正値のλにし、一方で背後
ギャップ部分42を含めた背後領域44をより絶対値の
大きな負値に維持することで、ヘッドのパフォーマンス
を最適化するために応力効果を消去でき、ないしは少な
くとも効果的な最小化が可能となる。背後領域44での
λの負値はそこで見いだされるテンソル高応力と合致す
る一方で、ほぼゼロあるいはわずかに正値のλは磁極先
端領域46での応力効果を減少させる。それゆえ、本質
的な横方向の異方性Hk はそこでの磁化の正常配列を引
き起こす。そこでの応力の正確な大きさと変動性が未知
の場合には、磁極先端領域46でのゼロ近傍のλが好ま
しい。背後ギャップ部分42での実在の磁気的振舞いが
許容範囲内の場合には本設計が好ましい。背後ギャップ
部分42での磁束経路はかなり広範囲に広がるため、本
配置はたいていの応用に十分であろう。
As depicted in FIG. 3, a stress profile standard is considered here, and the head has the arrangement shown in FIG. In accordance with the present invention, the pole tip region 46 is made slightly smaller or equal to a slightly positive value λ, while the back region 44, including the back gap portion 42, is maintained at a larger negative absolute value of the head. Stress effects can be eliminated to optimize performance, or at least effective minimization is possible. Negative values of λ in the back region 44 match the tensor high stresses found therein, while λ of near zero or slightly positive value reduces stress effects in the pole tip region 46. Therefore, the intrinsic lateral anisotropy H k causes a normal orientation of the magnetization there. If the exact magnitude and variability of the stress there is unknown, then λ near zero in the pole tip region 46 is preferred. This design is preferred if the actual magnetic behavior at the back gap portion 42 is within acceptable limits. This arrangement will be sufficient for most applications, as the flux path at the back gap portion 42 extends over a fairly wide range.

【0025】背後領域44での背後ギャップ部分42中
の応力効果を打消すために、図6で示す具体例が好まし
い。本具体例が図5で描写されたの具体例と異なってい
る点は、層P2Sが実質的に背後ギャップ部分42の内
部(外部ではない)端から、実質的に磁極先端領域46
の端近傍まで至ることである。背後ギャップ部分42を
除く背後領域44の部分より負あるいは実際はわずかに
正のの磁気歪定数を背後ギャップ部分42に持たせるた
め、図6の本配置を使用することができる。良好な書込
み効率を得るため、磁極先端領域46は背後ギャップ部
分42前方で飽和すべきである。このことを保証するた
めに、背後ギャップ部分中のP2S層の欠如による厚さ
減少の観点から、背後ギャップ部分は磁極先端領域46
の少なくとも2倍の幅とすべきである。
In order to counteract the stress effects in the back gap portion 42 at the back region 44, the embodiment shown in FIG. 6 is preferred. This embodiment differs from the embodiment depicted in FIG. 5 in that the layer P2S is substantially from the inner (not outer) end of the back gap portion 42 to substantially the pole tip region 46.
It is up to the edge of. This arrangement of FIG. 6 can be used to provide the back gap portion 42 with a magnetostriction constant that is more negative or actually slightly more positive than the portion of the back region 44 excluding the back gap portion 42. For good write efficiency, the pole tip region 46 should saturate in front of the back gap portion 42. In order to ensure this, the back gap portion has a pole tip region 46 in terms of the thickness reduction due to the lack of the P2S layer in the back gap portion.
Should be at least twice as wide.

【0026】十分な磁気結合が層P1、P1S、P2、
P2Sの各2層間に存在することを保証するために正常
洗浄プロセス利用が必須である。磁極先端領域46と背
後ギャップ部分42でのλを最適化するためにゼロ近傍
の磁気歪定数が好ましい、その理由はこの定数により応
力変化によるヘッド感度への影響を最小限に抑えられる
からである。しかしながら、以後の組立とヘッドプロセ
スにおいて応力変動が異っているならば、応用者の改良
した方法を用いて最適化を実行することもなお可能であ
る。
Sufficient magnetic coupling is provided by the layers P1, P1S, P2,
Utilization of a normal cleaning process is essential to ensure that it exists between each two layers of P2S. A magnetostriction constant near zero is preferred to optimize λ in the pole tip region 46 and the back gap portion 42, because this constant minimizes the effect of stress changes on head sensitivity. . However, if the stress variations in the subsequent assembly and head processes are different, it is still possible to carry out the optimization using the improved method of the user.

【0027】図5及び図6の具体例での前記インプリメ
ンテーションにおいて、各層の磁気歪定数λと厚さは以
下の通りである。 [表1] 層 λ t P1 −1X10-6 1.0μ P1S −1X10-6 2.0μ P2 ±1X10-7 1.0μ P2S −3X10-6 2.0μ
In the implementation of the embodiment of FIGS. 5 and 6, the magnetostriction constant λ and the thickness of each layer are as follows. [Table 1] Layer λ t P1 -1X10 -6 1.0 μ P1S -1X10 -6 2.0 μ P2 ± 1X10 -7 1.0 μ P2S -3X10 -6 2.0 μ

【0028】いずれの場合でも本質的なことは、層間の
十分な磁気結合を保証するため厚さが3ミクロンないし
それ以上の層はなく、それゆえ各層は図4に関連して説
明したように単一磁気膜として振舞うという点である。
In any case, what is essential is that there are no layers with a thickness of 3 microns or more in order to ensure a sufficient magnetic coupling between the layers, so that each layer is as described in connection with FIG. It behaves as a single magnetic film.

【0029】[0029]

【発明の効果】これまで見てきたように本発明に従え
ば、薄膜感度を減少させる異なる磁気歪定数を持つ磁気
結合層を用いて、結果として雑音とパフォーマンス減少
となり得る応力誘起異方性効果に対し高密度記録ヘッド
を利用することにより、ヘッド組立プロセスが最適化可
能となる。
As described above, according to the present invention, by using the magnetic coupling layers having different magnetostriction constants which reduce the sensitivity of the thin film, the stress induced anisotropy effect which may result in the noise and the performance decrease. On the other hand, by using the high density recording head, the head assembly process can be optimized.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁気ドメインの典型的な配置を示す、誘導薄膜
磁気ヘッド継鉄の系統的設計図である。
FIG. 1 is a systematic design diagram of an induction thin film magnetic head yoke showing a typical arrangement of magnetic domains.

【図2】磁化の容易な軸を示す、誘導薄膜磁気ヘッド継
鉄の系統的設計図である。
FIG. 2 is a systematic design diagram of an induction thin-film magnetic head yoke showing the axis of easy magnetization.

【図3】単軸応力成分を示す、誘導薄膜磁気ヘッド継鉄
の系統的設計図である。
FIG. 3 is a systematic design diagram of an induction thin film magnetic head yoke showing a uniaxial stress component.

【図4】本発明の基本概念を示す2層構造の側面図であ
る。
FIG. 4 is a side view of a two-layer structure showing the basic concept of the present invention.

【図5】本発明の1具体例に従った、薄膜磁気ヘッドの
継鉄構造の単純化した断面図である。
FIG. 5 is a simplified cross-sectional view of a yoke structure of a thin-film magnetic head according to one embodiment of the present invention.

【図6】本発明の他の具体例に従って改変した、薄膜磁
気ヘッドの継鉄構造の単純化した断面図である。
FIG. 6 is a simplified cross-sectional view of a yoke structure of a thin film magnetic head modified according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 継鉄 12 磁極先端領域 14 背後領域 16 背後ギャップ部分 18 磁化ドメイン 22 圧縮応力成分 30 2層構造 32 磁性層 34 磁性層 42 背後ギャップ部分 44 背後領域 46 磁極先端領域 10 Yoke 12 Pole tip region 14 Back region 16 Back gap part 18 Magnetization domain 22 Compressive stress component 30 Two-layer structure 32 Magnetic layer 34 Magnetic layer 42 Back gap part 44 Back region 46 Pole tip region

フロントページの続き (72)発明者 モハメド・トゥーフィク・クロウンビ アメリカ合衆国95120 カリフォルニア州、 サン・ノゼ、パソ・ロス・セリトス 6238 (72)発明者 ポ−カン・ワン アメリカ合衆国95120 カリフォルニア州、 サン・ノゼ、シャドウ・ブルック・ドライ ブ 1007Front Page Continuation (72) Inventor Mohamed Toufik Klounbi, USA 95120 San Jose, California, Paso Los Cerritos 6238 (72) Inventor Pokan One United States 95120 California, San Jose, Shadow Brooke Drive 1007

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】第1及び第2の磁極片を有する磁気継鉄
と、 背後領域の一端に隣接する背後ギャップ部分から磁極先
端領域に至る第1磁性層と、その第1磁性層に接触し前
記背後ギャップ部分から前記磁極先端領域に実質的に至
る第2磁性層とから構成される前記第1磁極片と、 背後ギャップ部分でのみ前記第2磁性層に接触し、前記
磁極先端領域では前記第1磁性層から離れており、そこ
で2層間に変換ギャップを形成する第3磁性層と、前記
第3磁性層の一部と接触し、前記背後ギャップ部分から
実質的に前記磁極先端領域まで広がる第4磁性層とを有
し、前記領域で応力誘起ドメインの各相違及び雑音によ
る効果を最小化する目的で前記磁極先端領域及び背後領
域で異なる磁気歪度を生じさせるよう選択された前記第
1、第2、第3及び第4の磁性層の磁気歪定数の大きさ
及び符号とを有する前記第2磁極片と、を有する薄膜磁
気ヘッド。
1. A magnetic yoke having first and second magnetic pole pieces, a first magnetic layer extending from a back gap portion adjacent to one end of the back region to a pole tip region, and contacting the first magnetic layer. The first magnetic pole piece composed of a second magnetic layer extending substantially from the back gap portion to the magnetic pole tip region, and the second magnetic layer only in the back gap portion, and in the magnetic pole tip region, A third magnetic layer, which is distant from the first magnetic layer and forms a conversion gap between the two layers, and a portion of the third magnetic layer are in contact therewith, and extend from the back gap portion to substantially the pole tip region. A fourth magnetic layer, the first magnetic layer being selected to produce different magnetostrictions in the pole tip region and the back region for the purpose of minimizing the effects of each stress induced domain difference and noise in the region. , Second, third and Thin-film magnetic head having a second pole piece having a magnitude and sign of the magnetostriction constant of the fourth magnetic layer.
【請求項2】背後ギャップ部分を含む背後領域は実質的
に背後ギャップ部分での応力度合に適合するよう、前記
目的で予め選択済みの負の磁気歪定数を有し、磁極先端
領域はそこでの応力度合に実質的に適合するよう、より
小さなゼロ近傍の磁気歪定数を有する請求項1記載の磁
気ヘッド。
2. The back region, including the back gap portion, has a negative magnetostriction constant preselected for said purpose to substantially match the stress level in the back gap portion, and the pole tip region there. The magnetic head of claim 1, having a smaller magnetostriction constant near zero to substantially match the stress level.
【請求項3】前記第2及び第4層は、(i)第1及び第
3層と実質的に同一幅であり、(ii)背後ギャップ部分
を含む全背後領域にわたり、実質的に磁極先端領域の端
近傍まで至る、請求項1記載の磁気ヘッド。
3. The second and fourth layers are (i) substantially the same width as the first and third layers, and (ii) substantially the magnetic pole tip over the entire back region including the back gap portion. The magnetic head according to claim 1, which extends to the vicinity of the edge of the region.
【請求項4】前記第4層は背後ギャップ部分での磁気歪
減少のため、実質的に背後ギャップ部分を含む背後領域
にわたり、磁極先端領域の端近傍まで至る、請求項1記
載の磁気ヘッド。
4. The magnetic head according to claim 1, wherein the fourth layer substantially extends over the back region including the back gap part to near the end of the pole tip region in order to reduce the magnetostriction in the back gap part.
【請求項5】前記背後領域は磁極先端領域幅の少なくと
も2倍の幅を持ち、第4層のそこでの欠如による背後ギ
ャップ部分の厚さ減少にも関わらず書込み効率を維持す
るため、磁極先端領域が背後ギャップ部分前方で飽和す
ることを保証する、請求項4記載の磁気ヘッド。
5. The pole tip has a width that is at least twice the width of the pole tip zone and maintains write efficiency despite the reduced thickness of the back gap portion due to the lack of the fourth layer thereat. 5. The magnetic head according to claim 4, which ensures that the area is saturated in front of the back gap portion.
【請求項6】背後領域の背後ギャップ部分の一端と磁極
先端領域のもう一端に隣接する磁気継鉄を有し、 上記継鉄は第1及び第2の磁極片を有し、 前記第1磁極片は、前記継鉄端からそのもう一端へ至る
第1磁性層P1と、前記第1磁性層P1に直接接触し、
前記継鉄端から前記磁極先端領域に隣接する端まで実質
的に至る第2磁性層P1Sとから構成され、 前記第2磁極片は、前記背後ギャップ部分で前記第2層
に直接接触し、前記背後領域の他の部分で前記第2磁性
層から離れており、前記磁極先端領域で前記第1磁性層
からわずかに離れそこで第1磁性層間とで変換ギャップ
を形成する第3磁性層P2と、前記第3磁性層と直接接
触し、背後領域の少なくともある部分で重層している第
4磁性層P2Sとを有し、 前記層P1、P1S、P2及びP2Sは磁気歪定数
λ1、λ1s、λ2及びλ2sと厚さt1、t1s、t2及びt2s
を各々有し、しかもそれらの値は前記領域において応力
誘起ドメイン配置の各相違と雑音による効果を最小化す
るために、磁極先端領域と背後領域で異なる磁気歪度を
生じさせるよう選択されたこと、を特徴とする薄膜磁気
ヘッド。
6. A magnetic yoke adjacent to one end of the back gap portion of the back region and the other end of the magnetic pole tip region, the yoke having first and second magnetic pole pieces, the first magnetic pole. The piece is in direct contact with the first magnetic layer P1 extending from the yoke end to the other end thereof, and
A second magnetic layer P1S substantially extending from the yoke end to an end adjacent to the magnetic pole tip region, the second magnetic pole piece being in direct contact with the second layer at the back gap portion, A third magnetic layer P2 that is separated from the second magnetic layer in the other part of the back region, and is slightly separated from the first magnetic layer in the magnetic pole tip region and forms a conversion gap with the first magnetic layer there; A fourth magnetic layer P2S that is in direct contact with the third magnetic layer and is overlaid in at least a portion of the back region, wherein the layers P1, P1S, P2 and P2S have magnetostriction constants λ 1 , λ 1s , λ 2 and λ 2s and thicknesses t 1 , t 1s , t 2 and t 2s
Respectively, and their values were chosen to produce different magnetostrictions in the pole tip region and the back region in order to minimize the effects of differences in stress-induced domain placement and noise in the region. , A thin film magnetic head.
【請求項7】前記t1、t1s、t2及びt2sは3ミクロン
以下であり、それゆえP1がP1Sと、及びP2がP2
Sと接する領域ではP1・P1S及びP2・P2Sの2
層は、各々(t1λ1+t1sλ1s)/(t1+t1s)と
(t2λ2+t2sλ2s)/(t2+t2s)の有効磁気歪定
数λeffを持つ単一膜層として振舞い、単一層P1とP
2から構成される領域で磁気歪定数は各々λ1とλ2であ
る、請求項6記載の磁気ヘッド。
7. The t 1 , t 1s , t 2 and t 2s are less than 3 microns and therefore P1 is P1S and P2 is P2.
In the area that contacts S, 2 of P1, P1S and P2, P2S
Each layer is a single layer having an effective magnetostriction constant λ eff of (t 1 λ 1 + t 1s λ 1s ) / (t 1 + t 1s ) and (t 2 λ 2 + t 2s λ 2s ) / (t 2 + t 2s ). Acting as a membrane layer, single layers P1 and P
7. The magnetic head according to claim 6, wherein the magnetostriction constants in the region constituted by 2 are λ 1 and λ 2 , respectively.
【請求項8】t1及びt2が実質的に1ミクロン、t1s
びt2sが実質的に2ミクロンの、請求項6記載の磁気ヘ
ッド。
8. The magnetic head of claim 6 wherein t 1 and t 2 are substantially 1 micron and t 1s and t 2s are substantially 2 microns.
【請求項9】λ1及びλ1sが実質的に―1×10-6、λ2
は実質的に±1×10-7、λ2sは実質的に−3×10-6
である、請求項8記載の磁気ヘッド。
9. λ 1 and λ 1s are substantially −1 × 10 −6 , λ 2
Is substantially ± 1 × 10 −7 , λ 2s is substantially −3 × 10 −6
The magnetic head according to claim 8, wherein
【請求項10】磁気歪定数λx・λyと厚さtx・tyを有
し、層xとyが重層接触している領域において、(tx
λx+tyλy)/(tx+ty)からなる有効磁気歪定数
を与える薄膜磁性層からなる磁気構造。
10. A region having a magnetostriction constant λ x · λ y and a thickness t x · ty and having a layer contact between layers x and y is (t x
A magnetic structure consisting of a thin film magnetic layer giving an effective magnetostriction constant of λ x + ty λ y ) / (t x + ty ).
【請求項11】層x、yが重層接触していない領域でも
磁気歪定数がλx、λyである、請求項10記載の磁気構
造。
11. The magnetic structure according to claim 10, wherein the magnetostriction constants are λ x and λ y even in a region where the layers x and y are not in multilayer contact.
JP18259293A 1992-09-09 1993-07-23 Thin-film head with different magnetostriction region Pending JPH0714120A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US94269892A 1992-09-09 1992-09-09
US942698 1992-09-09

Publications (1)

Publication Number Publication Date
JPH0714120A true JPH0714120A (en) 1995-01-17

Family

ID=25478472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18259293A Pending JPH0714120A (en) 1992-09-09 1993-07-23 Thin-film head with different magnetostriction region

Country Status (1)

Country Link
JP (1) JPH0714120A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441170B1 (en) * 1997-05-22 2004-10-12 삼성전자주식회사 Head gap structure capable of increasing track density by eliminating side noise of a track
US7576950B2 (en) 2004-08-06 2009-08-18 Sae Magnetics (H.K.) Ltd. Perpendicular magnetic recording head utilizing tensile stress to optimize magnetic pole layer domain structure
US7808743B2 (en) 2007-03-05 2010-10-05 Tdk Corporation Perpendicular magnetic write head having a structure that suppresses unintended erasure of information on a write medium at a non-writing time

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02252111A (en) * 1989-03-27 1990-10-09 Alps Electric Co Ltd Thin film magnetic head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02252111A (en) * 1989-03-27 1990-10-09 Alps Electric Co Ltd Thin film magnetic head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441170B1 (en) * 1997-05-22 2004-10-12 삼성전자주식회사 Head gap structure capable of increasing track density by eliminating side noise of a track
US7576950B2 (en) 2004-08-06 2009-08-18 Sae Magnetics (H.K.) Ltd. Perpendicular magnetic recording head utilizing tensile stress to optimize magnetic pole layer domain structure
US7808743B2 (en) 2007-03-05 2010-10-05 Tdk Corporation Perpendicular magnetic write head having a structure that suppresses unintended erasure of information on a write medium at a non-writing time

Similar Documents

Publication Publication Date Title
JPH11149620A (en) Magnetic head
JPH10334409A (en) Thin film magnetic head
JPH05290331A (en) Thin-film magnetic converter
EP0269129A2 (en) Thin film magnetic head
JPH0870147A (en) Magnetoresistance element
US4734644A (en) Flux cancelling yoke type magnetic transducer head
JP2001155313A (en) Thin film magnetic head and its manufacturing method
JP2871641B2 (en) Magnetoresistive head and method of manufacturing the same
JPH0714120A (en) Thin-film head with different magnetostriction region
JPH10149513A (en) Magneto-resistive composite head
JP2002511198A (en) Device with layer structure and current directing means
JP2001176031A (en) Thin-film magnetic head
JPH026490Y2 (en)
JPS622363B2 (en)
JPH07107731B2 (en) Yoke type thin film magnetic head
JPH0714125A (en) Magneto-resistance effect type head and its production
JPH1116122A (en) Thin film magnetic head
JPS6326809A (en) Thin film magnetic head
JPS6157027A (en) Magnetoresistance effect head and its manufacture
JPS6171407A (en) Magnetoresistance effect type magnetic head
JPH0817017A (en) Thin film laminated magnetic head
JPH07240004A (en) Magnetic head
JPH06103539A (en) Magneto-resistance effect type head
JPH03116509A (en) Thin film magnetic head
JPS6258410A (en) Magnetoresistance effect type magnetic head