JPH07139360A - Intake system of v-type engine - Google Patents

Intake system of v-type engine

Info

Publication number
JPH07139360A
JPH07139360A JP15899494A JP15899494A JPH07139360A JP H07139360 A JPH07139360 A JP H07139360A JP 15899494 A JP15899494 A JP 15899494A JP 15899494 A JP15899494 A JP 15899494A JP H07139360 A JPH07139360 A JP H07139360A
Authority
JP
Japan
Prior art keywords
intake
passage
cylinder
resonance
annular passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15899494A
Other languages
Japanese (ja)
Other versions
JPH07101007B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Akinori Yamashita
昭則 山下
Toshihiko Hattori
敏彦 服部
Yasuhiro Yuzuriha
泰浩 楪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP15899494A priority Critical patent/JPH07101007B2/en
Publication of JPH07139360A publication Critical patent/JPH07139360A/en
Publication of JPH07101007B2 publication Critical patent/JPH07101007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six

Abstract

PURPOSE:To utilize dynamic supercharging to enhance charging efficiency by bending a downstream communicating part against first and second intake gas supply passages, and arranging the downstream communicating part and the first and second intake gas supply passages so as to be piled up and down. CONSTITUTION:First and second intake gas supply passages 6a, 6b of a circular passage 6 are arranged in a space between banks 1, 2 in a way that they extend in parallel in the cylinder arranging direction and are mutually connected on the front and rear sides of an engine main body. The upstream part of the circular passage 6 is bent along the edge of the bank 2 and connected to a common intake passage 7 in the outside part of the bank 2. A downstream communicating part 6c of the circular passage 6 is folded back upward so as to be piled up and down on the first and second intake gas supply passages 6a, 6b. Pressure waves propagating through the circular passage 6 are intensified to exert resonance effect and charging efficiency is enhanced. Since an expansion chamber is eliminated, an intake system is made compact and can be built-in in an engine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は共鳴効果によって吸気の
充填効率を高めるようにしたエンジンの吸気装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake system for an engine, which is designed to enhance intake charging efficiency by a resonance effect.

【0002】[0002]

【従来の技術】従来から、吸気の動的効果によって充填
効率を高めるようにしたエンジンの吸気装置は種々知ら
れている。例えば、特公昭60−14169号公報に示
された装置では、多気筒エンジンにおいて、吸気順序が
連続しない気筒を同一グル―プとする2グル―プの気筒
群にそれぞれ接続された2つの吸気通路を設け、この各
吸気通路をそれぞれ、吸気マニホ―ルドブランチの上流
端が接続された拡大室(容積大の集合室)と、この拡大
室から上流に延びる共鳴通路とを備えて構成するととも
に、上記拡大室等に、上記各吸気通路相互を連通遮断可
能とする切替装置を設け、各吸気通路の上流端を上流側
集合室に接続している。この装置によると、上記切替装
置が上記各吸気通路相互を遮断した状態にあるときは、
上流側集合室で反転して反射される吸気圧力波により、
エンジン回転数が比較的低い領域で慣性過給効果が得ら
れ、上記切替装置が上記各吸気通路を連通する状態とな
ったときは、圧力波の反転反射位置が吸気ポ―トに近づ
けられることにより、エンジン回転数が比較的高い領域
で慣性過給効果が得られる。
2. Description of the Related Art Conventionally, various engine intake systems have been known which are designed to enhance the charging efficiency by the dynamic effect of intake air. For example, in the device disclosed in Japanese Examined Patent Publication No. 60-14169, in a multi-cylinder engine, two intake passages are respectively connected to a cylinder group of 2 groups in which cylinders whose intake order is not continuous are the same group. And each of the intake passages is configured to include an expansion chamber (a large-volume collecting chamber) to which the upstream end of the intake manifold branch is connected, and a resonance passage extending upstream from the expansion chamber, A switching device capable of interrupting communication between the intake passages is provided in the expansion chamber or the like, and the upstream ends of the intake passages are connected to the upstream collecting chamber. According to this device, when the switching device is in a state of blocking the intake passages from each other,
Due to the intake pressure wave that is inverted and reflected in the upstream side collection chamber,
When the inertial supercharging effect is obtained in the region where the engine speed is relatively low and the switching device is in a state of communicating with the intake passages, the reversal reflection position of the pressure wave should be close to the intake port. As a result, the inertia supercharging effect can be obtained in the region where the engine speed is relatively high.

【0003】ところが、この吸気装置によると、吸気マ
ニホ―ルドブランチ部が集合する部分に大きな容積の拡
大室が設けられているため、吸気系が大型化し、自動車
に搭載する場合に大きな設置スペ―スが必要となる等の
不都合がある。
However, according to this intake device, since the expansion chamber having a large volume is provided in the portion where the intake manifold branch portion is gathered, the intake system becomes large and a large installation space is required when the intake system is installed in an automobile. There is an inconvenience such as the need for space.

【0004】また、V型エンジンにおいては、例えば特
開昭59−565号公報に見られるように、両バンク間
の空間に、ブランチ部に相当する湾曲した個々の吸気通
路と、この個々の吸気通路に連通した拡大室に相当する
空間とを有する吸気マニホ―ルドを配置することによ
り、慣性過給効果をもたせつつ、全体の小型化を図るよ
うにしたものがある。しかしこの構造によっても、両バ
ンク間に配置された吸気マニホ―ルドに、ブランチ部に
通じる拡大室が設けられているため、吸気マニホ―ルド
がバンク上端より上方に相当量突出することは避けられ
ず、このためエンジン全体の高さが大きくなり、自動車
に搭載する場合、ボンネット高さを低く抑えることが困
難となる。
Further, in the V-type engine, as shown in, for example, Japanese Patent Laid-Open No. 59-565, in the space between the banks, curved intake passages corresponding to the branch portions and the individual intake passages are provided. There is a structure in which an intake manifold having a space corresponding to an expansion chamber that communicates with a passage is arranged to have an inertia supercharging effect and to be downsized. However, even with this structure, the intake manifold located between both banks is provided with an expansion chamber that communicates with the branch, so it is possible to avoid the intake manifold from protruding a considerable amount above the top of the bank. Therefore, the height of the entire engine becomes large, and it becomes difficult to keep the bonnet height low when the engine is mounted on an automobile.

【0005】[0005]

【発明が解決しようとする課題】つまり、これら従来装
置のように吸気マニホ―ルドブランチ部を拡大室に接続
する構造によると、コンパクト化(特に高さの低減)に
は限界がある。このため、上記拡大室を廃止し、例え
ば、吸気順序が連続しない気筒を同一グル―プとする2
つの気筒グル―プの各吸気ポ―トにそれぞれ、拡大室を
有しない2つのパイプ状の吸気通路を、短い枝管を介し
て接続し、この両吸気通路を上流側適宜箇所で集合させ
てこの部分で圧力波を反転反射させるようにすることが
考えられる。しかしこの場合、吸気ポ―トと圧力波反転
反射部との間の圧力波伝播経路の長さに気筒毎の較差が
生じ、とくに高速域での過給効果を期待して上記吸気通
路を短くすると、相対的に上記較差が大きくなって、各
気筒に対する圧力波の作用にアンバランスが生じるた
め、各気筒に充分な過給効果を及ぼすことが困難にな
る。
That is, according to the structure in which the intake manifold branch portion is connected to the expansion chamber as in these conventional devices, there is a limit to downsizing (especially height reduction). For this reason, the expansion chamber is abolished and, for example, the cylinders whose intake orders are not consecutive are made the same group 2
Two pipe-shaped intake passages without expansion chambers are connected to each intake port of each cylinder group via short branch pipes, and both intake passages are gathered at appropriate points on the upstream side. It is conceivable to reversely reflect the pressure wave at this portion. However, in this case, there is a difference in the length of the pressure wave propagation path between the intake port and the pressure wave inversion reflection part for each cylinder, and the intake passage is shortened in expectation of the supercharging effect particularly in the high speed range. Then, the difference becomes relatively large, and the action of the pressure wave on each cylinder is unbalanced, so that it becomes difficult to exert a sufficient supercharging effect on each cylinder.

【0006】本発明は上記の事情に鑑み、拡大室を不要
にしつつ効果的に充填効率を高めることができ、とくに
吸気系を充分にコンパクト化し、しかも動的効果を増大
させることができるエンジンの吸気装置を提供するもの
である。
In view of the above circumstances, the present invention provides an engine capable of effectively increasing the charging efficiency while eliminating the need for an expansion chamber, in particular making the intake system sufficiently compact and increasing the dynamic effect. An intake device is provided.

【0007】[0007]

【課題を解決するための手段】本発明の装置は、V型エ
ンジンの各気筒の吸気ポ―トに通じる吸気通路に、一方
のバンクのシリンダへ吸気を供給する第1吸気供給通路
と他方のバンクのシリンダへ吸気を供給する第2吸気供
給通路と両吸気供給通路を連通する上流側連通部分およ
び下流連通部分とからなって、各吸気ポートから伝播す
る圧力波を周回させるように環状に形成された共鳴用環
状通路を設けたV型エンジンの吸気装置であって、上記
両吸気供給通路を、両バンク間に、通路軸方向が気筒列
方向と平行となるように配置するとともに、該両吸気供
給通路に対して上記下流側連通部分を折り曲げて、該下
流側連通部分と両吸気供給通路とが上下に重なるように
配置したものである。
The apparatus of the present invention comprises a first intake air supply passage for supplying intake air to the cylinders of one bank and an intake air passage communicating with the intake port of each cylinder of a V-type engine. It is composed of a second intake supply passage for supplying intake air to the cylinders of the bank, and an upstream communication portion and a downstream communication portion that communicate both intake supply passages, and is formed in an annular shape so as to circulate the pressure wave propagating from each intake port. An intake system for a V-type engine having a resonance annular passage, wherein both of the intake supply passages are arranged between the banks so that the passage axial direction is parallel to the cylinder row direction. The downstream side communication portion is bent with respect to the intake air supply passage so that the downstream side communication portion and both intake air supply passages are vertically overlapped.

【0008】[0008]

【作用】この構成によると、上記共鳴用環状通路を通っ
て伝播する圧力波により各気筒間で共鳴効果が得られ
る。そしてこのよう共鳴用環状通路を設けた場合に、こ
の共鳴用環状通路には、圧力波の伝播経路とはなるが吸
気の流通経路とはならない部分が存在するので、この部
分の通路面積を相対的に細くすることにより、吸気の流
通に支障をきたすことなく、共鳴用環状通路のコンパク
ト化と、吸気圧力波の強化が図られる。
According to this structure, the resonance effect is obtained between the cylinders by the pressure wave propagating through the resonance annular passage. When such an annular passage for resonance is provided, since there is a portion that serves as a propagation path for pressure waves but not as a circulation path for intake air in the annular passage for resonance, the passage area of this portion is set to a relative value. By making the diameter thinner, the resonance annular passage can be made compact and the intake pressure wave can be strengthened without disturbing the flow of intake air.

【0009】[0009]

【実施例】第1図および第2図は本発明の装置をV型6
気筒エンジンに適用した場合の一実施例を示しており、
V型エンジンの一方のバンク1には、1番、2番、3番
の3つの気筒3a,3b,3cが設けられ、他方のバン
ク2には、4番、5番、6番の3つの気筒3d,3e,
3fが設けられている。各気筒の点火順序(吸気順序)
は、例えば、1番気筒3a→4番気筒3d→2番気筒3
b→5番気筒3e→3番気筒3c→6番気筒3fとされ
て、一方のバンク1における各気筒3a〜3cが吸気順
序の連続しない第1気筒グル―プを構成し、他方のバン
ク2における各気筒3d〜3fが吸気順序の連続しない
第2気筒グル―プを構成している。各気筒3a〜3fに
はそれぞれ吸気ポ―ト4a〜4fおよび排気ポ―ト5a
〜5fが配設されており、これら吸気ポ―ト4a〜4f
および排気ポ―ト5a〜5fは、図外の吸気弁および排
気弁によってそれぞれ所定のタイミングで開閉される。
1 and 2 show a device according to the present invention as a V type 6
It shows an example when applied to a cylinder engine,
One bank 1 of the V-type engine is provided with three cylinders 3a, 3b, 3c of No. 1, No. 2, and No. 3, and the other bank 2 is provided with three cylinders No. 4, No. 5, No. Cylinders 3d, 3e,
3f is provided. Ignition order of each cylinder (intake order)
Is, for example, the first cylinder 3a → the fourth cylinder 3d → the second cylinder 3
b → 5th cylinder 3e → 3rd cylinder 3c → 6th cylinder 3f, each cylinder 3a to 3c in one bank 1 constitutes a first cylinder group in which the intake order is not continuous, and the other bank 2 The respective cylinders 3d to 3f in No. 2 constitute a second cylinder group in which the intake order is not continuous. Intake ports 4a to 4f and exhaust port 5a are provided in the cylinders 3a to 3f, respectively.
.. to 5f are provided, and these intake ports 4a to 4f are provided.
The exhaust ports 5a to 5f are opened and closed at predetermined timings by an intake valve and an exhaust valve (not shown).

【0010】上記各気筒の吸気ポ―ト4a〜4fは、拡
大室を有しない共鳴用環状通路6に接続され、この共鳴
用環状通路6が、エアクリ―ナ8およびスロットル弁9
を介して吸気を導入する共通吸気通路7に接続されてい
る。
The intake ports 4a to 4f of the respective cylinders are connected to a resonance annular passage 6 having no expansion chamber, and the resonance annular passage 6 is connected to an air cleaner 8 and a throttle valve 9.
It is connected to a common intake passage 7 for introducing intake air via.

【0011】上記共鳴用環状通路6は、第1気筒グル―
プのの各吸気ポ―ト4a〜4cに短い枝管10a〜10
cを介して通じる通路6a、および第2気筒グル―プの
各吸気ポ―ト4d〜4fに短い枝管10d〜10fを介
して通じる通路6bが、それぞれ上流側と下流側の二方
向に延び、共通吸気通路7に接続される上流側端部と下
流側端部とで互いに連なることにより、環状をなしてい
る。
The resonance annular passage 6 is provided in the first cylinder group.
The short branch pipes 10a-10 are attached to the respective intake ports 4a-4c of the pump.
A passage 6a communicating via c and a passage 6b communicating to the intake ports 4d to 4f of the second cylinder group via short branch pipes 10d to 10f extend in two directions, upstream and downstream, respectively. The upstream end and the downstream end connected to the common intake passage 7 are connected to each other to form an annular shape.

【0012】この共鳴用環状通路6の吸気流通経路以外
の部分は、吸気流通経路となる部分と比べて細く形成さ
れている。つまり、当実施例の場合、共鳴用環状通路6
において、第1気筒グル―プの各吸気ポ―ト4a〜4c
および第2気筒グル―プの各吸気ポ―ト4d〜4fがそ
れぞれ接続された部分と、その上流の気筒グル―プ間連
通部分(通路6a,6bが上流側に延びて互いに連なる
部分)とは、共通吸気通路7から各気筒3a〜3fに導
入される吸気が通過する吸気流通経路となるが、気筒グ
ル―プ間の下流側連通部分(通路6a,6bが下流側に
延びて互い連なる部分)6cは吸気流通経路から外れて
いて、ほとんど吸気が流れない。そこで、上記の吸気流
通経路となる部分は吸気抵抗を小さくして吸気流通量を
確保するに必要な通路面積S1 を有するように形成さ
れ、一方、上記下流側連通部分6cは、吸気流通経路と
なる部分よりも小さな通路面積S2 に形成されている。
The portion of the resonance annular passage 6 other than the intake air flow passage is formed thinner than the portion which becomes the intake air flow passage. That is, in the case of the present embodiment, the resonance annular passage 6
In each of the intake ports 4a-4c of the first cylinder group,
And a portion to which the intake ports 4d to 4f of the second cylinder group are connected, respectively, and a communicating portion between the cylinder groups upstream thereof (a portion where the passages 6a and 6b extend to the upstream side and communicate with each other). Is an intake air flow passage through which the intake air introduced from the common intake air passage 7 into each of the cylinders 3a to 3f passes, but the downstream side communication portion between the cylinder groups (the passages 6a and 6b extend to the downstream side and are connected to each other). The portion 6c is out of the intake air circulation path, and almost no intake air flows. Therefore, the portion serving as the intake air flow passage is formed so as to have the passage area S 1 required to reduce the intake resistance and secure the intake air flow rate, while the downstream side communication portion 6c is formed in the intake air flow passage. It is formed in the passage area S 2 smaller than the portion to be.

【0013】このような吸気系をV型エンジンに組込む
場合の具体的構造としては、第2図のように、両バンク
1,2間の空間部において、共鳴用環状通路6を構成す
る上記通路6a,6bが互いに平行に気筒配列方向に沿
って延び、エンジン本体の前後両側において互いに連な
るように配置される。そして、共鳴用環状通路6の上流
側部分および下流側部分はエンジン本体の前後両側にお
いて適宜折曲げられ、例えば、共鳴用環状通路6の上流
側部分は片側のバンク2の端部に沿って折曲げられて、
バンク2外側部で共通吸気通路7に接続され、共鳴用環
状通路6の下流側連通部分6cは上側に折返される。こ
のようにして、エンジン全高を高くせず、かつ、エンジ
ンの前後方向等にも大きく突出することなく、共鳴用環
状通路6等がコンパクトにエンジン本体に組込まれるこ
ととなる。この場合、共鳴用環状通路6の吸気流通経路
以外の部分(上記下流側連通部分6c)を細く形成して
おくことにより、共鳴用環状通路6が充分にコンパクト
になる。
As shown in FIG. 2, a specific structure for incorporating such an intake system into a V-type engine is such that the resonance annular passage 6 is formed in the space between the banks 1 and 2. 6a and 6b extend in parallel with each other along the cylinder arrangement direction and are arranged so as to be continuous with each other on both front and rear sides of the engine body. The upstream side portion and the downstream side portion of the resonance annular passage 6 are appropriately bent on the front and rear sides of the engine body. For example, the upstream side portion of the resonance annular passage 6 is bent along one end of the bank 2. Bent,
The outer side of the bank 2 is connected to the common intake passage 7, and the downstream communication portion 6c of the resonance annular passage 6 is folded back to the upper side. In this way, the resonance annular passage 6 and the like can be compactly incorporated into the engine body without increasing the overall height of the engine and without significantly protruding in the front-rear direction of the engine. In this case, the resonance annular passage 6 becomes sufficiently compact by forming a thin portion of the resonance annular passage 6 other than the intake air circulation path (the downstream side communication portion 6c).

【0014】この実施例の装置による場合の作用を、第
3図を参照して説明する。
The operation of the apparatus of this embodiment will be described with reference to FIG.

【0015】吸気順序が連続しない同一気筒グル―プの
各吸気ポ―ト付近、例えば第1気筒グル―プの各吸気ポ
―ト4a〜4c付近には、第1気筒グル―プの各気筒の
作動によりそれぞれの吸気行程途中で負圧となって吸気
行程終期に正圧となる基本的圧力振動(第3図の線A)
が生じる。ある気筒の吸気ポ―ト付近に生じた圧力波
は、その吸気ポ―トから上流側と下流側の二方向に分か
れてそれぞれ共鳴用環状通路6を周回するように伝播
し、共鳴用環状通路6をほぼ一周して同一グル―プの他
の気筒の吸気ポ―トに作用する。この場合、共鳴用環状
通路6は拡大室を有しないので、圧力波は反転すること
なく伝播される。
In the vicinity of each intake port of the same cylinder group whose intake order is not continuous, for example, in the vicinity of each intake port 4a-4c of the first cylinder group, each cylinder of the first cylinder group The basic pressure oscillation that becomes negative pressure during each intake stroke and becomes positive pressure at the end of the intake stroke (line A in Fig. 3).
Occurs. The pressure wave generated in the vicinity of the intake port of a certain cylinder is divided into two directions, that is, the upstream side and the downstream side from the intake port, and propagates so as to circulate around the resonance annular passage 6, respectively, and the resonance annular passage It makes a round around 6 and acts on the intake ports of other cylinders of the same group. In this case, since the resonance annular passage 6 does not have an expansion chamber, the pressure wave propagates without being inverted.

【0016】そして、圧力波が共鳴用環状通路6をほぼ
一周する時間と上記の基本的圧力振動の周期τとが一致
する状態となったとき、すなわち共鳴用環状通路6全体
の長さL(枝管容積などの影響も考慮した等価管長)と
上記周期τとの関係が τ=L/a …… a:音速 となったときは、第3図に矢印で示すように1番気筒3
aに生じて共鳴用環状通路6を伝播した圧力波が2番気
筒3bに生じた圧力波と重なり、同様にして2番気筒3
bから伝播した圧力波が3番気筒3cに生じる圧力波と
重なり、3番気筒3cから伝播した圧力波が1番気筒3
aに生じる圧力波と重なる。こうして、第1気筒グル―
プの気筒相互間で圧力波が共振して第3図に線Bで示す
ように圧力振動が強められ、同様に第2気筒グル―プの
気筒相互間でも共振が生じて圧力振動が強められる。こ
の共鳴効果により、各気筒の充填効率が高められること
となる。
When the time period during which the pressure wave travels around the resonance annular passage 6 substantially coincides with the period τ of the basic pressure oscillation, that is, the entire length L ( When the relationship between the equivalent pipe length (including the influence of branch pipe volume) and the period τ is τ = L / a ...... a: speed of sound, as shown by the arrow in FIG.
The pressure wave generated in a and propagated in the resonance annular passage 6 overlaps with the pressure wave generated in the second cylinder 3b, and similarly, the second cylinder 3
The pressure wave propagated from b overlaps with the pressure wave generated in the third cylinder 3c, and the pressure wave propagated from the third cylinder 3c overlaps the first cylinder 3
It overlaps with the pressure wave generated in a. In this way, the first cylinder group
The pressure waves resonate between the cylinders of the second cylinder group and the pressure vibrations are strengthened as shown by the line B in FIG. 3, and similarly, the resonances of the cylinders of the second cylinder group also generate the pressure vibrations. . Due to this resonance effect, the filling efficiency of each cylinder is enhanced.

【0017】なお、第3図では、同一気筒グル―プにお
いて生じる圧力振動の1つの圧力波が次の圧力波に重な
るように伝播する基本的共振状態を示したが、圧力波が
1つおきや2つおきの圧力波に重なるように伝播すると
きにも共振状態が得られ、従って、上記の基本的共振状
態が得られるエンジン回転数の整数倍のエンジン回転数
でも共振状態が得られる。
Although FIG. 3 shows a basic resonance state in which one pressure wave of the pressure oscillation occurring in the same cylinder group propagates so as to overlap with the next pressure wave, every other pressure wave is shown. A resonance state can be obtained even when propagating so as to overlap with every other two pressure waves. Therefore, a resonance state can be obtained even at an engine speed that is an integral multiple of the engine speed at which the above-described basic resonance state is obtained.

【0018】このように上記共鳴用環状通路6によって
共鳴効果をもたせた本発明の吸気装置によると、下流側
連通経路を設けずに上流側に圧力反転部を有する構造と
した場合と比べ、高速域での充填効率向上に有利とな
る。
According to the intake device of the present invention which has the resonance effect by the resonance annular passage 6 as described above, the speed is higher than that of the structure having the pressure reversal portion on the upstream side without providing the communication passage on the downstream side. This is advantageous for improving the filling efficiency in the area.

【0019】つまり、第1気筒グル―プの各吸気ポ―ト
に通じる通路と第2気筒グル―プの各吸気ポ―トに通じ
る通路とを上流側にのみ延ばした状態でこの両通路の集
合部を圧力反転部とする構造とした場合、上記集合部で
負圧から正圧に反転して反射された圧力波が自気筒に作
用して吸気行程終期の圧力を強める状態となったときに
充填効率が高められ、このときの圧力振動の周期τと吸
気ポ―トから集合部までの通路長さL´(等価管長)と
の関係は /2=2L´/a …… となる。そして、上記圧力振動の周期τはエンジン回転
数が高くなるにつれて短くなるので、高速域で過給効果
を高めるには上記通路長さを短く設定する必要がある
が、各気筒の吸気ポ―トから通路集合部までの通路長さ
には、気筒相互の吸気ポ―ト間長さ分の較差があり、集
合部までの通路長さを短くする程、相対的に上記較差が
大きくなり、各気筒に作用する圧力波のアンバランスが
大きくなるため、全体的な充填効率を高めることは困難
となる。
That is, the passage leading to each intake port of the first cylinder group and the passage leading to each intake port of the second cylinder group are extended only on the upstream side. In the case where the collecting part is configured as a pressure reversing part, when the pressure wave reflected by reversing from negative pressure to positive pressure at the collecting part acts on the own cylinder and strengthens the pressure at the end of the intake stroke The filling efficiency is increased, and the relationship between the period τ of pressure oscillation and the passage length L ′ (equivalent pipe length) from the intake port to the collecting portion at this time is: 2 = 2L ′ / a. Since the cycle τ of the pressure oscillation becomes shorter as the engine speed becomes higher, it is necessary to set the passage length short in order to enhance the supercharging effect in the high speed range. There is a difference in the passage length from the passage to the passage collecting portion by the length between the intake ports of the cylinders, and the shorter the passage length to the collecting portion, the larger the difference becomes. Since the imbalance of the pressure wave acting on the cylinder becomes large, it becomes difficult to increase the overall charging efficiency.

【0020】これに対し、当実施例の装置によると、前
記式が成立するときに共鳴効果が得られ、この式と
式とを比べると、圧力振動の周期τが同じであれば、
共鳴用環状通路6全体の等価管長Lは前記式による場
合の等価管長L´の4倍となり、高速域でも、気筒毎の
圧力波伝播経路の較差が相対的に小さいので、各気筒に
作用する圧力波のアンバランスが小さくなる。従って、
高速域で有効に充填効率を高めることができる。
On the other hand, according to the apparatus of the present embodiment, the resonance effect is obtained when the above equation is satisfied, and comparing this equation with the equation, if the period τ of pressure oscillation is the same,
The equivalent pipe length L of the entire resonance annular passage 6 is four times the equivalent pipe length L'in the case of the above expression, and the difference in the pressure wave propagation paths for each cylinder is relatively small even in the high speed region, so that it acts on each cylinder. The pressure wave unbalance becomes smaller. Therefore,
The filling efficiency can be effectively increased in the high speed range.

【0021】また、上記共鳴用環状通路6において、吸
気流通経路以外の部分である前記下流側連通部分6cが
細く形成されていることにより、充填効率がより一層高
められる。つまり、一般に圧力波が通路を通して伝播さ
れるとき、ある程度までは通路面積が小さくなるほど圧
力波が強められる傾向がある。ただし、圧力波が伝播さ
れる上記共鳴用環状通路6のうちで、吸気の流通経路と
もなる部分を細くすると吸気流通抵抗が増大して吸気の
導入が阻害される。そこで、吸気流通経路以外の部分を
細くしておくことにより、吸気の流通に支障をきたすこ
となく圧力波が強められ、有効に共鳴効果が高められる
こととなる。実際に、上記下流側連通部分6cを細くし
た場合と共鳴用環状通路6全体を一定径とした場合とに
ついて各種エンジン回転数での平均有効圧力を調べる
と、共鳴用環状通路6全体を50mmの一定径(通路長さ
は約880mm)とした場合には、第4図に破線Cでつな
いだ値となったのに対し、上記下流側連通部分6cを直
径40mmに細くした場合は第4図に実線でつないだ値と
なり、平均有効圧力が高められた。
Further, in the resonance annular passage 6, since the downstream side communicating portion 6c, which is a portion other than the intake air circulation passage, is formed thin, the filling efficiency is further enhanced. That is, generally, when a pressure wave propagates through a passage, the pressure wave tends to be intensified as the passage area becomes smaller to some extent. However, in the resonance annular passage 6 through which the pressure wave is propagated, if the portion that also serves as a flow path for intake air is made thin, the intake air flow resistance increases and the introduction of intake air is hindered. Therefore, by thinning the portion other than the intake air flow path, the pressure wave is strengthened without disturbing the flow of the intake air, and the resonance effect is effectively enhanced. Actually, when the average effective pressures at various engine speeds were examined for the case where the downstream side communication portion 6c was thin and the case where the resonance annular passage 6 as a whole had a constant diameter, the resonance annular passage 6 as a whole had a diameter of 50 mm. When the diameter is constant (passage length is about 880 mm), the value connected by the broken line C is shown in FIG. 4, whereas when the diameter of the downstream side communication portion 6c is reduced to 40 mm, it is shown in FIG. The value connected with the solid line was, and the average effective pressure was increased.

【0022】なお、上記実施例の構造によると、共通吸
気通路7から導入される吸気は共鳴用環状通路6の上流
側部分を通って各気筒に供給されるが、第5図に示すよ
うに、共鳴用環状通路6の大部分を、吸気導入用の通路
から独立させて形成しておいてもよい。すなわちこの実
施例では、共通吸気通路7とこの通路7から2又に分岐
した分岐吸気通路7a,7bとで吸気導入のための主吸
気系が構成され、上記分岐吸気通路7a,7bの下流端
部が吸気ポ―ト近傍の共鳴用環状通路6に接続されてい
る。この構造によると、外部から導入された吸気は、上
記分岐吸気通路7a,7bから、共鳴用環状通路6の吸
気ポ―ト近傍部分のみを通って各気筒に供給される。従
って、共鳴用環状通路6における両気筒グル―プ間の両
側各連通部分6c,6dがいずれも吸気の流通経路とは
ならずに、圧力波の伝播のみを行なうこととなるので、
この場合は上記両連通部分6c,6dを細く形成してお
けばよい。
According to the structure of the above embodiment, the intake air introduced from the common intake passage 7 is supplied to each cylinder through the upstream side portion of the resonance annular passage 6, but as shown in FIG. Most of the resonance annular passage 6 may be formed separately from the intake passage. That is, in this embodiment, the common intake passage 7 and the branch intake passages 7a, 7b branched from the passage 7 constitute a main intake system for introducing intake air, and the downstream ends of the branch intake passages 7a, 7b are formed. The portion is connected to the resonance annular passage 6 near the intake port. According to this structure, intake air introduced from the outside is supplied to each cylinder from the branch intake passages 7a, 7b only through the portion of the resonance annular passage 6 near the intake port. Therefore, neither of the communication portions 6c and 6d on both sides between the cylinder groups in the resonance annular passage 6 serves as a flow path for intake air, and only propagates a pressure wave.
In this case, the both communicating portions 6c and 6d may be formed thin.

【0023】第6図は本発明のさらに別の実施例を示
し、この実施例では、共鳴用環状通路6の通路長さを可
変としている。すなわち、共鳴用環状通路6における両
気筒グル―プ間の下流側連通部分6cに、その途中を短
絡する短絡連通部6eが設けられ、この短絡連通部6e
に第1切替弁11が設けられるとともに、これより下流
の連通部分6cに第2切替弁12が設けられている。こ
の構造によると、第1切替弁11を閉じて第2切替弁1
2を開いた状態では共鳴用環状通路6が比較的長く、第
1切替弁11を開いて第2切替弁を閉じた状態では共鳴
用環状通路6の実質的な長さが短くなるので、図外の制
御手段により、エンジン回転数に応じて上記各切替弁1
1,12の開閉を切替えることにより、異なる回転数域
でそれぞれ共鳴効果を高めることができる。そして、通
路径が小さくされている下流側連通部分で上記のように
通路長さを可変にしておけば、このような機構もコンパ
クトに組込まれることとなる。
FIG. 6 shows still another embodiment of the present invention, in which the passage length of the resonance annular passage 6 is variable. That is, in the downstream side communication portion 6c between the cylinder groups in the resonance annular passage 6, a short circuit communication portion 6e for short-circuiting the middle is provided.
Is provided with a first switching valve 11, and a second switching valve 12 is provided at a communication portion 6c downstream thereof. According to this structure, the first switching valve 11 is closed and the second switching valve 1 is closed.
Since the resonance annular passage 6 is relatively long when 2 is opened, and the substantial length of the resonance annular passage 6 is short when the first switching valve 11 is opened and the second switching valve is closed, Each switching valve 1 is controlled by an external control unit according to the engine speed.
By switching the opening and closing of 1 and 12, the resonance effect can be enhanced in different rotational speed regions. If the passage length is made variable as described above at the downstream side communication portion where the passage diameter is small, such a mechanism can be compactly incorporated.

【0024】第7図は本発明を直列3気筒エンジンに適
用した場合の実施例を示している。この場合、各気筒3
a〜3cは2グル―プに分けられず、直列に配列された
各気筒3a〜3cの吸気ポ―ト4a〜4cが共鳴用環状
通路6に接続されている。そしてこの共鳴用環状通路6
のうち、共通吸気通路7から各気筒3a〜3cに導入さ
れる吸気の流通経路となる部分6f,6gと比べ、吸気
流通経路とならない部分6hは細く形成されている。こ
の場合も、上記共鳴用環状通路6によって各気筒間で共
鳴効果が得られる。
FIG. 7 shows an embodiment in which the present invention is applied to an in-line three-cylinder engine. In this case, each cylinder 3
The a to 3c are not divided into two groups, and the intake ports 4a to 4c of the cylinders 3a to 3c arranged in series are connected to the resonance annular passage 6. And this resonance annular passage 6
Among them, a portion 6h that does not serve as an intake distribution path is formed thinner than the portions 6f and 6g that serve as a distribution path of intake air introduced from the common intake passage 7 into each of the cylinders 3a to 3c. Also in this case, the resonance effect is obtained between the cylinders by the resonance annular passage 6.

【0025】[0025]

【発明の効果】以上のように本発明は、各気筒の吸気ポ
―トに通じる吸気通路に、拡大室を有せずに各吸気ポ―
トから伝播する圧力波を周回させる共鳴用環状通路が設
けられているため、各吸気ポ―トから伝播して共鳴用環
状通路をぼぼ一周する圧力波により、各気筒に有効に共
鳴効果を及ぼして充填効率を高めることができる。しか
も、このような構造により拡大室を不要にするととも
に、上記共鳴用環状通路の吸気流通経路以外の部分を細
くしているため、吸気系をコンパクトにエンジンに組込
むことができ、かつ、共鳴用環状通路を伝播する圧力波
を強めて共鳴効果を高めることができるものである。
As described above, according to the present invention, the intake passage communicating with the intake port of each cylinder does not have an expansion chamber and each intake port is not provided.
Since the resonance annular passage that circulates the pressure wave propagating from the inlet is provided, the pressure wave propagating from each intake port and making a full circle around the resonance annular passage effectively exerts a resonance effect on each cylinder. The filling efficiency can be improved. Moreover, since the expansion chamber is not necessary due to such a structure and the portion of the resonance annular passage other than the intake circulation passage is made thin, the intake system can be compactly incorporated into the engine, and the resonance The pressure wave propagating in the annular passage can be strengthened to enhance the resonance effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す吸気装置概略図であ
る。
FIG. 1 is a schematic view of an intake device showing an embodiment of the present invention.

【図2】V型エンジンに吸気系を組込んだ構造の一例を
示す斜視図である。
FIG. 2 is a perspective view showing an example of a structure in which an intake system is incorporated in a V-type engine.

【図3】吸気ポ―ト付近の圧力振動を示す図である。FIG. 3 is a diagram showing pressure oscillation near an intake port.

【図4】共鳴用環状通路を一定径とした場合と吸気流通
経路以外の部分を細くした場合とについて各種エンジン
回転数での平均有効圧力を調べたデ―タについてのグラ
フである。
FIG. 4 is a graph of data obtained by examining average effective pressures at various engine speeds when the resonance annular passage has a constant diameter and when the portion other than the intake air circulation passage is made thin.

【図5】本発明の別の実施例を示す吸気装置概略図であ
る。
FIG. 5 is a schematic view of an intake device showing another embodiment of the present invention.

【図6】本発明のさらに別の実施例を示す吸気装置概略
図である。
FIG. 6 is a schematic view of an intake device showing still another embodiment of the present invention.

【図7】本発明のさらにまた別の実施例を示す吸気装置
概略図である。
FIG. 7 is a schematic view of an air intake device showing still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3a〜3f 各気筒 4a〜4f 吸気ポ―ト 6 共鳴用環状通路 6a,6b 吸気供給通路 6c 連通部分 3a to 3f Each cylinder 4a to 4f Intake port 6 Resonance annular passage 6a, 6b Intake supply passage 6c Communication part

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年8月5日[Submission date] August 5, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 V型エンジンの吸気装置Title: Intake device for V-type engine

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は動的効果によって吸気の
充填効率を高めるようにしたV型エンジンの吸気装置の
レイアウトに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a layout of an intake system for a V-type engine, which has a dynamic effect to enhance intake charging efficiency.

【0002】[0002]

【従来の技術】従来から、吸気の動的効果によって充填
効率を高めるようにしたエンジンの吸気装置は種々知ら
れている。例えば、V型エンジンにおいて、特開昭59
−565号公報に示されるように、ブランチ部に相当す
る湾曲した個々の吸気通路と、この個々の吸気通路に連
通した拡大室に相当する空間とを有する吸気マニホール
ドを配置することにより慣性過給効果をもたせ、充填効
率を高めたものがある。また、この公報に示されたもの
では、吸気系をV型エンジンの両バンク間にレイアウト
し、全体の小型化を図っている。
2. Description of the Related Art Conventionally, various engine intake systems have been known which are designed to enhance the charging efficiency by the dynamic effect of intake air. For example, in a V-type engine, Japanese Patent Laid-Open No.
As disclosed in Japanese Patent Laid-Open No. 565, inertial supercharging is achieved by disposing an intake manifold having curved individual intake passages corresponding to branch portions and a space corresponding to an expansion chamber communicating with the individual intake passages. There is one that has an effect and enhances the filling efficiency. In addition, in the structure disclosed in this publication, the intake system is laid out between both banks of the V-type engine to reduce the overall size.

【0003】一方、動的効果の手段としては、上記慣性
効果の他に共鳴効果により充填効率を高める手法があ
り、例えば、特開昭61−241418号公報に見られ
るように、吸気順序が隣合わない2つの気筒群のサージ
タンクを上流側及び下流側でそれぞれ連通した環状吸気
通路を形成し、共鳴過給を行なわせるようにしたものが
ある。
On the other hand, as a means of the dynamic effect, there is a method of increasing the filling efficiency by the resonance effect in addition to the above-mentioned inertial effect. For example, as shown in Japanese Patent Application Laid-Open No. 61-241418, the intake order is adjacent. There is a system in which a surge tank of two cylinder groups that do not match is formed with an annular intake passage that communicates with each other on the upstream side and the downstream side to perform resonance supercharging.

【0004】[0004]

【発明が解決しようとする課題】特開昭59−565号
公報に示されたものでは、Vバンク内に吸気マニホール
ドをレイアウトし、コンパクト化を図っているものの、
その吸気系に代えて共鳴効果を持たせるべく特開昭61
−241418号公報に示されているような吸気系をV
型エンジンの両バンク間に配置すると、上流側及び下流
側連通管部が長大化しているため、エンジン気筒列方向
の突出量が著しく増大し、エンジンルーム内の他部品と
の干渉を招き、近年要求されているエンジンルーム内の
コンパクト化に寄与できないといった問題があった。
According to the one disclosed in Japanese Patent Laid-Open No. 59-565, the intake manifold is laid out in the V bank to make it compact.
In order to have a resonance effect instead of the intake system, Japanese Patent Laid-Open No. Sho 61
The intake system as shown in Japanese Patent No. 241418 is V
When it is arranged between both banks of the type engine, the upstream and downstream communication pipes are lengthened, so that the protrusion amount in the engine cylinder row direction is significantly increased, which causes interference with other parts in the engine room. There was a problem that it could not contribute to the required compactness of the engine room.

【0005】本発明は上記の事情に鑑み、動的過給を利
用して効果的に充填効率を高めることができるととも
に、吸気系を充分にコンパクトにレイアウトすることが
できるV型エンジンの吸気装置を提供するものである。
In view of the above circumstances, the present invention makes it possible to effectively increase the charging efficiency by utilizing the dynamic supercharging, and at the same time, it is possible to lay out the intake system in a sufficiently compact intake system for a V-type engine. Is provided.

【0006】[0006]

【課題を解決するための手段】本発明の装置は、V型エ
ンジンの各気筒の吸気ポートに通じる吸気通路に、一方
のバンクの気筒へ吸気を供給する第1吸気供給通路と他
方のバンクの気筒へ吸気を供給する第2吸気供給通路と
両吸気供給通路を連通する上流側連通部分および下流連
通部分とからなって、環状に形成された環状通路を設け
たV型エンジンの吸気装置であって、上記両吸気供給通
路を、両バンク間に、通路軸方向が気筒列方向と略平行
となるように配置するとともに、該両吸気供給通路に対
して上記下流側連通部分を折り曲げて、該下流側連通部
分と両吸気供給通路とが上下に重なるように配置したも
のである。ことを特徴とするV型エンジンの吸気装置。
The apparatus of the present invention is provided with a first intake supply passage for supplying intake air to a cylinder of one bank and an intake passage of the other bank for an intake passage communicating with an intake port of each cylinder of a V-type engine. An intake device for a V-type engine having an annular passage formed of a second intake supply passage that supplies intake air to a cylinder, an upstream communication portion that communicates both intake supply passages, and a downstream communication portion. The intake air supply passages are arranged between the banks so that the passage axial direction is substantially parallel to the cylinder row direction, and the downstream communication portion is bent with respect to the intake air supply passages. The downstream communication portion and both intake supply passages are arranged so as to vertically overlap with each other. An intake device for a V-type engine, which is characterized in that

【0007】[0007]

【作用】上記の構成によると、上記環状通路を通って伝
播する圧力波により各気筒間で共鳴効果が得られる。そ
して、この環状通路がV型エンジンの両バンク間に設け
られ、両バンク間のスペースが有効利用される。とく
に、この環状通路には、圧力波の伝播経路となるが吸気
の流通経路とはならない下流側連通部分が存在すること
から、この下流側連通部分を折り曲げてこれと上記両吸
気供給通路とが上下に重なるように配置されることによ
り、出力が確保されつつ、環状通路がエンジン気筒列方
向に大きく突出することが避けられて、コンパクトな構
造が得られる。
According to the above construction, the resonance effect is obtained between the cylinders by the pressure wave propagating through the annular passage. This annular passage is provided between both banks of the V-type engine, and the space between both banks is effectively used. In particular, since this annular passage has a downstream side communication portion that serves as a pressure wave propagation path but does not serve as an intake air circulation path, the downstream side communication portion is bent and the intake air passage and By arranging them so as to overlap with each other in the vertical direction, it is possible to obtain a compact structure while ensuring the output and avoiding the annular passage from largely protruding in the engine cylinder column direction.

【0008】[0008]

【実施例】図1および図2は本発明の装置をV型6気筒
エンジンに適用した場合の一実施例を示しており、V型
エンジンの一方のバンク1には、1番、2番、3番の3
つの気筒3a,3b,3cが設けられ、他方のバンク2
には、4番、5番、6番の3つの気筒3d,3e,3f
が設けられている。各気筒の点火順序(吸気順序)は、
例えば、1番気筒3a、4番気筒3d、2番気筒3b、
5番気筒3e、3番気筒3c、6番気筒3fの順とされ
て、一方のバンク1における各気筒3a〜3cが吸気順
序の連続しない第1気筒グループを構成し、他方のバン
ク2における各気筒3d〜3fが吸気順序の連続しない
第2気筒グループを構成している。各気筒3a〜3fに
はそれぞれ吸気ポート4a〜4fおよび排気ポート5a
〜5fが配設されており、これら吸気ポート4a〜4f
および排気ポート5a〜5fは、図外の吸気弁および排
気弁によってそれぞれ所定のタイミングで開閉される。
1 and 2 show an embodiment in which the device of the present invention is applied to a V-type 6-cylinder engine. 3 of 3
One cylinder 3a, 3b, 3c is provided, and the other bank 2
Has three cylinders 3d, 3e, 3f of No. 4, No. 5, No. 6
Is provided. The ignition order (intake order) of each cylinder is
For example, the first cylinder 3a, the fourth cylinder 3d, the second cylinder 3b,
The fifth cylinder 3e, the third cylinder 3c, and the sixth cylinder 3f are arranged in this order, and the cylinders 3a to 3c in one bank 1 constitute a first cylinder group in which the intake order is not continuous, and each cylinder in the other bank 2 The cylinders 3d to 3f form a second cylinder group in which the intake order is not continuous. Intake ports 4a to 4f and exhaust port 5a are provided in the cylinders 3a to 3f, respectively.
~ 5f are provided, and these intake ports 4a to 4f
The exhaust ports 5a to 5f are opened and closed at predetermined timings by an intake valve and an exhaust valve (not shown).

【0009】上記各気筒の吸気ポート4a〜4fは、拡
大室を有しない環状通路6に接続され、この環状通路6
が、エアクリーナ8およびスロットル弁9を介して吸気
を導入する共通吸気通路7に接続されている。
The intake ports 4a to 4f of each cylinder are connected to an annular passage 6 having no expansion chamber.
Is connected to a common intake passage 7 for introducing intake air through an air cleaner 8 and a throttle valve 9.

【0010】上記環状通路6は、一方のバンク1の吸気
ポート4a〜4cに短い枝管10a〜10cを介して通
じて、このバンク1の各気筒へ吸気を供給する第1吸気
供給通路6aと、他方のバンク2の各吸気ポート4d〜
4fに短い枝管10d〜10fを介して通じて、このバ
ンク2の各気筒へ吸気を供給する第2吸気供給通路6b
と、上流側連通部分6dと、下流連通部分6cとを有し
ている。
The annular passage 6 is connected to the intake ports 4a to 4c of one bank 1 via short branch pipes 10a to 10c to form a first intake supply passage 6a for supplying intake air to each cylinder of the bank 1. , Each intake port 4d of the other bank 2 ~
4f through the short branch pipes 10d to 10f, and the second intake supply passage 6b for supplying intake air to each cylinder of the bank 2.
And an upstream communication portion 6d and a downstream communication portion 6c.

【0011】上記両吸気供給通路6a、6bは上流側及
び下流側の二方向に延び、その両側で上記上流側連通部
分6d及び下流連通部分6cを介して互いに連なること
により環状をなしており、上記上流側連通部分6dは共
通吸気通路7に接続されている。
Both of the intake air supply passages 6a and 6b extend in two directions, that is, an upstream side and a downstream side, and are connected to each other through the upstream side communicating portion 6d and the downstream communicating portion 6c on both sides thereof to form an annular shape. The upstream side communication portion 6d is connected to the common intake passage 7.

【0012】この環状通路6のうちで吸気流通経路以外
の部分である下流側連通部分6bは、吸気流通経路とな
る部分と比べて細く形成されている。つまり、当実施例
の場合、環状通路6において、一方のバンク1の各吸気
ポート4a〜4cおよび他方のバンク2の各吸気ポート
4d〜4fがそれぞれ接続された部分と、上流側連通部
分(通路6a,6bが上流側に延びて互いに連なる部
分)6dとは、共通吸気通路7から各気筒3a〜3fに
導入される吸気が通過する吸気流通経路となるが、下流
側連通部分(通路6a,6bが下流側に延びて互い連な
る部分)6cは吸気流通経路から外れていて、ほとんど
吸気が流れない。そこで、上記の吸気流通経路となる部
分は吸気抵抗を小さくして吸気流通量を確保するに必要
な通路面積S1 を有するように形成され、一方、上記下
流側連通部分6cは、吸気流通経路となる部分よりも小
さな通路面積S2 に形成されている。
In the annular passage 6, a downstream side communication portion 6b which is a portion other than the intake air flow passage is formed thinner than a portion which becomes the intake air flow passage. That is, in the case of the present embodiment, in the annular passage 6, a portion to which each of the intake ports 4a to 4c of the one bank 1 and each of the intake ports 4d to 4f of the other bank 2 are respectively connected and an upstream communication portion (passage). A portion 6d where 6a and 6b extend to the upstream side and are continuous with each other is an intake passage through which intake air introduced from the common intake passage 7 into each of the cylinders 3a to 3f passes, but a downstream side communication portion (passage 6a, The portion 6c where 6b extends to the downstream side and is continuous with each other is out of the intake flow path, and almost no intake air flows. Therefore, the portion serving as the intake air flow passage is formed so as to have the passage area S 1 required to reduce the intake resistance and secure the intake air flow rate, while the downstream side communication portion 6c is formed in the intake air flow passage. It is formed in the passage area S 2 smaller than the portion to be.

【0013】ところで、図1では吸気系の通路構成を模
式的に表しているが、V型エンジンに組込んだ実際のレ
イアウトとしては、図2のように、両バンク1,2間の
空間部において、上記環状通路6の両吸気供給通路6
a,6bが互いに平行に気筒配列方向に沿って延び、エ
ンジン本体の前後両側において互いに連なるように配置
される。そして、環状通路6の上流側部分および下流側
部分はエンジン本体の前後両側において適宜折曲げら
れ、例えば、環状通路6の上流側部分は片側のバンク2
の端部に沿って折曲げられて、バンク2外側部で共通吸
気通路7に接続されている。一方、環状通路6の下流側
連通部分6cは、上記両吸気供給通路6a,6bと上下
に重なり合うように、上側に折返されている。
By the way, although the passage structure of the intake system is schematically shown in FIG. 1, the actual layout incorporated in the V-type engine is as shown in FIG. In both the intake passages 6 of the annular passage 6,
a and 6b extend parallel to each other along the cylinder arrangement direction and are arranged so as to be continuous with each other on both front and rear sides of the engine body. The upstream side portion and the downstream side portion of the annular passage 6 are appropriately bent on both front and rear sides of the engine body. For example, the upstream side portion of the annular passage 6 is a bank 2 on one side.
Is connected to the common intake passage 7 at the outer side of the bank 2 by being bent along the end of the bank. On the other hand, the downstream communication portion 6c of the annular passage 6 is folded back upward so as to vertically overlap the intake air supply passages 6a and 6b.

【0014】このような当実施例の吸気装置によると、
上記環状通路6によって後述のような共鳴効果が得ら
れ、エンジン出力が高められる。しかも、エンジン全高
を高くせず、かつ、エンジンの前後方向等にも大きく突
出することなく、環状通路6等がコンパクトにエンジン
本体に組込まれることとなる。
According to the intake device of this embodiment,
The annular passage 6 has a resonance effect as will be described later, and the engine output is increased. In addition, the annular passage 6 and the like can be compactly incorporated into the engine body without increasing the overall height of the engine and significantly protruding in the front-rear direction of the engine.

【0015】すなわち、上記環状通路6は上記両バンク
1,2間に配置されて、その両吸気供給通路6a,6b
が気筒列方向と平行に延びているが、上記下流側連通部
分6cが上記両吸気供給通路6a,6bと上下に重なり
合うように折返されていることにより、エンジンの気筒
列方向外方に環状通路6の端部が大きく突出することが
防止される。また、上記下流側連通部分6cは折り返し
状に屈曲しているので、上方に大きく突出するようなこ
ともない。さらに当実施例のように下流側連通部分6c
が細く形成されていると、これを上記のように屈曲させ
た状態で、上下方向のコンパクト化がより一層図られ
る。
That is, the annular passage 6 is disposed between the banks 1 and 2 and both intake supply passages 6a and 6b are provided.
Extend in parallel to the cylinder row direction, but the downstream side communication portion 6c is folded back so as to vertically overlap with the intake air supply passages 6a and 6b, so that the annular passage is outward in the cylinder row direction of the engine. The end portion of 6 is prevented from significantly protruding. Further, since the downstream side communication portion 6c is bent in a folded shape, it does not significantly project upward. Further, as in this embodiment, the downstream side communication portion 6c
If it is formed into a thin shape, it can be made more compact in the up-down direction in the bent state as described above.

【0016】そして、上記下流側連通部分6cは、圧力
波の伝播経路となるが吸気の流通経路とはならないの
で、これを上記のように屈曲させても吸気抵抗の増大を
招くようなことはない。従って、エンジン出力が確保さ
れつつ、上記両バンク1,2間のスペースに環状通路6
がコンパクトにレイアウトされることとなる。なお、上
記両吸気供給通路6が吸気拡大室を有しないことによっ
ても、コンパクト化が図られる。
The downstream side communication portion 6c serves as a pressure wave propagation path but not as an intake air flow path. Therefore, even if it is bent as described above, the intake resistance is not increased. Absent. Therefore, the annular passage 6 is provided in the space between the banks 1 and 2 while ensuring the engine output.
Will be laid out compactly. It should be noted that the intake air supply passages 6 do not have an intake expansion chamber, so that the intake air can be made compact.

【0017】次に、この実施例の装置による場合の共鳴
効果による出力向上の作用を、図3を参照して説明す
る。
Next, the operation of improving the output by the resonance effect in the case of the apparatus of this embodiment will be described with reference to FIG.

【0018】吸気順序が連続しない同一気筒グループの
各吸気ポート付近、例えば第1気筒グループの各吸気ポ
ート4a〜4c付近には、第1気筒グループの各気筒の
作動によりそれぞれの吸気行程途中で負圧となって吸気
行程終期に正圧となる基本的圧力振動(図3の線A)が
生じる。ある気筒の吸気ポート付近に生じた圧力波は、
その吸気ポートから上流側と下流側の二方向に分かれて
それぞれ環状通路6を周回するように伝播し、環状通路
6をほぼ一周して同一グループの他の気筒の吸気ポート
に作用する。この場合、環状通路6は拡大室を有しない
ので、圧力波は反転することなく伝播される。
In the vicinity of each intake port of the same cylinder group in which the intake order is not continuous, for example, near each intake port 4a to 4c of the first cylinder group, a negative pressure occurs in the middle of each intake stroke due to the operation of each cylinder of the first cylinder group. A basic pressure oscillation (line A in FIG. 3) that becomes a positive pressure at the end of the intake stroke is generated. The pressure wave generated near the intake port of a cylinder is
It propagates so as to circulate around the annular passage 6 separately from the intake port in two directions, that is, upstream and downstream, and travels around the annular passage 6 substantially to act on the intake ports of other cylinders in the same group. In this case, since the annular passage 6 has no expansion chamber, the pressure wave propagates without inversion.

【0019】そして、圧力波が環状通路6をほぼ一周す
る時間と上記の基本的圧力振動の周期τとが一致する状
態となったとき、すなわち環状通路6全体の長さL(枝
管容積などの影響も考慮した等価管長)と上記周期τと
の関係が τ=L/a …… a:音速 となったときは、図3に矢印で示すように1番気筒3a
に生じて環状通路6を伝播した圧力波が2番気筒3bに
生じた圧力波と重なり、同様にして2番気筒3bから伝
播した圧力波が3番気筒3cに生じる圧力波と重なり、
3番気筒3cから伝播した圧力波が1番気筒3aに生じ
る圧力波と重なる。こうして、第1気筒グループの気筒
相互間で圧力波が共振して図3に線Bで示すように圧力
振動が強められ、同様に第2気筒グループの気筒相互間
でも共振が生じて圧力振動が強められる。この共鳴効果
により、各気筒の充填効率が高められることとなる。
When the time when the pressure wave travels around the annular passage 6 substantially coincides with the period τ of the basic pressure oscillation, that is, the entire length L of the annular passage 6 (such as the branch pipe volume). (Equivalent pipe length in consideration of the influence of the above) and the above-mentioned period τ is τ = L / a ... a: when the sound velocity is reached, as shown by the arrow in FIG.
, The pressure wave that has propagated through the annular passage 6 overlaps with the pressure wave that has occurred in the second cylinder 3b, and the pressure wave that has similarly propagated from the second cylinder 3b overlaps with the pressure wave that has generated in the third cylinder 3c.
The pressure wave propagated from the third cylinder 3c overlaps with the pressure wave generated in the first cylinder 3a. In this way, the pressure waves resonate between the cylinders of the first cylinder group and the pressure vibrations are intensified as shown by the line B in FIG. 3, and similarly, the resonances also occur between the cylinders of the second cylinder group and the pressure vibrations occur. Be strengthened. Due to this resonance effect, the filling efficiency of each cylinder is enhanced.

【0020】なお、図3では、同一気筒グループにおい
て生じる圧力振動の1つの圧力波が次の圧力波に重なる
ように伝播する基本的共振状態を示したが、圧力波が1
つおきや2つおきの圧力波に重なるように伝播するとき
にも共振状態が得られ、従って、上記の基本的共振状態
が得られるエンジン回転数の整数倍のエンジン回転数で
も共振状態が得られる。
Note that FIG. 3 shows a basic resonance state in which one pressure wave of pressure oscillation generated in the same cylinder group propagates so as to overlap with the next pressure wave.
A resonance state is obtained even when propagating so as to overlap with every other pressure wave or every two pressure waves. Therefore, a resonance state can be obtained even at an engine speed that is an integral multiple of the engine speed at which the above basic resonance state is obtained. To be

【0021】このように上記環状通路6によって共鳴効
果をもたせた吸気装置によると、下流側連通経路を設け
ずに上流側に圧力反転部を有する構造とした場合と比
べ、高速域での充填効率向上に有利となる。
According to the intake device having the resonance effect by the annular passage 6 as described above, the filling efficiency in the high speed region is higher than that in the structure having the pressure reversal portion on the upstream side without providing the downstream communication path. It is advantageous for improvement.

【0022】つまり、第1気筒グループの各吸気ポート
に通じる通路と第2気筒グループの各吸気ポートに通じ
る通路とを上流側にのみ延ばした状態でこの両通路の集
合部を圧力反転部とする構造とした場合、上記集合部で
負圧から正圧に反転して反射された圧力波が自気筒に作
用して吸気行程終期の圧力を強める状態となったときに
充填効率が高められ、このときの圧力振動の周期τと吸
気ポートから集合部までの通路長さL´(等価管長)と
の関係は τ/2=2L´/a …… となる。そして、上記圧力振動の周期τはエンジン回転
数が高くなるにつれて短くなるので、高速域で過給効果
を高めるには上記通路長さを短く設定する必要がある
が、各気筒の吸気ポートから通路集合部までの通路長さ
には、気筒相互の吸気ポート間長さ分の較差があり、集
合部までの通路長さを短くする程、相対的に上記較差が
大きくなり、各気筒に作用する圧力波のアンバランスが
大きくなるため、全体的な充填効率を高めることは困難
となる。
That is, with the passage leading to each intake port of the first cylinder group and the passage leading to each intake port of the second cylinder group extending only upstream, the collective portion of these two passages serves as a pressure reversal portion. In the case of the structure, the charging efficiency is increased when the pressure wave reflected by reversing from the negative pressure to the positive pressure at the collecting portion acts on the own cylinder to strengthen the pressure at the end of the intake stroke. At this time, the relationship between the period τ of pressure oscillation and the passage length L ′ (equivalent pipe length) from the intake port to the collecting portion is τ / 2 = 2L ′ / a. Since the cycle τ of the pressure oscillation becomes shorter as the engine speed becomes higher, it is necessary to set the passage length short in order to enhance the supercharging effect in the high speed range. The passage length to the gathering portion has a difference corresponding to the length between the intake ports of the cylinders. The shorter the passage length to the gathering portion is, the larger the difference becomes, and the difference acts on each cylinder. Since the imbalance of the pressure wave becomes large, it becomes difficult to increase the overall filling efficiency.

【0023】これに対し、当実施例の装置によると、前
記式が成立するときに共鳴効果が得られ、この式と
式とを比べると、圧力振動の周期τが同じであれば、
環状通路6全体の等価管長Lは前記式による場合の等
価管長L´の4倍となり、高速域でも、気筒毎の圧力波
伝播経路の較差が相対的に小さいので、各気筒に作用す
る圧力波のアンバランスが小さくなる。従って、高速域
で有効に充填効率を高めることができる。
On the other hand, according to the apparatus of the present embodiment, the resonance effect is obtained when the above equation is satisfied, and comparing this equation with the equation, if the period τ of pressure oscillation is the same,
The equivalent pipe length L of the entire annular passage 6 is four times the equivalent pipe length L ′ in the case of the above equation, and the difference in the pressure wave propagation paths for each cylinder is relatively small even in the high speed range, so that the pressure wave acting on each cylinder is The unbalance of is reduced. Therefore, the filling efficiency can be effectively increased in the high speed range.

【0024】また、上記環状通路6において、吸気流通
経路以外の部分である前記下流側連通部分6cが細く形
成されていることにより、充填効率がより一層高められ
る。つまり、一般に圧力波が通路を通して伝播されると
き、ある程度までは通路面積が小さくなるほど圧力波が
強められる傾向がある。ただし、圧力波が伝播される上
記環状通路6のうちで、吸気の流通経路ともなる部分を
細くすると吸気流通抵抗が増大して吸気の導入が阻害さ
れる。そこで、吸気流通経路以外の部分を細くしておく
ことにより、吸気の流通に支障をきたすことなく圧力波
が強められ、有効に共鳴効果が高められることとなる。
実際に、上記下流側連通部分6cを細くした場合と環状
通路6全体を一定径とした場合とについて各種エンジン
回転数での平均有効圧力を調べると、環状通路6全体を
50mmの一定径(通路長さは約880mm)とした場合に
は、第4図に破線Cでつないだ値となったのに対し、上
記下流側連通部分6cを直径40mmに細くした場合は第
4図に実線でつないだ値となり、平均有効圧力が高めら
れた。
Further, in the annular passage 6, the downstream side communicating portion 6c, which is a portion other than the intake air flow passage, is formed thin, so that the filling efficiency is further enhanced. That is, generally, when a pressure wave propagates through a passage, the pressure wave tends to be intensified as the passage area becomes smaller to some extent. However, in the annular passage 6 through which the pressure wave is propagated, if the portion that also serves as the intake air passage is made thin, the intake air flow resistance increases and the intake air is blocked. Therefore, by thinning the portion other than the intake air flow path, the pressure wave is strengthened without disturbing the flow of the intake air, and the resonance effect is effectively enhanced.
Actually, when the average effective pressure at various engine speeds was examined for the case where the downstream side communication portion 6c is thin and the case where the entire annular passage 6 has a constant diameter, the entire annular passage 6 has a constant diameter of 50 mm (passage). When the length is set to about 880 mm), the value is connected by the broken line C in FIG. 4, whereas when the downstream side communication portion 6c is thinned to a diameter of 40 mm, it is connected by a solid line in FIG. The average effective pressure was increased.

【0025】なお、上記実施例の構造によると、共通吸
気通路7から導入される吸気は環状通路6の上流側部分
を通って各気筒に供給されるが、図5に示すように、V
型エンジンの各バンク1,2の気筒へ吸気を供給する第
1,第2吸気供給通路6a,6bと両側の連通部分6
c,6c′とからなる環状通路6の大部分を、吸気導入
用の通路から独立させて形成しておいてもよい。すなわ
ちこの実施例では、共通吸気通路7とこの通路7から2
又に分岐した分岐吸気通路7a,7bとで吸気導入のた
めの主吸気系が構成され、上記分岐吸気通路7a,7b
の下流端部が吸気ポート近傍の環状通路6に接続されて
いる。この構造によると、外部から導入された吸気は、
上記分岐吸気通路7a,7bから、環状通路6の吸気ポ
ート近傍部分のみを通って各気筒に供給される。従っ
て、環状通路6における両気筒グループ間の両側各連通
部分6c,6c′がいずれも吸気の流通経路とはならず
に、圧力波の伝播のみを行なうこととなる。
According to the structure of the above embodiment, the intake air introduced from the common intake passage 7 is supplied to each cylinder through the upstream portion of the annular passage 6, but as shown in FIG.
Type first engine, first and second intake air supply passages 6a, 6b for supplying intake air to the cylinders of each bank 1, 2 and communication portions 6 on both sides thereof
Most of the annular passage 6 composed of c and 6c ′ may be formed independently of the passage for introducing the intake air. That is, in this embodiment, the common intake passage 7 and the passages 7 to 2
A main intake system for introducing intake air is constituted by the branch intake passages 7a and 7b that are branched off.
Is connected to the annular passage 6 near the intake port. According to this structure, the intake air introduced from the outside,
It is supplied to each cylinder from the branch intake passages 7a and 7b only through the portion of the annular passage 6 near the intake port. Therefore, neither of the communicating portions 6c, 6c 'on both sides between the cylinder groups in the annular passage 6 serves as a flow path for intake air, and only propagates the pressure wave.

【0026】この実施例による場合も、図5では通路構
成を模式的に示しているが、V型エンジンに組み込む場
合のレイアウトとしては、両バンク1,2間において上
記両吸気供給通路6a,6bを気筒列方向と平行に配置
するとともに、吸気の流通経路とはならない連通部分を
吸気供給通路6a,6bと上下に重なるように折り返
し、例えば、上記両側各連通部分6c,6c′をともに
吸気供給通路6a,6b上に折り返すようにしておけば
よい。さらに、上記両側連通部分6c,6dを細く形成
しておけばよい。
Also in the case of this embodiment, the passage structure is schematically shown in FIG. 5, but the layout when incorporated in a V-type engine is such that the intake air supply passages 6a and 6b are provided between the banks 1 and 2. Are arranged in parallel with the cylinder row direction, and the communicating portions that do not serve as the intake passage are folded back so as to vertically overlap the intake supply passages 6a and 6b. For example, both the communicating portions 6c and 6c 'on both sides are both supplied to the intake air. It may be folded back on the passages 6a and 6b. Furthermore, the above-mentioned both-side communicating portions 6c and 6d may be formed thin.

【0027】このようにレイアウトすることにより、第
1の実施例と同様に、エンジン前後方向及び上下方向の
コンパクト化が図られる。
With this layout, the engine can be made compact in the front-rear direction and the up-down direction, as in the first embodiment.

【0028】図6は本発明のさらに別の実施例を示し、
この実施例では、環状通路6の通路長さを可変としてい
る。すなわち、環状通路6における吸気供給通路6a,
6bの下流側を連通する下流側連通部分6cに、その途
中を短絡する短絡連通部6eが設けられ、この短絡連通
部6eに第1切替弁11が設けられるとともに、これよ
り下流の連通部分6cに第2切替弁12が設けられてい
る。この構造によると、第1切替弁11を閉じて第2切
替弁12を開いた状態では環状通路6が比較的長く、第
1切替弁11を開いて第2切替弁12を閉じた状態では
環状通路6の実質的な長さが短くなるので、図外の制御
手段により、エンジン回転数に応じて上記各切替弁1
1,12の開閉を切替えることにより、異なる回転数域
でそれぞれ共鳴効果を高めることができる。
FIG. 6 shows still another embodiment of the present invention,
In this embodiment, the passage length of the annular passage 6 is variable. That is, the intake supply passage 6a in the annular passage 6,
A downstream side communication portion 6c that communicates the downstream side of 6b is provided with a short-circuit communication portion 6e that short-circuits the middle thereof. The short-circuit communication portion 6e is provided with a first switching valve 11 and a communication portion 6c downstream thereof. The second switching valve 12 is provided in the. According to this structure, the annular passage 6 is relatively long when the first switching valve 11 is closed and the second switching valve 12 is opened, and the annular passage 6 is annular when the first switching valve 11 is opened and the second switching valve 12 is closed. Since the substantial length of the passage 6 is shortened, the control valve (not shown) controls the switching valves 1 according to the engine speed.
By switching the opening and closing of 1 and 12, the resonance effect can be enhanced in different rotational speed regions.

【0029】この実施例による場合も、図6では通路構
成を模式的に示しているが、V型エンジンに組み込む場
合のレイアウトとしては、両バンク1,2間において上
記両吸気供給通路6a,6bを気筒列方向と平行に配置
するとともに、下流側連通部分6cを吸気供給通路6
a,6bと上下に重なるように折り返すことにより、エ
ンジン前後方向及び上下方向のコンパクト化が図られ
る。さらに、下流側連通部分6cの通路径を小さくし、
この部分で上記のように通路長さを可変にしておけば、
この通路長さを可変にする機構もコンパクトに組込まれ
ることとなる。
Also in the case of this embodiment, the passage structure is schematically shown in FIG. 6, but the layout when incorporated in the V-type engine is such that the intake air supply passages 6a and 6b are provided between the banks 1 and 2. Are arranged in parallel to the cylinder row direction, and the downstream side communication portion 6c is connected to the intake supply passage 6
By being folded back so as to vertically overlap with a and 6b, the compactness of the engine front-rear direction and the up-down direction can be achieved. Furthermore, the passage diameter of the downstream side communication portion 6c is reduced,
If the passage length is made variable in this part as described above,
A mechanism for changing the passage length can be compactly incorporated.

【0030】なお、上記実施例では、環状通路6を拡大
室を有しないものとしているが、拡大室を有する環状通
路に適用してもよい。
In the above embodiment, the annular passage 6 does not have the expansion chamber, but it may be applied to the annular passage having the expansion chamber.

【0031】また、上記実施例では、環状通路6のうち
で折り返し状に屈曲される下流側連通部6cの通路面積
を他の部分の通路面積と比較して小さくしているが、下
流側連通部を他の部分と同じ通路面積としてもよい。
Further, in the above embodiment, the passage area of the downstream side communication portion 6c of the annular passage 6 which is bent in a folded shape is made smaller than the passage areas of the other portions, but the downstream side communication is made. The part may have the same passage area as other parts.

【0032】[0032]

【発明の効果】以上のように本発明は、各気筒の吸気ポ
ートに通じる吸気通路に環状通路を設けているため、共
鳴効果により充填効率を高めることができる。しかも、
このような吸気系をV型エンジンの両バンク間に配置
し、とくに、環状通路のうちで吸気の流通経路とならな
い下流側連通部分を吸気供給通路と上下に重なるように
折り曲げてレイアウトしているため、出力を確保しつ
つ、気筒列方向外方へ環状通路が大きく突出することを
防止して、コンパクトな吸気装置を得ることができる。
As described above, according to the present invention, since the intake passage communicating with the intake port of each cylinder is provided with the annular passage, the filling efficiency can be enhanced by the resonance effect. Moreover,
Such an intake system is arranged between both banks of the V-type engine, and in particular, the downstream side communication portion of the annular passage, which does not serve as an intake passage, is laid out so as to be vertically overlapped with the intake supply passage. Therefore, while securing the output, it is possible to prevent the annular passage from significantly protruding outward in the cylinder column direction, and to obtain a compact intake device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す吸気装置概略図であ
る。
FIG. 1 is a schematic view of an intake device showing an embodiment of the present invention.

【図2】V型エンジンに吸気系を組込んだ構造の一例を
示す斜視図である。
FIG. 2 is a perspective view showing an example of a structure in which an intake system is incorporated in a V-type engine.

【図3】吸気ポート付近の圧力振動を示す図である。FIG. 3 is a diagram showing pressure oscillation near an intake port.

【図4】環状通路を一定径とした場合と吸気流通経路以
外の部分を細くした場合とについて各種エンジン回転数
での平均有効圧力を調べたデータについてのグラフであ
る。
FIG. 4 is a graph showing data obtained by examining average effective pressures at various engine speeds when the annular passage has a constant diameter and when the portion other than the intake air flow passage is made thin.

【図5】本発明の別の実施例を示す吸気装置概略図であ
る。
FIG. 5 is a schematic view of an intake device showing another embodiment of the present invention.

【図6】本発明のさらに別の実施例を示す吸気装置概略
図である。
FIG. 6 is a schematic view of an intake device showing still another embodiment of the present invention.

【符号の説明】 3a〜3f 各気筒 4a〜4f 吸気ポート 6 環状通路 6a,6b 吸気供給通路 6c 連通部分[Explanation of Codes] 3a to 3f Each cylinder 4a to 4f Intake port 6 Annular passages 6a and 6b Intake supply passage 6c Communication part

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】削除[Correction method] Delete

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02M 35/116 (72)発明者 楪 泰浩 広島県安芸郡府中町新地3番1号 マツダ 株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location F02M 35/116 (72) Inventor Yasuhiro Yuzuka Shinchi Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Motor Corporation Within

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 V型エンジンの各気筒の吸気ポ―トに通
じる吸気通路に、一方のバンクのシリンダへ吸気を供給
する第1吸気供給通路と他方のバンクのシリンダへ吸気
を供給する第2吸気供給通路と両吸気供給通路を連通す
る上流側連通部分および下流連通部分とからなって、各
吸気ポートから伝播する圧力波を周回させるように環状
に形成された共鳴用環状通路を設けたV型エンジンの吸
気装置であって、上記両吸気供給通路を、両バンク間
に、通路軸方向が気筒列方向と平行となるように配置す
るとともに、該両吸気供給通路に対して上記下流側連通
部分を折り曲げて、該下流側連通部分と両吸気供給通路
とが上下に重なるように配置したことを特徴とするV型
エンジンの吸気装置。
1. A first intake supply passage for supplying intake air to a cylinder of one bank and an intake passage for supplying intake air to a cylinder of the other bank to an intake passage communicating with an intake port of each cylinder of a V-type engine. A resonance annular passage, which is formed of an intake air supply passage and an upstream communication portion and a downstream communication portion that connect the intake air supply passages to each other, is formed in an annular shape so as to circulate a pressure wave propagating from each intake port. An intake device for a type engine, wherein the both intake supply passages are arranged between both banks so that the passage axial direction is parallel to the cylinder row direction, and the downstream side communication is performed with respect to the both intake supply passages. An intake device for a V-type engine, characterized in that the portion is bent so that the downstream communication portion and both intake supply passages are vertically overlapped.
【請求項2】 上記両吸気供給通路は吸気拡大室を有し
ないものである請求項1記載のV型エンジンの吸気装
置。
2. The intake system for a V-type engine according to claim 1, wherein both of the intake supply passages have no intake expansion chamber.
【請求項3】 上記下流側連通部分を上記両吸気供給通
路よりも細く形成して、この部分を折り曲げた請求項1
または2記載のV型エンジンの吸気装置。
3. The downstream side communicating portion is formed to be thinner than both of the intake air supply passages, and this portion is bent.
Alternatively, the intake device for the V-type engine according to item 2.
JP15899494A 1994-07-11 1994-07-11 V-type engine intake device Expired - Fee Related JPH07101007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15899494A JPH07101007B2 (en) 1994-07-11 1994-07-11 V-type engine intake device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15899494A JPH07101007B2 (en) 1994-07-11 1994-07-11 V-type engine intake device

Publications (2)

Publication Number Publication Date
JPH07139360A true JPH07139360A (en) 1995-05-30
JPH07101007B2 JPH07101007B2 (en) 1995-11-01

Family

ID=15683907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15899494A Expired - Fee Related JPH07101007B2 (en) 1994-07-11 1994-07-11 V-type engine intake device

Country Status (1)

Country Link
JP (1) JPH07101007B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108234A1 (en) 2007-02-20 2008-09-12 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108234A1 (en) 2007-02-20 2008-09-12 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Also Published As

Publication number Publication date
JPH07101007B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
JP2543537B2 (en) Intake device for V-type multi-cylinder engine
US4957071A (en) Intake system for V-type internal combustion engine
KR930009746B1 (en) Intake system for multiple cylinder engine
JPS6014169B2 (en) Intake system for multi-cylinder engines
JP2877502B2 (en) Engine intake system
JPH07139360A (en) Intake system of v-type engine
JPH01106922A (en) Intake apparatus of v-shaped engine
JP2003176722A (en) Engine intake device
JPS61237823A (en) Intake equipment for multi-cylinder engine
JP2562465B2 (en) Engine intake system
JP2547409B2 (en) V-type engine intake device
JPH0392534A (en) Intake device for multi-cylinder engine
JPH0733773B2 (en) Engine intake system
JP2750122B2 (en) Engine intake system
JP2552284B2 (en) Engine intake system
JPH0749769B2 (en) V-type engine intake structure
JPS63111223A (en) Suction device for v-type multicylinder engine
JPS62153516A (en) Intake device for engine
JP2009281218A (en) Multi-cylinder four-stroke internal combustion engine
JPH0733772B2 (en) Engine intake system
JPS63111225A (en) Suction device for v-type multicylinder engine
JPH08105327A (en) Intake system of engine
JPH0676775B2 (en) V-type engine intake device
JPS63124824A (en) Suction device for v-type multi-cylinder engine
JPH02115524A (en) Air intake device of engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees