JPH0713942B2 - Slip prevention method in vapor phase growth - Google Patents
Slip prevention method in vapor phase growthInfo
- Publication number
- JPH0713942B2 JPH0713942B2 JP59244791A JP24479184A JPH0713942B2 JP H0713942 B2 JPH0713942 B2 JP H0713942B2 JP 59244791 A JP59244791 A JP 59244791A JP 24479184 A JP24479184 A JP 24479184A JP H0713942 B2 JPH0713942 B2 JP H0713942B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- substrate
- flow rate
- supply
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体ウェハなどの基板表面にエピタキシャ
ル層などの薄膜を形成する気相成長に係り、特にこの気
相成長に際して基板や薄膜に生ずるスリップ(結晶欠
陥)を防止する方法に関するものである。Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to vapor phase growth in which a thin film such as an epitaxial layer is formed on the surface of a substrate such as a semiconductor wafer, and particularly slips that occur in the substrate or the thin film during this vapor phase growth. The present invention relates to a method for preventing (crystal defects).
例えばエピタキシャル気相成長においては、反応室内に
設けられたサセプタの上に基板を置き、キャリアガスを
反応室内に供給して該反応室内にキャリアガスを満たし
つつ基板を所定温度に加熱し、その後、前記キャリアガ
スと共に反応ガスを反応室内に供給し、基板表面にエピ
タキシャル層を成長させるが、従来は、キャリアガスの
供給流量に対して反応ガスの供給流量の割合が小さいた
め、反応ガスの供給開始を、第3図の線A1で示すよう
に、ON,OFF的に行なっていた。For example, in epitaxial vapor deposition, a substrate is placed on a susceptor provided in the reaction chamber, a carrier gas is supplied into the reaction chamber to heat the substrate to a predetermined temperature while filling the reaction chamber with the carrier gas, and thereafter, A reaction gas is supplied together with the carrier gas into the reaction chamber to grow an epitaxial layer on the substrate surface, but in the past, since the ratio of the reaction gas supply flow rate to the carrier gas supply flow rate was small, the reaction gas supply start Was turned on and off as indicated by line A 1 in FIG.
しかしながら、本願発明者等は、このように反応ガスを
ON,OFF的に供給した場合、基板またはサセプタの温度セ
ンサ出力によってサセプタの加熱を自動制御する装置で
は、反応室内に反応ガスを供給したとき、温度センサの
出力が第3図の線B1で示すように急峻に低下し、これに
伴ってサセプタの加熱用出力も第3図の線C1で示すよう
に急激に増加することを知見した。前記温度センサ出力
の低下は、本願発明者等の実験によると、第4図に示す
ような値を示すことが判明した。第4図は、反応ガスと
してSiCl4(四塩化シリコン)を用い、反応室への反応
ガス供給流量(g/min)を4,10,14,18として実験したも
のである。この第4図から明らかなような、反応ガスの
供給流量が多い場合ほど、温度低下が増加し、通常の気
相成長で使用される10〜15g/minの場合には、約10〜14
℃(実際にはバラツキがあり、もっと大きな値を示すこ
ともある)であった。この値は、基板温度の1100〜1150
℃に比較すれば、わずかなものであるが、温度降下が第
3図の線B1に示したように急峻であることと、これに伴
なうサセプタの加熱用出力も第3図の線C1に示したよう
に急激に増加するため、基板の表面と裏面で急激な温度
のアンバランスを生じ、基板に熱ひずみが生じて該基板
にスリップが発生するのではないかと、本願発明者等は
推測した。However, the inventors of the present application did
In the case where the susceptor heating is automatically controlled by the temperature sensor output of the substrate or the susceptor when it is supplied ON or OFF, when the reaction gas is supplied into the reaction chamber, the output of the temperature sensor is the line B 1 in FIG. It has been found that as shown in the figure, it sharply decreases, and along with this, the heating output of the susceptor also sharply increases as shown by the line C 1 in FIG. According to an experiment conducted by the inventors of the present application, it has been found that the decrease in the output of the temperature sensor has a value as shown in FIG. FIG. 4 shows an experiment in which SiCl 4 (silicon tetrachloride) was used as the reaction gas and the reaction gas supply flow rate (g / min) to the reaction chamber was 4, 10, 14, 18. As is clear from FIG. 4, the higher the supply flow rate of the reaction gas, the more the temperature decreases, and when the flow rate is 10 to 15 g / min, which is used in ordinary vapor phase growth, the temperature is about 10 to 14
It was ℃ (actually, there are variations and may show a larger value). This value is the substrate temperature of 1100 to 1150.
The temperature drop is steep as shown by the line B 1 in FIG. 3, and the accompanying heating output of the susceptor is also a little compared with the line in FIG. Since it increases sharply as shown in C 1 , a sudden temperature imbalance occurs on the front and back surfaces of the substrate, and there is a possibility that thermal strain may occur in the substrate and slip may occur in the substrate. Etc. guessed.
前記のような現象は、反応ガスの供給開始時に限らず、
エピタキシャル気相成長の前工程として基板表面を清浄
にするために反応ガスの供給前に行なわれるエッチング
の供給開始時や、また場合によってエピタキシャル気相
成長の開始に先立ちキャリアガスの供給流量を増加させ
たときにも生ずる。The phenomenon as described above is not limited to the start of the supply of the reaction gas,
As a pre-step of epitaxial vapor deposition, the carrier gas supply flow rate is increased at the start of etching supply performed before the supply of the reaction gas to clean the substrate surface, and in some cases before the epitaxial vapor growth is started. Also occurs when
本発明は、前述したような点に鑑み、鋭意研究の結果な
されたもので、基板がスリップを起こし易い温度以上に
加熱されている際に、反応室内に供給するガスの流量ま
たは種類を変える場合、第2図の線A2で示すように、ガ
スの供給流量を制御しつつ時間Tを掛けて希望する値ま
で漸次増加または減少させることにより基板の温度変化
を小さく抑えるようにしたものである。The present invention has been made as a result of earnest research in view of the above-mentioned points, and in the case of changing the flow rate or the type of gas supplied into the reaction chamber when the substrate is heated to a temperature above which slip is likely to occur. As shown by a line A 2 in FIG. 2 , the temperature change of the substrate is suppressed to a small value by gradually increasing or decreasing to a desired value by multiplying the gas supply flow rate by time T. .
第2図の線A2で示すように、ガスの供給流量を制御しつ
つ時間Tを掛けて希望する値まで漸次変化させることに
より、反応室内に供給するガスの流量または種類が変わ
る際に生じた基板の温度低下とそれに伴なう加熱用出力
の増加が、第2図に線B2,C2で示すように、小幅でゆる
やかなカーブに押えられ、スリップの発生を押えること
ができた。As shown by the line A 2 in FIG. 2 , it occurs when the flow rate or type of gas supplied to the reaction chamber changes by controlling the gas supply flow rate and gradually changing it to a desired value by multiplying by time T. The decrease in the temperature of the substrate and the accompanying increase in the output for heating were suppressed to a narrow and gentle curve as shown by lines B 2 and C 2 in Fig. 2 , and the occurrence of slip could be suppressed. .
以下本発明の一実施例を第1図ないし第2図について説
明する。第1図において、1はベースプレート、2はベ
ルジャで、これらにより反応室3を形成するようになっ
ている。4はサセプタで、ベースプレート1を貫通して
反応室3内に伸びている中空回転軸5の上端に取付けら
れている。6はノズルで、中空回転軸5内を通って反応
室3内に伸び、その元端はガス導入管7に接続されてい
る。このガス導入管7には、パージガス、キャリアガ
ス、エッチングガスならびに反応ガスの各ガス供給源8
a、8b、8c、8dがそれぞれ流量制御器9a、9b、9c、9dを
介して接続されている。10はベースプレート1に設けら
れた排気口である。An embodiment of the present invention will be described below with reference to FIGS. In FIG. 1, 1 is a base plate, 2 is a bell jar, and these form a reaction chamber 3. Reference numeral 4 denotes a susceptor, which is attached to the upper end of a hollow rotating shaft 5 which penetrates the base plate 1 and extends into the reaction chamber 3. Reference numeral 6 denotes a nozzle, which extends through the hollow rotary shaft 5 into the reaction chamber 3 and has its proximal end connected to the gas introduction pipe 7. Each gas supply source 8 for a purge gas, a carrier gas, an etching gas, and a reaction gas is connected to the gas introduction pipe 7.
a, 8b, 8c and 8d are connected via flow rate controllers 9a, 9b, 9c and 9d, respectively. Reference numeral 10 is an exhaust port provided in the base plate 1.
サセプタ4の下方には加熱用のRFコイル11が設けられ、
加熱装置12から高周波電力を供給されるようになってい
る。13は温度センサで、サセプタ4およびその上に載置
されている基板14の表面温度を検出し、その出力を制御
装置15へ与えるようになっている。An RF coil 11 for heating is provided below the susceptor 4,
High frequency power is supplied from the heating device 12. A temperature sensor 13 detects the surface temperature of the susceptor 4 and the substrate 14 placed on the susceptor 4, and supplies the output to the controller 15.
制御装置15は、気相成長プロセスに従って流量制御器9
a、9b、9c、9dの開閉および流量制御を行なうと共に、
同じく気相成長プロセスに従い、かつ温度センサ13から
の出力をフィードバックして加熱装置12からRFコイル11
への給電を制御するようになっている。The controller 15 controls the flow controller 9 according to the vapor phase growth process.
Open and close a, 9b, 9c, 9d and control the flow rate,
Similarly, the output from the temperature sensor 13 is fed back according to the vapor phase growth process and the heating device 12 to the RF coil 11
It is designed to control the power supply to.
次いで本装置の作用について説明する。気相成長プロセ
スの開始時には、RFコイル11への給電は絶たれ、流量制
御器9a、9b、9c、9dは閉じられている。この状態でベル
ジャ2を開き、基板14をサセプタ4上に載置し、ベルジ
ャ2を閉じる。次いで流量制御器9aを開いてパージガス
供給源8aからN2などのパージガスをガス導入管7、ノズ
ル6により反応室3内へ供給し、反応室3内の空気をN2
などの不活性ガス雰囲気に置換する。次いで、前記パー
ジガス用の流量制御器9aを閉じると共に、キャリアガス
用の流量制御器9bを開き、反応室3内をキャリアガス
(H2)で置換し、その後、加熱装置12に給電指令を出し
てRFコイル11に給電を開始する。なお、キャリアガスの
供給はそのまま続ける。前記RFコイル11への給電は、温
度センサ13の出力を制御装置15へフィードバックし、サ
セプタ4および基板14が所定の温度勾配で昇温するよう
に制御することが好ましい。Next, the operation of this device will be described. At the start of the vapor phase growth process, the RF coil 11 is de-energized and the flow controllers 9a, 9b, 9c, 9d are closed. In this state, the bell jar 2 is opened, the substrate 14 is placed on the susceptor 4, and the bell jar 2 is closed. Then, the flow rate controller 9a is opened to supply a purge gas such as N 2 from the purge gas supply source 8a into the reaction chamber 3 through the gas introduction pipe 7 and the nozzle 6, and the air in the reaction chamber 3 is changed to N 2
Replace with an inert gas atmosphere such as. Next, the flow rate controller 9a for the purge gas is closed, the flow rate controller 9b for the carrier gas is opened, the inside of the reaction chamber 3 is replaced with the carrier gas (H 2 ), and then a power supply command is issued to the heating device 12. Power supply to the RF coil 11 is started. The carrier gas supply is continued. The power supply to the RF coil 11 is preferably controlled by feeding back the output of the temperature sensor 13 to the control device 15 and raising the temperature of the susceptor 4 and the substrate 14 at a predetermined temperature gradient.
前記パージガスの供給停止およびキャリアガスの供給開
始は、基板14が常温であり、スリップを発生する状態に
ないため、ON,OFF的に行なっても全く問題を生じない。Since the supply of the purge gas and the start of the supply of the carrier gas are performed at the normal temperature of the substrate 14 and are not in the state of causing the slip, there is no problem even if they are turned on and off.
RFコイル11への給電により、サセプタ4および基板14
は、例えば1150℃などの気相成長温度まで加熱され、以
後、この気相成長温度に保持される。By supplying power to the RF coil 11, the susceptor 4 and the substrate 14
Is heated to a vapor growth temperature such as 1150 ° C., and thereafter maintained at this vapor growth temperature.
次いで、エッチングガス用の流量制御器9cを開き、すで
に供給されているキャリアガスと共にエッチングガスを
ノズル6から吹き出させ、基板14の表面の酸化膜などを
除去して基板表面に浄化し、前記エッチングガス用の流
量制御器9cを閉じ、次いで反応ガス用の流量制御器9dを
開いて、キャリアガスと共に反応ガスをノズル6から吹
き出させ、基板14の表面に気相成長によるエピタキシャ
ル膜などの薄膜を形成する。Then, the flow controller 9c for the etching gas is opened, and the etching gas is blown out from the nozzle 6 together with the carrier gas that has already been supplied, and the oxide film on the surface of the substrate 14 is removed to clean the surface of the substrate, and the etching is performed. The flow rate controller 9c for gas is closed, and then the flow rate controller 9d for reaction gas is opened to blow out the reaction gas together with the carrier gas from the nozzle 6 to form a thin film such as an epitaxial film by vapor phase growth on the surface of the substrate 14. Form.
本発明は、前記エッチングガスや反応ガスの供給時のよ
うに基板14がスリップを起こし易い温度以上に加熱され
ている場合、これらのガスの供給に伴なう基板14の表裏
の温度のアンバランスによるスリップの発生を押えるも
ので、これを第2図により説明する。第2図は反応ガス
の供給開始時を示すもので、前述した流量制御器9dを開
いて反応ガスを供給する場合、第2図の線A2に示すよう
に、反応ガスの供給流量を零から所定の勾配をもって次
第に増加させるようにする。この零から所定の流量まで
移行させるための制御は、制御装置15で行なわれる。こ
の零から所定流量に到達するまでの時間Tは、反応室3
の大きさ、反応ガスの種類および供給流量などによって
定められるが、実験によれば、反応ガスがSiCl4で、5
インチのウェハを10数枚処理する装置の場合でも1分程
度で十分であった。The present invention, when the substrate 14 is heated to a temperature at which slipping is likely to occur as in the case of supplying the etching gas or the reaction gas, the temperature unbalance between the front and back surfaces of the substrate 14 accompanying the supply of these gases is unbalanced. The occurrence of slip due to the above is suppressed, which will be described with reference to FIG. FIG. 2 shows the start of the supply of the reaction gas. When the flow controller 9d is opened to supply the reaction gas, as shown by the line A 2 in FIG. To be gradually increased with a predetermined gradient. The control for changing the flow rate from zero to a predetermined flow rate is performed by the controller 15. The time T from reaching zero to the predetermined flow rate is determined by the reaction chamber 3
The size of, but is determined depending on the type and flow rate of the reaction gas, according to the experiments, the reaction gas in SiCl 4, 5
Even in the case of an apparatus for processing several ten inch wafers, about one minute was sufficient.
このように反応ガスの供給をON,OFF的に行なわずある勾
配をもって漸時増加させると、温度センサ13の出力は、
第2図に線B2で示すように、反応ガスの供給開始に伴な
う温度降下が少なく、さらに温度降下のカーブが非常に
ゆるやかになる。そこで、線C2に示すように、加熱用出
力すなわちRFコイル11に対する給電量の増加もゆるくか
つ小さな値に押えられ、サセプタ4上に置かれた基板14
の表裏の温度のアンバランスの発生が小さく押えられ
る。In this way, when the supply of the reaction gas is not turned ON or OFF and gradually increased with a certain gradient, the output of the temperature sensor 13 becomes
As shown by the line B 2 in FIG. 2 , the temperature drop accompanying the start of the supply of the reaction gas is small, and the curve of the temperature drop becomes very gentle. Therefore, as shown by the line C 2 , the increase in the heating output, that is, the amount of power supply to the RF coil 11 is suppressed to a gentle and small value, and the substrate 14 placed on the susceptor 4 is suppressed.
The occurrence of temperature imbalance between the front and back sides can be suppressed.
そこで、この基板表裏の温度のアンバランスによる基板
自身のスリップの発生が押えられ、また、気相成長によ
ってエピタキシャル層を形成する場合にはスリップの少
ないエピタキシャル層が得られる。Therefore, the occurrence of the slip of the substrate itself due to the imbalance of the temperature on the front and back sides of the substrate is suppressed, and when the epitaxial layer is formed by vapor phase growth, the epitaxial layer with less slip can be obtained.
第2図は反応ガスの供給開始時を例にとって示したが、
エッチングガスの供給開始時やキャリアガスを反応ガス
の供給と共に増加させる場合、それに伴なう温度降下の
程度によって前記反応ガスの供給開始時と同様の流量制
御を行えばよい。また、すでに供給しているガスを停止
もしくは減少させる場合には、供給開始時程の問題は生
じないが、変化の度合によっては漸減させるように制御
することが好ましい。Although FIG. 2 shows an example of starting the supply of the reaction gas,
When the supply of the etching gas is started or when the carrier gas is increased together with the supply of the reaction gas, the same flow rate control as that at the start of the supply of the reaction gas may be performed depending on the degree of the temperature drop accompanying it. Further, when stopping or reducing the gas that has already been supplied, there is no problem at the time of starting the supply, but it is preferable to control so as to gradually decrease depending on the degree of change.
以上述べたように本発明によれば、例えば反応ガスの供
給開始時のように、反応室への供給ガスの種類や流量変
化に伴なう基板の表裏の温度のアンバランスを押えてこ
の温度のアンバランスによる基板自身のスリップの発生
を少なく押えることができ、欠陥発生の少ない良好な気
相成長を行なうことができる。As described above, according to the present invention, for example, at the time of starting the supply of the reaction gas, it is possible to suppress the temperature imbalance between the front surface and the back surface of the substrate due to the type and flow rate change of the supply gas to the reaction chamber. It is possible to suppress the occurrence of slip of the substrate itself due to the imbalance of the above, and it is possible to perform good vapor phase growth with few defects.
第1図は本発明を適用するための気相成長装置の一例を
示す概要図、第2図は本発明による反応ガスの供給開始
時の流量およびそれに伴なう温度センサ出力と加熱用出
力の関係を示す線図、第3図は従来の反応ガスの供給開
始時の流量およびそれに伴なう温度センサ出力と加熱用
出力の関係を示す線図、第4図は反応ガスの供給流量と
温度センサ出力の降下量との関係を示す図である。 1……ベースプレート、2……ベルジャ、3……反応
室、4……サセプタ、5……中空回転軸、6……ノズ
ル、7……ガス導入管、8a,8b,8c,8d……ガス供給源、9
a,9b,9c,9d……流量制御器、10……排気口、11……RFコ
イル、12……加熱装置、13……温度センサ、14……基
板、15……制御装置。FIG. 1 is a schematic diagram showing an example of a vapor phase growth apparatus for applying the present invention, and FIG. 2 is a flow rate at the time of starting the supply of a reaction gas according to the present invention and the accompanying temperature sensor output and heating output. FIG. 3 is a diagram showing the relationship, FIG. 3 is a diagram showing the conventional flow rate at the start of supply of the reaction gas and the relationship between the temperature sensor output and the heating output, and FIG. 4 is the reaction gas supply flow rate and temperature. It is a figure which shows the relationship with the fall amount of a sensor output. 1 ... Base plate, 2 ... Bell jar, 3 ... Reaction chamber, 4 ... Susceptor, 5 ... Hollow rotating shaft, 6 ... Nozzle, 7 ... Gas introduction pipe, 8a, 8b, 8c, 8d ... Gas Source, 9
a, 9b, 9c, 9d ... Flow controller, 10 ... Exhaust port, 11 ... RF coil, 12 ... Heating device, 13 ... Temperature sensor, 14 ... Board, 15 ... Control device.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−10772(JP,A) 半導体・集積回路の生産技術第4回シン ポジウム講演要旨集第24〜27頁(昭和48年 4月19日) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-52-10772 (JP, A) Production technology for semiconductors and integrated circuits The 4th Symposium Lecture Abstracts, pages 24-27 (April 19, 1973) Day)
Claims (1)
反応ガスを接触させて該基板表面に薄膜を形成する気相
成長において、基板がスリップを起こし易い温度以上に
加熱されている際に、反応室内に供給するガスの流量ま
たは種類を変える場合、ガスの供給流量を制御しつつ希
望する値まで漸次増加または減少させることにより基板
の温度変化を小さく抑えることを特徴とする気相成長に
おけるスリップ防止方法。1. In vapor phase growth in which a reaction gas is brought into contact with a substrate surface heated in a reaction chamber to form a thin film on the substrate surface, when the substrate is heated to a temperature at which slipping is likely to occur or more. In addition, when changing the flow rate or type of gas supplied into the reaction chamber, the vapor phase growth is characterized in that the temperature change of the substrate is suppressed small by gradually increasing or decreasing to a desired value while controlling the gas supply flow rate. Slip prevention method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59244791A JPH0713942B2 (en) | 1984-11-20 | 1984-11-20 | Slip prevention method in vapor phase growth |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59244791A JPH0713942B2 (en) | 1984-11-20 | 1984-11-20 | Slip prevention method in vapor phase growth |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61123130A JPS61123130A (en) | 1986-06-11 |
JPH0713942B2 true JPH0713942B2 (en) | 1995-02-15 |
Family
ID=17123979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59244791A Expired - Lifetime JPH0713942B2 (en) | 1984-11-20 | 1984-11-20 | Slip prevention method in vapor phase growth |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0713942B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52107772A (en) * | 1976-03-06 | 1977-09-09 | Kanematsu Semikondakutaa Kk | Apparatus for controlling epitaxial growth |
-
1984
- 1984-11-20 JP JP59244791A patent/JPH0713942B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
半導体・集積回路の生産技術第4回シンポジウム講演要旨集第24〜27頁(昭和48年4月19日) |
Also Published As
Publication number | Publication date |
---|---|
JPS61123130A (en) | 1986-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6287635B1 (en) | High rate silicon deposition method at low pressures | |
US7919397B2 (en) | Method for reducing agglomeration of Si layer, method for manufacturing semiconductor device and vacuum treatment apparatus | |
JP3257356B2 (en) | Vapor phase growth apparatus, vapor phase growth method, and cleaning method for vapor phase growth apparatus | |
US5578521A (en) | Semiconductor device with vaporphase grown epitaxial | |
JP3213032B2 (en) | Fabrication of integrated circuits using amorphous layers | |
JPH0713942B2 (en) | Slip prevention method in vapor phase growth | |
TWI362075B (en) | ||
JPH09199424A (en) | Epitaxial growth | |
JPH08274033A (en) | Vapor growth method and device | |
JP3235095B2 (en) | Method of forming silicon oxide film | |
JPH09235676A (en) | Plasma treatment and plasma treating device | |
JP2009278086A (en) | Process and apparatus processing wafer | |
JPH04260322A (en) | Semiconductor manufacturing equipment | |
JPH09106985A (en) | Forming method of flattened interlayer insulating film | |
JP2792353B2 (en) | Vapor phase growth equipment | |
JP2502582B2 (en) | Plasma CVD equipment | |
JP2672945B2 (en) | Vapor growth method | |
JPH07283205A (en) | Etching method | |
JPH0283918A (en) | Vapor growth device | |
JP3096073B2 (en) | Vapor phase growth apparatus and method | |
JP3469697B2 (en) | Single wafer processing method | |
JP3250271B2 (en) | Method of diffusing impurities into group 3-5 compound semiconductor | |
JPH0574719A (en) | Vapor growth device | |
JPH0737822A (en) | Chemical vapor growth device and formation of semiconductor thin film | |
JPS6034021A (en) | Protective film forming apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |