JP3096073B2 - Vapor phase growth apparatus and method - Google Patents

Vapor phase growth apparatus and method

Info

Publication number
JP3096073B2
JP3096073B2 JP03038764A JP3876491A JP3096073B2 JP 3096073 B2 JP3096073 B2 JP 3096073B2 JP 03038764 A JP03038764 A JP 03038764A JP 3876491 A JP3876491 A JP 3876491A JP 3096073 B2 JP3096073 B2 JP 3096073B2
Authority
JP
Japan
Prior art keywords
substrate
phase growth
vapor phase
temperature
reaction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03038764A
Other languages
Japanese (ja)
Other versions
JPH04348023A (en
Inventor
裕輔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12534353&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3096073(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03038764A priority Critical patent/JP3096073B2/en
Publication of JPH04348023A publication Critical patent/JPH04348023A/en
Application granted granted Critical
Publication of JP3096073B2 publication Critical patent/JP3096073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[発明の目的][Object of the Invention]

【0002】[0002]

【産業上の利用分野】本発明は、半導体等の製造に用い
られる気相成長装置およびその方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth apparatus used for manufacturing semiconductors and the like and a method therefor.

【0003】[0003]

【従来の技術】反応炉内にガス(原料ガス、キャリアガ
ス等)を供給し前記反応炉内に配置した基板上に薄膜を
気相成長させる気相成長装置では、従来、気相成長中に
薄膜の気相成長速度や膜組成を変化させようとする場合
は、一般に原料ガスのみの供給量を調整することによっ
て行われている。
2. Description of the Related Art In a vapor phase growth apparatus for supplying a gas (a raw material gas, a carrier gas, etc.) into a reaction furnace and vapor-growing a thin film on a substrate arranged in the reaction furnace, conventionally, a gas phase growth apparatus has When trying to change the vapor phase growth rate or the film composition of a thin film, it is generally performed by adjusting the supply amount of only the source gas.

【0004】また、従来の気相成長装置では、基板の温
度の昇温時と降温時は、一般に基板の回転数、反応炉内
の圧力、反応炉内に供給されるガスの供給量は一定のま
まである。
Further, in the conventional vapor phase growth apparatus, when the temperature of the substrate is raised and lowered, the rotation speed of the substrate, the pressure in the reactor, and the supply amount of gas supplied to the reactor are generally constant. Remains.

【0005】[0005]

【発明が解決しようとする課題】上記したように従来の
気相成長装置では、薄膜の膜組成や気相成長速度の制御
は原料ガスのみの供給量を変化させることによって行わ
れているが、原料ガスのみの供給量制御では、膜組成を
容易に且つ微妙に変化させることが困難であり、しか
も、気相成長速度の変化範囲を大きくすることも困難で
あった。
As described above, in the conventional vapor-phase growth apparatus, the control of the film composition and the vapor-phase growth rate of the thin film is performed by changing the supply amount of the source gas alone. With the control of the supply amount of the source gas alone, it is difficult to easily and delicately change the film composition, and it is also difficult to increase the change range of the vapor phase growth rate.

【0006】また、前記したように一般に基板温度を昇
降温中は基板の回転数、反応炉内の圧力、反応炉内に供
給されるガスの供給量が一定のままなので、基板温度の
昇降温に時間がかかり(昇温中または降温中の基板から
の放熱量を制御していないため)、スループット(単位
時間当たりの処理能力)の向上を図ることができなかっ
た。
Also, as described above, since the rotation speed of the substrate, the pressure in the reaction furnace, and the supply amount of the gas supplied into the reaction furnace are generally kept constant while the substrate temperature is raised and lowered, the substrate temperature is raised and lowered. It takes time (because the amount of heat radiation from the substrate during the temperature rise or the temperature decrease is not controlled), and it is not possible to improve the throughput (processing capacity per unit time).

【0007】また、基板を昇温する際には基板や基板ホ
ルダの加熱が不均一になりやすく、基板や基板ホルダが
反る等の変形が生じやすい。この時、基板の回転数があ
る程度速いと、遠心力によって基板ホルダ上に載置され
ている基板が所定の位置からずれたり、最悪の場合は飛
出す虞れがある。
Further, when the temperature of the substrate is raised, the heating of the substrate and the substrate holder tends to be uneven, and the substrate and the substrate holder are liable to be deformed such as warping. At this time, if the number of rotations of the substrate is high to some extent, the substrate placed on the substrate holder may be displaced from a predetermined position by a centrifugal force, or may fly out in the worst case.

【0008】本発明は上記した課題を解決する目的でな
され、気相成長中に薄膜の膜組成や気相成長速度を容易
に変化させることができ、また、基板温度の昇降温時間
を短縮することができ、また、あるいは基板の回転数が
早い成長条件においても基板が飛出すことのない気相成
長装置およびその方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is possible to easily change a film composition and a vapor growth rate of a thin film during vapor growth, and to shorten a time for raising and lowering a substrate temperature. It is another object of the present invention to provide a vapor phase growth apparatus and a method thereof in which a substrate does not fly out even under growth conditions in which the rotation speed of the substrate is high.

【0009】[発明の構成][Structure of the Invention]

【0010】[0010]

【課題を解決するための手段】第1の本発明は反応炉内
に原料ガスを供給し前記反応炉内に配置した基板上に薄
膜を気相成長させる気相成長装置において、気相成長中
あるいは前記基板温度の昇温もしくは降温中のいずれか
1つ以上の工程に、前記基板の回転数を任意の回転数に
制御する回転制御装置、前記反応炉内の圧力を任意の圧
力に制御する圧力制御装置、前記反応炉内に前記基板上
流側より供給される前記原料ガスおよびキャリアガスの
総供給量を任意の供給量に制御するガス供給制御装置の
うち、いずれか1つ以上の装置を具備したことを特徴と
している。
According to a first aspect of the present invention, there is provided a vapor growth apparatus for supplying a raw material gas into a reaction furnace and vapor-growing a thin film on a substrate disposed in the reaction furnace. Alternatively, in any one or more steps of raising or lowering the temperature of the substrate, a rotation control device that controls the rotation speed of the substrate to an arbitrary rotation speed, and controls the pressure in the reaction furnace to an arbitrary pressure. A pressure control device, a gas supply control device for controlling the total supply amount of the source gas and the carrier gas supplied from the upstream side of the substrate into the reaction furnace to an arbitrary supply amount; It is characterized by having.

【0011】第2の本発明は、反応炉内に原料ガスを供
給し前記反応炉内に配置した基板上に薄膜を気相成長さ
せる気相成長方法において、気相成長中あるいは前記基
板温度の昇温もしくは降温中のいずれか1つ以上の工程
中に、前記基板の回転数、前記反応炉内の圧力、前記反
応炉内に供給されるガスの供給量のうち、いずれか1つ
以上の気相成長条件を変化させることを特徴としてい
る。
According to a second aspect of the present invention, there is provided a vapor phase growth method for supplying a source gas into a reaction furnace and vapor-phase growing a thin film on a substrate disposed in the reaction furnace. During one or more steps of raising or lowering the temperature, one or more of the number of rotations of the substrate, the pressure in the reaction furnace, and the supply amount of gas supplied to the reaction furnace It is characterized in that the vapor growth conditions are changed.

【0012】[0012]

【作用】気相成長が拡散律速の場合、気相成長速度GR
(グロースレート)は、原料ガス供給量f、反応炉内圧
力(気相成長圧力)P、基板回転数ω、トータルガス
(原料ガス、キャリアガス等)供給量Fとの間に下記に
示した数1のような関係がある。
When the vapor phase growth is diffusion-controlled, the vapor phase growth rate GR
(Growth rate) is shown below between the source gas supply amount f, the reactor pressure (gas phase growth pressure) P, the substrate rotation speed ω, and the total gas (source gas, carrier gas, etc.) supply amount F. There is a relationship such as Equation 1.

【0013】[0013]

【数1】 (Equation 1)

【0014】数1の関係が成り立つことにより、原料ガ
ス供給量fの他に基板回転数ω、反応炉内圧力P、トー
タルガス供給量Fを変化させることにより、気相成長速
度を従来のように原料ガス供給量のみを変化させる場合
よりも大きく変化させることができる(数倍の範囲で大
きくすることができる)。
By satisfying the relationship of Equation 1, by changing the substrate rotation speed ω, the reactor pressure P, and the total gas supply amount F in addition to the source gas supply amount f, the vapor phase growth rate can be reduced as in the prior art. It can be changed more than the case where only the raw material gas supply amount is changed (it can be increased within a range of several times).

【0015】また、基板回転数ω、反応炉内圧力P、ト
ータルガス供給量Fが所定の条件を満たす時には、これ
ら基板回転数ωと反応炉内圧力Pと基板上に気相成長さ
れる薄膜の濃度境界層の厚みδとの間に下記に示した数
2のような関係がある。
When the substrate rotation speed ω, the reaction furnace pressure P, and the total gas supply amount F satisfy predetermined conditions, the substrate rotation speed ω, the reaction furnace pressure P, and the thin film to be vapor-phase grown on the substrate. And the thickness δ of the concentration boundary layer of the following equation (2).

【0016】[0016]

【数2】 (Equation 2)

【0017】数2の関係が成り立つことにより、反応炉
内圧力Pと基板回転数ωのいずれか一方あるいは両方を
変化させることによって、原料ガスの境界層内の反応や
拡散の違いによる微妙な組成制御ができることが発明者
の実験で分った。
When either or both of the pressure P in the reactor and the substrate rotation speed ω are changed when the relationship of Expression 2 is established, a delicate composition due to a difference in reaction and diffusion in the boundary layer of the source gas is obtained. Experiments by the inventor have shown that control is possible.

【0018】さらに、トータルガス供給量Fを変化させ
ても、濃度境界層の厚みδが変化するため、トータルガ
ス供給量Fを変化させても微妙な組成変化が可能であ
る。
Further, even if the total gas supply amount F is changed, the thickness δ of the concentration boundary layer changes, so that even if the total gas supply amount F is changed, a delicate composition change is possible.

【0019】また、気相成長時の基板からの放熱量q
は、ガス伝熱による放熱量をq1 、幅射による放熱量を
2 とすると、 q=q1 +q2 ………………(3) の関係がある。
The amount of heat radiated from the substrate during vapor phase growth q
Assuming that the amount of heat radiation by gas heat transfer is q 1 and the amount of heat radiation by lateral radiation is q 2 , there is a relationship of q = q 1 + q 2 (3).

【0020】また、前記したガス伝熱による放熱量はq
1 は、反応炉内圧力P、基板回転数ωとの間に下記に示
した数3のような関係がある。
The amount of heat released by the gas heat transfer is q
1 has a relationship between the pressure P in the reactor and the number of rotations ω of the substrate as shown in the following Expression 3.

【0021】[0021]

【数3】 (Equation 3)

【0022】さらに、ガスが得る熱量は、ガス供給量F
が大きいほど大きくなる。これらの関係が成り立つこと
により、基板温度の昇温時には基板からの放熱量を少な
くするように、また、基板の降温時には基板からの放熱
量を多くするように、反応炉内圧力P、基板回転数ω、
トータルガス供給量Fを変化させることによって、基板
温度の昇降温にかかる時間を短縮できる。
Further, the amount of heat obtained by the gas depends on the gas supply amount F
The larger is the larger. By satisfying these relationships, the pressure P in the reaction furnace and the rotation of the substrate are adjusted so that the amount of heat radiation from the substrate is reduced when the substrate temperature rises and the amount of heat radiation from the substrate is increased when the substrate temperature is decreased. Number ω,
By changing the total gas supply amount F, the time required for raising and lowering the substrate temperature can be reduced.

【0023】即ち、基板温度の昇温時には基板回転数ω
を小さくする、あるいは反応炉内圧力Pを低くする、あ
るいはトータルガス供給量を少なくする、あるいはその
2つ以上の方法を行う。また、降温時には基板回転数ω
を大きくする、あるいは反応炉内圧力Pを高くする、あ
るいはガス供給量を多くする、あるいはその2つ以上の
方法を行う。
That is, when the substrate temperature rises, the substrate rotation speed ω
, Or the pressure P in the reactor, or the total gas supply amount, or two or more methods. Also, when the temperature is lowered, the substrate rotation speed ω
Is increased, the pressure P in the reactor is increased, or the gas supply amount is increased, or two or more methods are performed.

【0024】[0024]

【実施例】以下、本発明を図示の一実施例に基づいて詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on one embodiment shown in the drawings.

【0025】図1は、本発明の一実施例に係わる気相成
長装置を示す概略構成図である。この図に示すように、
反応炉1内には基板2を載置した基板ホルダ3が配設さ
れており、基板ホルダ3には回転軸4を介してモータ5
とモータ5の回転数を制御する回転制御装置6が接続さ
れている。回転制御装置6は、モータ5の回転数を制御
して基板ホルダ3(基板2)の気相成長中及び基板温度
の昇降温時の回転速度を任意に変化させることができ
る。
FIG. 1 is a schematic diagram showing a vapor phase growth apparatus according to one embodiment of the present invention. As shown in this figure,
A substrate holder 3 on which a substrate 2 is placed is provided in the reaction furnace 1, and a motor 5 is mounted on the substrate holder 3 via a rotating shaft 4.
And a rotation control device 6 for controlling the number of rotations of the motor 5 are connected. The rotation control device 6 can arbitrarily change the rotation speed during the vapor phase growth of the substrate holder 3 (substrate 2) and during the temperature rise and fall of the substrate temperature by controlling the rotation speed of the motor 5.

【0026】反応炉1の上部には、配管7aを介して原
料ガス(例えばTMG,TMI,AsH3 ,PH3 )、
キャリアガス(例えばH2 )、配管7bを介してパージ
ガス(例えばH2 )をそれぞれ反応炉1内に供給するた
めのガス供給制御装置8が接続されており、反応炉1の
下部には、バルブ9を設けた配管10を介して排気制御
装置(反応炉内圧力制御装置)11が接続されている。
ガス供給制御装置8は、気相成長中及び基板温度の昇降
温中に原料ガス、キャリアガス、パージガスの反応炉1
内への供給を任意に制御することができ、排気制御装置
11は気相成長中及び基板温度の昇降温中に反応炉1内
の圧力を任意に制御することができる。
At the upper part of the reactor 1, raw material gases (for example, TMG, TMI, AsH 3 , PH 3 )
A gas supply control device 8 for supplying a carrier gas (for example, H 2 ) and a purge gas (for example, H 2 ) to the inside of the reactor 1 via a pipe 7b is connected. An exhaust control device (reactor internal pressure control device) 11 is connected via a pipe 10 provided with 9.
The gas supply control device 8 controls the reaction furnace 1 of the source gas, the carrier gas, and the purge gas during the vapor phase growth and during the temperature rise and fall of the substrate temperature.
The gas supply into the reactor can be arbitrarily controlled, and the exhaust controller 11 can arbitrarily control the pressure in the reactor 1 during the vapor phase growth and during the temperature rise and fall of the substrate temperature.

【0027】また、反応炉1にはヒータ12によって加
熱される基板2の温度を制御する温度制御装置13が接
続されている。
A temperature controller 13 for controlling the temperature of the substrate 2 heated by the heater 12 is connected to the reaction furnace 1.

【0028】これらの制御装置は各々が独立になってい
てもよいし、他の制御装置からの制御により連動してよ
い。
These control devices may be independent of each other, or may be interlocked by control from another control device.

【0029】本実施例に係る気相成長装置は上記のよう
に構成されており、排気制御装置11で反応炉1内を排
気して反応炉内圧力を調整し、ヒータ12の加熱によっ
て基板2を所定温度に上昇させると共に、回転制御装置
6でモータ5を回転駆動して基板ホルダ3(基板2)を
回転させて、ガス供給制御装置8により原料ガス、キャ
リアガス、パージガス等を反応炉1内に供給することに
よって、基板2上に多元素の半導体薄膜を気相成長させ
る。
The vapor phase growth apparatus according to the present embodiment is configured as described above. The exhaust control device 11 evacuates the reactor 1 to adjust the pressure in the reactor, and the substrate 12 is heated by the heater 12. Is raised to a predetermined temperature, the rotation control device 6 rotates the motor 5 to rotate the substrate holder 3 (substrate 2), and the gas supply control device 8 converts the raw material gas, carrier gas, purge gas and the like into the reaction furnace 1. In this case, a multi-element semiconductor thin film is vapor-phase grown on the substrate 2.

【0030】この時、例えば本実施例では気相成長中の
トータルガス(原料ガス、キャリアガス、パージガス
等)供給量、反応炉1内の圧力、基板2の温度は、それ
ぞれガス供給制御装置8、排気制御装置11、温度制御
装置13によって一定に制御されている。そして、基板
2を回転駆動するモータ5の回転数を回転制御装置6に
よって変化させる。
At this time, for example, in this embodiment, the supply amount of the total gas (source gas, carrier gas, purge gas, etc.) during the vapor phase growth, the pressure in the reaction furnace 1 and the temperature of the substrate 2 are respectively controlled by the gas supply control device 8. , And is controlled to be constant by the exhaust control device 11 and the temperature control device 13. Then, the number of rotations of the motor 5 that drives the substrate 2 to rotate is changed by the rotation control device 6.

【0031】図2は、この時の気相成長時における格子
不整合率(例えばIn/Ga)と基板回転数(ω)、反
応炉内圧力(P)との関係を示した図である。この場
合、反応炉内圧力を排気制御装置11によって一定に制
御して、基板回転数を回転制御装置6によって変化させ
た場合である。尚、図2において、縦軸は格子不整合率
(In/Ga)、横軸は反応炉内圧力(P)・基板回転
数(ω)の平方根である。
FIG. 2 is a graph showing the relationship between the lattice mismatch (for example, In / Ga), the substrate rotation speed (ω), and the reactor pressure (P) during the vapor phase growth. In this case, the pressure inside the reaction furnace is controlled to be constant by the exhaust control device 11 and the rotation speed of the substrate is changed by the rotation control device 6. In FIG. 2, the vertical axis represents the lattice mismatch ratio (In / Ga), and the horizontal axis represents the square root of the reactor internal pressure (P) / substrate rotation speed (ω).

【0032】また、図3は、本実施例における格子不整
合率(例えばIn/Ga)の基板面内分布を示した図で
ある。この図では、例えばGaInAs層とGaInA
sP層をそれぞれ基板2上に気相成長させる際に、回転
制御装置6によって基板2の回転回数を2500rpm
と40rpmに変化させた場合における基板面内分布が
示されている。尚、図3において、縦軸は格子不整合率
(In/Ga)、横軸は基板2の中心(0)から半径方
向の距離である。
FIG. 3 is a diagram showing the distribution of the lattice mismatch (for example, In / Ga) in the substrate plane in this embodiment. In this figure, for example, a GaInAs layer and a GaInA
When each sP layer is vapor-phase grown on the substrate 2, the rotation control device 6 controls the number of rotations of the substrate 2 to 2500 rpm.
And the in-plane distribution of the substrate when it is changed to 40 rpm. In FIG. 3, the vertical axis represents the lattice mismatch (In / Ga), and the horizontal axis represents the radial distance from the center (0) of the substrate 2.

【0033】図2、図3から明らかなように、気相成長
中に基板回転数を変化させることによって基板2上に気
相成長される薄膜の組成を容易に、且つ微妙に調整する
ことができることが確認された。
As is apparent from FIGS. 2 and 3, the composition of the thin film grown on the substrate 2 can be easily and finely adjusted by changing the rotation speed of the substrate during the vapor growth. It was confirmed that it was possible.

【0034】図4は、本実施例における気相成長中の気
相成長速度(GR)と反応炉内圧力(P)、基板回転数
(ω)、トータルガス(原料ガス、キャリアガス、パー
ジガス等)供給量(F)、原料ガス供給量(f)との関
係を示した図である。この図に示すように本実施例で
は、気相成長中に基板回転数を変化させることによっ
て、従来の気相成長方法のように、原料ガス供給量
(f)だけを変化させる場合(図4の線上でしか変化さ
せることができない)に比べて数倍の範囲で成長速度を
変化させることができる。尚、図4において、縦軸は気
相成長速度(GR)、横軸は下記に示す数4である。
FIG. 4 shows a gas phase growth rate (GR), a reactor pressure (P), a substrate rotation speed (ω), a total gas (a source gas, a carrier gas, a purge gas, etc.) during the vapor phase growth in this embodiment. FIG. 4 is a diagram showing a relationship between a supply amount (F) and a source gas supply amount (f). As shown in this figure, in this embodiment, only the source gas supply amount (f) is changed by changing the substrate rotation speed during the vapor phase growth as in the conventional vapor phase growth method (FIG. 4). The growth rate can be changed in a range several times as large as that in the case of (a). In FIG. 4, the vertical axis is the vapor phase growth rate (GR), and the horizontal axis is Equation 4 shown below.

【0035】[0035]

【数4】 (Equation 4)

【0036】前記した実施例では、気相成長中に反応炉
内圧力およびトータルガス供給量を一定に制御して基板
回転数だけを変化させる場合であったが、反応炉内圧
力、トータルガス供給量、基板回転数のいずれか1つ、
あるいはいずれか2つ、あるいはすべてを変化させるよ
うにしてもよい。
In the above-described embodiment, the pressure inside the reaction furnace and the total gas supply amount are controlled to be constant during the vapor phase growth, and only the number of rotations of the substrate is changed. Quantity, one of substrate rotation speed,
Alternatively, any two or all of them may be changed.

【0037】次に、前記した実施例において、基板温度
の昇温時と降温時における反応炉内圧力、基板回転数の
制御について図5を参照して説明する。
Next, the control of the pressure inside the reaction furnace and the number of rotations of the substrate when the substrate temperature is raised and lowered in the above-described embodiment will be described with reference to FIG.

【0038】なお、本発明において基板温度の昇降温期
間は次のように定義される。すなわち、昇温期間とは基
板温度を上昇させ、気相成長工程が始まるまでの期間で
あって、基板温度がほぼ一定となり気相成長が行なわれ
るまでの温度一定期間も含んでいる。また、昇温期間と
は気相成長工程が終了した時点以降の期間である。上記
した気相成長装置の反応炉1内に設けた基板ホルダ3上
に基板2を載置し、ヒータ12に通電して基板2を所定
温度まで加熱する(昇温期間)。この時、前記した
(4)式に示したように基板2の回転数を回転制御装置
4により低回転に制御することによって、基板2からの
放熱量を少なくすることができるので、基板2の昇温
(加熱)時間を短縮することができる。
In the present invention, the period during which the temperature of the substrate rises and falls is defined as follows. In other words, the heating period is a period from when the substrate temperature is increased to the start of the vapor phase growth step, and includes a constant temperature period until the substrate temperature becomes substantially constant and the vapor phase growth is performed. Further, the heating period is a period after the end of the vapor phase growth step. The substrate 2 is placed on the substrate holder 3 provided in the reaction furnace 1 of the above-described vapor phase growth apparatus, and the heater 12 is energized to heat the substrate 2 to a predetermined temperature (temperature rising period). At this time, the amount of heat radiation from the substrate 2 can be reduced by controlling the rotation speed of the substrate 2 to a low rotation by the rotation control device 4 as shown in the above equation (4). The time for heating (heating) can be shortened.

【0039】また、昇温時に基板回転数を小さくするこ
とにより、昇温によって基板2が反ったりして変形が生
じた時に、遠心力により基板ホルダ3から飛出すのを防
止することができる。
Further, by reducing the number of rotations of the substrate at the time of raising the temperature, it is possible to prevent the substrate 2 from jumping out of the substrate holder 3 due to centrifugal force when the substrate 2 is warped and deformed due to the temperature rise.

【0040】基板2を昇温して温度制御装置13により
所定温度に制御すると、前記した方法により気相成長を
行う(気相成長期間)。
When the temperature of the substrate 2 is raised and controlled to a predetermined temperature by the temperature controller 13, vapor phase growth is performed by the above-described method (vapor phase growth period).

【0041】気相成長後、基板温度を降温する時は、基
板2の回転数を回転制御装置6により高速回転に制御す
ることによって、前記した(4)式に示したように基板
2からの放熱量を多くすることができるので、基板2の
降温(冷却)時間を短縮することができる(降温期
間)。
When the temperature of the substrate is lowered after the vapor phase growth, the rotation speed of the substrate 2 is controlled to a high speed by the rotation control device 6 so that the rotation speed of the substrate 2 from the substrate 2 is increased as shown in the above equation (4). Since the amount of heat radiation can be increased, the temperature lowering (cooling) time of the substrate 2 can be shortened (temperature lowering period).

【0042】また、前記した実施例では基板温度を昇温
させる際に、基板回転数だけを小さくしたが、反応炉内
圧力を高くしたり、あるいはトータルガス供給量を少な
くしたり、あるいはこれらを組合せることによっても基
板2温度の昇温時間を短縮することができる。
In the above embodiment, when the substrate temperature is raised, only the substrate rotation speed is reduced. However, the pressure in the reactor is increased, the total gas supply amount is reduced, or The combination can also reduce the time for raising the temperature of the substrate 2.

【0043】また、前記した実施例では基板2を降温さ
せる際に、基板回転数だけを大きくしたが、反応炉内圧
力を低くしたり、あるいはガス供給量を大きくしたり、
あるいはこれらを組合せることによっても基板2の降温
時間を短縮することができる。
In the above embodiment, when the temperature of the substrate 2 is lowered, only the number of rotations of the substrate is increased. However, the pressure in the reaction furnace may be reduced, or the gas supply amount may be increased.
Alternatively, the temperature drop time of the substrate 2 can be reduced by combining them.

【0044】このように、基板2温度の昇降温度時間を
短縮することができるので、スループットを向上させる
ことができる。
As described above, the time for raising and lowering the temperature of the substrate 2 can be shortened, so that the throughput can be improved.

【0045】[0045]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように本発明によれば、気相成長中あるいは基板温度
の昇温もしくは降温中のいずれか1つの工程中に、基板
回転数、反応炉内圧力、ガス供給量のうち、いずれか1
つ以上の気相成長条件を変化させることによって、基板
上に気相成長される膜組成を容易に且つ微妙に変化させ
ることができ、しかも、気相成長速度の変化範囲を大き
くすることができる。また、基板温度の昇温時に基板回
転数を小さくすることができるので、基板が回転時に生
じる遠心力によって飛出すことを防止することができ
る。
As described above, according to the present invention, according to the present invention, during one of the steps of vapor phase growth or raising or lowering the substrate temperature, the substrate rotation speed is reduced. Any one of the following: reactor internal pressure, gas supply amount
By changing one or more vapor growth conditions, the composition of a film to be vapor-grown on a substrate can be easily and finely changed, and the range of change of the vapor growth rate can be increased. . Further, since the number of rotations of the substrate can be reduced when the temperature of the substrate is increased, it is possible to prevent the substrate from flying out due to the centrifugal force generated during the rotation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係わる気相成長装置を示す
概略構成図である。
FIG. 1 is a schematic configuration diagram showing a vapor phase growth apparatus according to one embodiment of the present invention.

【図2】気相成長時における格子不整合率(In/G
a)と反応内圧力(P)、基板回転数(ω)との関係を
示す図である。
FIG. 2 shows a lattice mismatch rate (In / G) during vapor phase growth.
FIG. 3A is a diagram showing a relationship among a reaction internal pressure (P) and a substrate rotation speed (ω).

【図3】気相成長時における格子不整合率(In/G
a)の基板面内分布を示した図である。
FIG. 3 shows a lattice mismatch ratio (In / G) during vapor phase growth.
FIG. 3A is a diagram illustrating a distribution in a substrate surface of FIG.

【図4】気相成長速度(GR)と反応炉内圧力(P)、
基板回転数(ω)、反応炉内圧力(P)、トータルガス
供給量(F)、原料ガス供給量(f)との関係を示した
図である。
FIG. 4 shows a gas phase growth rate (GR) and a reactor pressure (P),
FIG. 3 is a diagram showing a relationship among a substrate rotation speed (ω), a reactor internal pressure (P), a total gas supply amount (F), and a source gas supply amount (f).

【図5】基板を昇温して降温するまでの基板回転数
(ω)と反応炉内圧力(P)の関係を示した図である。
FIG. 5 is a diagram showing the relationship between the substrate rotation speed (ω) and the reactor internal pressure (P) from when the temperature of the substrate is increased until the temperature is decreased.

【符号の説明】[Explanation of symbols]

1 反応炉 2 基板 3 基板ホルダ 5 モータ 6 回転制御装置 8 ガス供給制御装置 11 排気制御装置(反応炉内圧力制御装置) 12 ヒータ 13 温度制御装置 REFERENCE SIGNS LIST 1 reaction furnace 2 substrate 3 substrate holder 5 motor 6 rotation control device 8 gas supply control device 11 exhaust control device (reactor pressure control device) 12 heater 13 temperature control device

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反応炉内に原料ガスを供給し、前記反応
炉内に配置した基板上に薄膜を気相成長させる気相成長
装置において、 前記基板の温度を制御する温度制御手段と、 前記温度制御手段によって制御された前記基板の温度に
応じて、当該基板の回転数を制御する回転制御手段とを
具備し、 前記基板を昇温させる時に、前記回転制御手段は前記回
転数を気相成長中の回転数より低回転に制御することを
特徴とする気相成長装置。
1. A vapor phase growth apparatus for supplying a source gas into a reaction furnace and vapor-growing a thin film on a substrate disposed in the reaction furnace, comprising: a temperature control means for controlling a temperature of the substrate; Rotation control means for controlling the number of rotations of the substrate in accordance with the temperature of the substrate controlled by the temperature control means. A vapor phase growth apparatus characterized in that the number of rotations is controlled to be lower than the number of rotations during growth.
【請求項2】 前記回転制御手段は、気相成長中に回転
数を変化させることを特徴とする請求項1に記載の気相
成長装置。
2. The vapor phase growth apparatus according to claim 1, wherein said rotation control means changes a rotation speed during vapor phase growth.
【請求項3】 前記温度制御手段によって制御された前
記基板の温度に応じて、前記反応炉内に前記基板の上流
側から供給される前記原料ガスおよびキャリアガスの供
給量を制御するガス供給制御手段を備えることを特徴と
する請求項1又は請求項2に記載の気相成長装置。
3. A gas supply control for controlling supply amounts of said source gas and carrier gas supplied from an upstream side of said substrate into said reaction furnace according to a temperature of said substrate controlled by said temperature control means. The vapor phase growth apparatus according to claim 1, further comprising a unit.
【請求項4】 前記基板を降温させる時に、前記回転制
御手段は、前記回転数を気相成長中の回転数と異ならせ
ることを特徴とする請求項1、請求項2又は請求項3に
記載の気相成長装置。
4. The apparatus according to claim 1, wherein, when lowering the temperature of the substrate, the rotation control means makes the rotation speed different from the rotation speed during vapor phase growth. Vapor phase growth equipment.
【請求項5】 反応炉内に原料ガスを供給し、前記反応
炉内に配置した基板上に薄膜を気相成長させる気相成長
方法において、 前記基板の温度を制御する温度制御ステップと、 前記温度制御手段によって設定された前記基板の温度に
応じて、当該基板の回転数を制御する回転制御ステップ
とを有し、 前記基板を昇温させる時に、前記回転数を気相成長中の
回転数より低回転に制御することを特徴とする気相成長
方法。
5. A vapor phase growth method for supplying a source gas into a reaction furnace and vapor-phase growing a thin film on a substrate disposed in the reaction furnace, wherein: a temperature control step of controlling a temperature of the substrate; A rotation control step of controlling the number of rotations of the substrate according to the temperature of the substrate set by temperature control means, wherein the number of rotations during vapor phase growth is increased when the substrate is heated. A vapor phase growth method, wherein the rotation speed is controlled to be lower.
【請求項6】 気相成長中に回転数を変化させることを
特徴とする請求項5に記載の気相成長方法。
6. The vapor phase growth method according to claim 5, wherein the number of revolutions is changed during the vapor phase growth.
【請求項7】 前記温度制御ステップによって制御され
た前記基板の温度に応じて、前記反応炉内に前記基板の
上流側から供給される前記原料ガスおよびキャリアガス
の供給量を制御するガス供給制御ステップを有すること
を特徴とする請求項5又は請求項6に記載の気相成長方
法。
7. A gas supply control for controlling supply amounts of the source gas and the carrier gas supplied from an upstream side of the substrate into the reaction furnace according to the temperature of the substrate controlled by the temperature control step. 7. The vapor phase growth method according to claim 5, comprising a step.
【請求項8】 前記基板を降温させる時に、前記回転数
を気相成長中の回転数と異ならせることを特徴とする請
求項5、請求項6又は請求項7に記載の気相成長方法。
8. The vapor phase growth method according to claim 5, wherein, when the temperature of the substrate is lowered, the number of revolutions is made different from the number of revolutions during vapor phase growth.
JP03038764A 1991-03-05 1991-03-05 Vapor phase growth apparatus and method Expired - Lifetime JP3096073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03038764A JP3096073B2 (en) 1991-03-05 1991-03-05 Vapor phase growth apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03038764A JP3096073B2 (en) 1991-03-05 1991-03-05 Vapor phase growth apparatus and method

Publications (2)

Publication Number Publication Date
JPH04348023A JPH04348023A (en) 1992-12-03
JP3096073B2 true JP3096073B2 (en) 2000-10-10

Family

ID=12534353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03038764A Expired - Lifetime JP3096073B2 (en) 1991-03-05 1991-03-05 Vapor phase growth apparatus and method

Country Status (1)

Country Link
JP (1) JP3096073B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW466576B (en) 1999-06-15 2001-12-01 Ebara Corp Substrate processing apparatus

Also Published As

Publication number Publication date
JPH04348023A (en) 1992-12-03

Similar Documents

Publication Publication Date Title
US5813851A (en) Heat treatment method
US11749525B2 (en) Vapor phase growth apparatus and vapor phase growth method
US20090269490A1 (en) Coating apparatus and coating method
JP2686460B2 (en) Single crystal manufacturing method
US5500388A (en) Heat treatment process for wafers
US9552983B2 (en) Manufacturing method for semiconductor device
JP2007273623A (en) Method and device for manufacturing epitaxial wafer
JP3096073B2 (en) Vapor phase growth apparatus and method
JP3444178B2 (en) Single crystal manufacturing method
JP5432608B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
JP2007180528A (en) Deposition method and deposition apparatus
US20100240223A1 (en) Method and apparatus for manufacturing semiconductor device
JP4670002B2 (en) Method for producing nitride single crystal
JP2003183098A (en) METHOD AND APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL
US20050032337A1 (en) Method and apparatus for forming a silicon wafer with a denuded zone
JP3050970B2 (en) Vapor growth method
KR100906281B1 (en) Heat shield structure for growing silicon single crystal ingot and grower using the same
CN103668443B (en) Group III nitride semiconductor monocrystalline, its manufacture method, free-standing substrate and semiconductor device
JP3872838B2 (en) Crystal growth method
JP2006086501A (en) Method for manufacturing silicon carbide thin film
JPS6058613A (en) Epitaxial apparatus
JPH06349748A (en) Vapor growth device for semiconductor
JPH08236454A (en) Formation of semiconductor film
JP2001035800A (en) Semiconductor epitaxial growth system and growth method
JP2791444B2 (en) Vapor phase epitaxial growth method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070804

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11