JPH07139706A - High-temperature anticorrosion method of superheater for increasing temperature and pressure of boiler - Google Patents

High-temperature anticorrosion method of superheater for increasing temperature and pressure of boiler

Info

Publication number
JPH07139706A
JPH07139706A JP28473393A JP28473393A JPH07139706A JP H07139706 A JPH07139706 A JP H07139706A JP 28473393 A JP28473393 A JP 28473393A JP 28473393 A JP28473393 A JP 28473393A JP H07139706 A JPH07139706 A JP H07139706A
Authority
JP
Japan
Prior art keywords
superheater
temperature
tubes
boiler
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28473393A
Other languages
Japanese (ja)
Other versions
JP2769671B2 (en
Inventor
Shozo Yamamoto
昇三 山本
Nobuhide Iwata
信秀 岩田
Masaharu Terajima
正春 寺島
Kazuhiro Toyama
一廣 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP28473393A priority Critical patent/JP2769671B2/en
Publication of JPH07139706A publication Critical patent/JPH07139706A/en
Application granted granted Critical
Publication of JP2769671B2 publication Critical patent/JP2769671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance against high-temperature corrosive gas and adhered ash without employing any expensive super-alloy material for all of superheating tubes. CONSTITUTION:In a superheater 1a for increasing the temperature and pressure of a boiler, high-temperature corrosion is prevented by a method wherein the banks of tubes of a primary superheater 1a, whose steam temperature is the lowest, is arranged at the inlet port side of combustion gas, then, the banks of tubes of tertiary superheater 1c and the banks of tubes of secondary superheater 1b are arranged sequentially on the downstream of the primary superheater 1a. A material, having the amount of corrosion lower than a set value, is selected for the banks of tubes of the primary superheater 11a based on a steam temperature therefor. Materials, having the amount of corrosion lower than a set value, are selected for the banks of tubes of secondary and tertiary superheaters 1b, 1c based on the heat flow fluxes therefor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばごみ焼却による
発電設備の高効率化を目的としたごみ焼却ボイラの高温
高圧化に際し、過熱器の高温腐食を防止する方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing high temperature corrosion of a superheater when high temperature and high pressure is applied to a waste incineration boiler for the purpose of improving efficiency of power generation equipment by waste incineration.

【0002】[0002]

【従来の技術】ごみ焼却熱の有効利用方法として、蒸気
タービンによる発電が最も効果的であり、そのためごみ
焼却ボイラの高温高圧化が進みつつある。しかし、従
来、ごみ焼却ボイラでは、燃焼排ガス中の塩化水素ガス
及び低融点付着灰による高温腐食を防止するため、蒸気
条件として過熱蒸気温度は最高で300℃、より具体的
には管壁温度は最高で320℃に、また蒸気圧力は30
ataに制限され、発電効率は12〜16%であった。
2. Description of the Related Art Power generation by a steam turbine is the most effective method for effectively utilizing waste incineration heat, and therefore high temperature and high pressure of the waste incineration boiler is being advanced. However, conventionally, in the refuse incineration boiler, in order to prevent high temperature corrosion due to hydrogen chloride gas in the combustion exhaust gas and low melting point ash, the superheated steam temperature is 300 ° C at the maximum, more specifically, the pipe wall temperature is Up to 320 ° C and steam pressure of 30
The power generation efficiency was 12 to 16%.

【0003】ところで、前記した蒸気条件として、過熱
蒸気温度を380〜420℃、蒸気圧力を40ataに
まで高温高圧化した場合には、発電効率は20〜25%
となって現状の発電効率の約1.5倍となる。しかし、
このように前記した標準蒸気条件を超えたごみ焼却ボイ
ラ、例えば蒸気温度が350℃、蒸気圧力が24ata
のごみ焼却ボイラでは、高温腐食のために毎年過熱器管
を取り替える必要がでてくる。
By the way, when the superheated steam temperature is set to 380 to 420 ° C. and the steam pressure is set to high temperature and pressure up to 40 ata as the above-mentioned steam conditions, the power generation efficiency is 20 to 25%.
This is about 1.5 times the current power generation efficiency. But,
Thus, a waste incineration boiler that exceeds the standard steam conditions described above, such as a steam temperature of 350 ° C. and a steam pressure of 24 ata
In the refuse incineration boiler, it is necessary to replace the superheater tube every year due to high temperature corrosion.

【0004】[0004]

【発明が解決しようとする課題】このような問題点を解
決しようとして、高温腐食性ガス及び付着灰に耐えるこ
とのできる超合金材料の開発が試みられているが、過熱
器管のすべてをこのような超合金材料とすることは極め
て高価となるので、実際上不可能である。
In order to solve such problems, attempts have been made to develop a superalloy material capable of withstanding high temperature corrosive gas and adhered ash. It is practically impossible to make such a superalloy material because it is extremely expensive.

【0005】本発明は、上記したような従来の問題点に
鑑みてなされたものであり、高価な超合金材料を過熱器
管すべてに使用することなく高温腐食性ガス及び付着灰
に耐えることのできるボイラ高温高圧化過熱器の高温腐
食防止方法を提供することを目的としている。
The present invention has been made in view of the above-mentioned conventional problems, and is capable of withstanding high temperature corrosive gas and adhered ash without using an expensive superalloy material for all superheater tubes. It is an object of the present invention to provide a method for preventing high-temperature corrosion of a boiler high-temperature and high-pressure superheater that can be performed.

【0006】[0006]

【課題を解決するための手段】上記した目的を達成する
ために、本発明者は各種の実験を行った。まず、寸法2
0mm×15mm×3mmの各種材料の試験片にごみ焼
却炉の燃焼灰を表面積1cm2 当たり50mg塗布した
後、8%CO2 +8%O2 +18%H2 O+0.13%
HCl+65.87%N2 の模擬ガス気流中の環状電気
炉内に挿入し、400℃,450℃,500℃,550
℃及び600℃の各温度でそれぞれ72時間加熱保持し
た。その結果を下記表1に示すが、年間0.5mm以下
の侵食度を示す温度及び材料は、450℃を上限として
SUS347H,SUS309J2 ,SUS310
1 ,インコロイ825及びインコロイ800であっ
た。
In order to achieve the above object, the present inventor conducted various experiments. First, size 2
After applying 50 mg of combustion ash from a refuse incinerator to a test piece of various materials of 0 mm × 15 mm × 3 mm per 1 cm 2 of surface area, 8% CO 2 + 8% O 2 + 18% H 2 O + 0.13%
Inserted in an annular electric furnace in a simulated gas stream of HCl + 65.87% N 2 , 400 ° C, 450 ° C, 500 ° C, 550
The temperature was kept at 72 ° C and 600 ° C for 72 hours. The results are shown in Table 1 below. The temperatures and materials exhibiting an erosion degree of 0.5 mm or less per year are SUS347H, SUS309J 2 , SUS310 with 450 ° C as the upper limit.
J 1 , Incoloy 825 and Incoloy 800.

【0007】[0007]

【表1】 (単位:mm/年)[Table 1] (Unit: mm / year)

【0008】次に、先に説明した実験によって得られた
材料のうちの4種類を選定してこれらの材料で過熱器管
を製作し、これら過熱器管群を蒸気温度が370〜42
0℃(管壁温度410〜450℃)の実機の図1に示す
位置に組み込み、1年間テストを実施した。その結果、
管表面における各部分の腐食速度は、管壁温度以外に熱
流束によっても支配され、熱流束との関係で整理すると
よく一致することが判明した。
Next, four kinds of materials obtained by the above-described experiment are selected, superheater tubes are manufactured from these materials, and these superheater tube groups have steam temperatures of 370 to 42.
The test was carried out for 1 year by incorporating the device at 0 ° C. (tube wall temperature 410 to 450 ° C.) in the position shown in FIG. as a result,
It was found that the corrosion rate of each part on the tube surface is governed not only by the tube wall temperature but also by the heat flux, which is well consistent with the relationship with the heat flux.

【0009】図2にテストに供した各種材料の高温腐食
に及ぼす熱流束の影響を示したが、この結果によると、
実用的に適用可能な腐食速度を年間0.5mm以下とす
ると熱流束は、インコロイ825では1240(kca
l/h m)以下、SUS310J1 では1180(k
cal/h m)以下、SUS347Hでは1080
(kcal/h m)以下、SUS309J2 では10
00(kcal/h m)以下にすればよいことが判
る。
FIG. 2 shows the effect of heat flux on the high temperature corrosion of the various materials used in the test. The results show that
When the practically applicable corrosion rate is 0.5 mm or less per year, the heat flux of Incoloy 825 is 1240 (kca).
1 / hm or less, 1180 (k in SUS310J 1 )
cal / hm) or less, 1080 for SUS347H
(Kcal / hm) or less, 10 for SUS309J 2
It can be seen that it may be set to 00 (kcal / hm) or less.

【0010】本発明のボイラ高温高圧化過熱器の高温腐
食防止方法は、上記した知見に基づいてなされたもので
あり、蒸気温度が一番低い1次過熱器管群を燃焼ガス入
口側に配置し、以降順次3次過熱器管群、2次過熱器管
群と配置するとともに、前記1次過熱器管群は蒸気温度
に基づき、また2・3次過熱器管群は熱流束に基づいて
それぞれ腐食量が設定値以下の材料を選定することを要
旨としているのである。
The method for preventing high temperature corrosion of the boiler high temperature and high pressure superheater of the present invention is based on the above-mentioned findings, and the primary superheater tube group having the lowest steam temperature is arranged on the combustion gas inlet side. After that, the secondary superheater tube group is sequentially arranged with the secondary superheater tube group, and the primary superheater tube group is based on the steam temperature, and the second and third superheater tube groups are based on the heat flux. The point is to select a material whose corrosion amount is less than the set value.

【0011】[0011]

【作用】本発明のボイラ高温高圧化過熱器の高温腐食防
止方法は、蒸気温度が一番低い1次過熱器管群を燃焼ガ
ス入口側に配置し、以降順次3次過熱器管群、2次過熱
器管群と配置するとともに、前記1次過熱器管群は蒸気
温度に基づき、また2・3次過熱器管群は熱流束に基づ
いてそれぞれ腐食量が設定値以下の材料を選定するの
で、ボイラ高温高圧化過熱器の高温腐食を効果的に抑制
できる。
According to the method for preventing high temperature corrosion of the boiler high temperature and high pressure superheater of the present invention, the primary superheater tube group having the lowest steam temperature is arranged on the combustion gas inlet side, and then the tertiary superheater tube group and the In addition to arranging with the secondary superheater tube group, the primary superheater tube group selects the material whose corrosion amount is less than the set value based on the steam temperature and the second and third superheater tube groups based on the heat flux. Therefore, high temperature corrosion of the boiler high temperature and high pressure superheater can be effectively suppressed.

【0012】[0012]

【実施例】以下、本発明のボイラ高温高圧化過熱器の高
温腐食防止方法を図3に示す1実施例に基づいて説明す
る。図3は蒸気条件が34.5t/h×37ata×3
80℃のボイラにおける1〜3次過熱器管群の配置位置
の説明図で、(a)は全体図、(b)は要部拡大図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for preventing high temperature corrosion of a boiler high temperature and high pressure superheater according to the present invention will be described below with reference to an embodiment shown in FIG. In Figure 3, the steam condition is 34.5t / h x 37ata x 3
It is explanatory drawing of the arrangement position of the 1st-3rd superheater tube group in a 80 degreeC boiler, (a) is a general view, (b) is a principal part enlarged view.

【0013】図3において、1は燃焼室2内での燃焼に
よってボイラ本体3内で発生した飽和蒸気をさらに過熱
して過熱蒸気をつくる過熱器であり、例えば1次過熱器
1a,2次過熱器1b及び3次過熱器1cとで構成され
ている。そして、これら1〜3次過熱器1a〜1cは燃
焼ガスの入口側(ガス温度:650℃)から1次過熱器
1a,3次過熱器1c,2次過熱器1bの順に配置され
ている。
In FIG. 3, reference numeral 1 denotes a superheater which further superheats saturated steam generated in the boiler body 3 by combustion in the combustion chamber 2 to produce superheated steam, such as a primary superheater 1a and a secondary superheater. It is composed of a heater 1b and a tertiary superheater 1c. And these 1st-3rd superheaters 1a-1c are arrange | positioned from the inlet side (gas temperature: 650 degreeC) of combustion gas in order of the 1st superheater 1a, the 3rd superheater 1c, and the 2nd superheater 1b.

【0014】このボイラにおける蒸気条件が例えば3
4.5t/h×37ata×380℃の場合における前
記1次過熱器1aは、入側の蒸気温度は255℃で出側
の蒸気温度は300℃であるから、従来より一般的に使
用されているボイラ用炭素鋼鋼管(STB410)で製
作している。
The steam condition in this boiler is, for example, 3
In the case of 4.5 t / h × 37ata × 380 ° C., the primary superheater 1a has a steam temperature of 255 ° C. on the inlet side and a steam temperature of 300 ° C. on the outlet side. It is made of existing carbon steel pipe for boiler (STB410).

【0015】また、この1次過熱器1aの下流側に設置
されて最も高い蒸気温度(入側は330℃、出側は38
0℃)の3次過熱器1cは、熱流束が最高で1150k
cal/h mにもなるから、図2に示す関係からSU
S310J1 で製作している。
The highest steam temperature (330 ° C. on the inlet side, 38 ° C. on the outlet side) is installed downstream of the primary superheater 1a.
The maximum heat flux of the third superheater 1c at 0 ° C is 1150k.
Since it also becomes cal / hm, from the relationship shown in FIG.
It is made with S310J 1 .

【0016】また、この3次過熱器1cの下流側に設置
され、蒸気温度が入側で300℃、出側で340℃とな
る2次過熱器1bは、熱流束が最高で800kcal/
hmであるから、図2に示す関係からSUS309J2
で製作している。
The secondary superheater 1b, which is installed downstream of the tertiary superheater 1c and has a steam temperature of 300 ° C. on the inlet side and 340 ° C. on the outlet side, has a maximum heat flux of 800 kcal /
hm, so from the relationship shown in FIG. 2, SUS309J 2
It is produced in.

【0017】すなわち、本発明のボイラ高温高圧化過熱
器の高温腐食防止方法は、蒸気温度が一番低い1次過熱
器1aを燃焼ガス入口側に配置し、以降順次3次過熱器
1c、2次過熱器1bと配置し、このうち前記1次過熱
器1aは蒸気温度に基づき、また2・3次過熱器1c・
1bは熱流束に基づいてそれぞれ材料ごとに予め実験に
よって測定している腐食量が設定値以下の材料を適宜選
定するのである。
That is, in the method for preventing high-temperature corrosion of the boiler high-temperature and high-pressure superheater according to the present invention, the primary superheater 1a having the lowest steam temperature is arranged on the combustion gas inlet side, and then the tertiary superheaters 1c, 2 are sequentially arranged. It is arranged with the secondary superheater 1b, of which the primary superheater 1a is based on the steam temperature, and the secondary superheater 1c.
For 1b, a material having an amount of corrosion, which has been measured in advance by experiments for each material based on the heat flux, is equal to or less than a set value is appropriately selected.

【0018】[0018]

【発明の効果】以上説明したように、本発明のボイラ高
温高圧化過熱器の高温腐食防止方法は、蒸気温度が一番
低い1次過熱器管群を燃焼ガス入口側に配置し、以降順
次3次過熱器管群、2次過熱器管群と配置するととも
に、前記1次過熱器管群は蒸気温度に基づき、また2・
3次過熱器管群は熱流束に基づいてそれぞれ腐食量が設
定値以下の材料を適宜選定するので、ボイラ高温高圧化
過熱器の高温腐食を比較的安価で効果的に抑制できる。
As described above, according to the method for preventing high temperature corrosion of the boiler high temperature and high pressure superheater of the present invention, the primary superheater tube group having the lowest steam temperature is arranged on the combustion gas inlet side, and thereafter, sequentially. The secondary superheater tube group is arranged with a secondary superheater tube group, and the primary superheater tube group is based on the steam temperature, and
For the tertiary superheater tube group, materials whose corrosion amount is less than or equal to the set value are appropriately selected based on the heat flux, so that high temperature corrosion of the boiler high temperature / high pressure superheater can be effectively suppressed at a relatively low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】高温腐食実験によって得られたうちの4種類の
材料で過熱器管を製作し、これらを蒸気温度が370〜
420℃(管壁温度410〜450℃)の実機に組み込
んで1年間テストを実施した際の過熱器管の組み込み位
置の説明図である。
Fig. 1 Superheater tubes were made from four kinds of materials obtained by high temperature corrosion experiments, and steam tubes with a steam temperature of 370 to 370 were produced.
It is explanatory drawing of the installation position of the superheater pipe | tube when it installs in the actual machine of 420 degreeC (tube wall temperature 410-450 degreeC), and implements a test for 1 year.

【図2】高温腐食に及ぼす熱流束の影響を示す実験結果
図である。
FIG. 2 is an experimental result diagram showing the effect of heat flux on high temperature corrosion.

【図3】蒸気条件が34.5t/h×37ata×38
0℃のボイラにおける1〜3次過熱器管群の配置位置の
説明図で、(a)は全体図、(b)は要部拡大図であ
る。
[FIG. 3] Steam conditions are 34.5 t / h × 37 ata × 38
It is explanatory drawing of the arrangement position of the 1st-3rd superheater tube group in a 0 degreeC boiler, (a) is a general view, (b) is a principal part enlarged view.

【符号の説明】[Explanation of symbols]

1a 1次過熱器 1b 2次過熱器 1c 3次過熱器 2 燃焼室 1a 1st superheater 1b 2nd superheater 1c 3rd superheater 2 Combustion chamber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠山 一廣 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiro Toyama 5-3-2, Nishikujo 5-chome, Konohana-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ボイラ高温高圧化過熱器において高温腐
食を防止する方法であって、蒸気温度が一番低い1次過
熱器管群を燃焼ガス入口側に配置し、以降順次3次過熱
器管群、2次過熱器管群と配置するとともに、前記1次
過熱器管群は蒸気温度に基づき、また2・3次過熱器管
群は熱流束に基づいてそれぞれ腐食量が設定値以下の材
料を選定することを特徴とするボイラ高温高圧化過熱器
の高温腐食防止方法。
1. A method for preventing high-temperature corrosion in a boiler high-temperature and high-pressure superheater, wherein a primary superheater tube group having the lowest steam temperature is arranged on a combustion gas inlet side, and then a tertiary superheater tube is successively arranged. A secondary superheater tube group, the primary superheater tube group is based on the steam temperature, and the second and third superheater tube groups are based on the heat flux, and the amount of corrosion is less than a set value. Method for preventing high-temperature corrosion of boiler high-temperature and high-pressure superheater, characterized by selecting
JP28473393A 1993-11-15 1993-11-15 High-temperature corrosion prevention method for boiler high-temperature and high-pressure superheater Expired - Lifetime JP2769671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28473393A JP2769671B2 (en) 1993-11-15 1993-11-15 High-temperature corrosion prevention method for boiler high-temperature and high-pressure superheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28473393A JP2769671B2 (en) 1993-11-15 1993-11-15 High-temperature corrosion prevention method for boiler high-temperature and high-pressure superheater

Publications (2)

Publication Number Publication Date
JPH07139706A true JPH07139706A (en) 1995-05-30
JP2769671B2 JP2769671B2 (en) 1998-06-25

Family

ID=17682285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28473393A Expired - Lifetime JP2769671B2 (en) 1993-11-15 1993-11-15 High-temperature corrosion prevention method for boiler high-temperature and high-pressure superheater

Country Status (1)

Country Link
JP (1) JP2769671B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776020A (en) * 2014-02-26 2014-05-07 章礼道 Double reheat power station boiler with three rear flues and double rear baffles and capable of recycling jet flow flue gas
JP2020153591A (en) * 2019-03-20 2020-09-24 株式会社ティラド Header plate-less type heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776020A (en) * 2014-02-26 2014-05-07 章礼道 Double reheat power station boiler with three rear flues and double rear baffles and capable of recycling jet flow flue gas
CN103776020B (en) * 2014-02-26 2015-06-17 章礼道 Double reheat power station boiler with three rear flues and double rear baffles and capable of recycling jet flow flue gas
JP2020153591A (en) * 2019-03-20 2020-09-24 株式会社ティラド Header plate-less type heat exchanger

Also Published As

Publication number Publication date
JP2769671B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
JP6040308B2 (en) Heat exchanger with excellent corrosion resistance
JP2017181007A (en) Blockage suppression device and blockage suppression method for boiler
JP2002364801A (en) Waste heat utilization system
JPH07139706A (en) High-temperature anticorrosion method of superheater for increasing temperature and pressure of boiler
JP4733612B2 (en) Boiler superheater for waste treatment equipment
JP2013124568A (en) Waste power generation system
JP2003120902A (en) Refuse incinerating generation boiler super-heater
JP2016041939A (en) Waste power generation system
JP2755879B2 (en) Waste incinerator with boiler
JPH08145304A (en) Boiler
Krafft Alloy 430 ferritic stainless steel welds fail due to stress-corrosion cracking in heat-recovery steam generator
JP2019158167A (en) Corrosion prevention metho on radiant heat transfer surface of boiler, and boiler
Lai Corrosion mechanisms and alloy performance in waste-to-energy boiler combustion environments
JP6049256B2 (en) Oxidation resistance method for ferritic heat resistant steel
RU2743868C1 (en) Steam-to-steam power plant
Dahiya et al. Increasing boiler super-criticality–end user’s understanding of process and design issues crucial.
Sadeghi High frequency resistance welded finned tubes technologies in heat recovery steam generator boilers
JPH04313604A (en) Method for raising temperature of steam from boiler in waste-incineration plant
Flin Reducing tube failure.
Amador et al. Application of unifuse overlay tubes in the convection section of waste-to-energy boilers
JP2003120905A (en) Super-heater of refuse incinerator waste heat recovery boiler
Hanson et al. 2nd Year Comparison of Superheater Metal Wastage Rates Utilizing Various Boiler Tube Alloys in a Waste-to-Energy Facility
JPH0755387A (en) Heat transfer tube for heat exchanger
JP2004034940A (en) Superheated pipe mounting method for marine boiler, superheater structure, and superheating pipe
Naď et al. Simplified approach for creep evaluation in superheaters

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090417

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100417

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110417

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110417

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20130417

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20140417

EXPY Cancellation because of completion of term