JPH07138369A - Organopolysiloxane and its production - Google Patents

Organopolysiloxane and its production

Info

Publication number
JPH07138369A
JPH07138369A JP5309897A JP30989793A JPH07138369A JP H07138369 A JPH07138369 A JP H07138369A JP 5309897 A JP5309897 A JP 5309897A JP 30989793 A JP30989793 A JP 30989793A JP H07138369 A JPH07138369 A JP H07138369A
Authority
JP
Japan
Prior art keywords
organopolysiloxane
catalyst
group
chemical
glycidoxypropylalkyldialkoxysilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5309897A
Other languages
Japanese (ja)
Other versions
JP3844788B2 (en
Inventor
Katsutoshi Ogawa
勝利 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP30989793A priority Critical patent/JP3844788B2/en
Publication of JPH07138369A publication Critical patent/JPH07138369A/en
Application granted granted Critical
Publication of JP3844788B2 publication Critical patent/JP3844788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)

Abstract

PURPOSE:To obtain an organopolysiloxane which can be used as a modified silicone sealant or the like as well as a modified silicone oil by subjecting two specified silane compounds to a hydrolysis reaction and a condensation reaction in a hydrophilic solvent. CONSTITUTION:A tetraalkoxyl functional silane and a 3- glycidoxypropylalkyldialkoxysilane are hydrolyzed in the presence of an organotin condensation catalyst and an acid hydrolysis catalyst in a hydrophilic solvent or a mixed solvent containing a hydrophilic solvent with water in an amount 3-4 times as large as the number of moles of the silanes to obtain an organopolysiloxane represented by the formula (wherein X is 1.5-0.5; (n) and (m) are each 1-10; and R is a 1-8C saturated hydrocarbon group or alkenyl). While a conventional methylpolysiloxane is not soluble in or does not have an affinity for an organic solvent or an organic resin, the organopolysiloxane is soluble in various organic solvents and has an affinity for various organic resins. Therefore, it can find wide applications such as a silicone for release paper, an adhesive sealing material, and a modified silicone sealant as well as a modified silicone oil.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オルガノポリシロキサ
ンとその製造法に関する。更に詳しくは、四アルコキシ
官能シランと3−グリシドキシプロピルアルキルジアル
コキシシランを縮合触媒と加水分解触媒の存在下に共加
水分解および縮合反応せしめてなるオルガノポリシロキ
サンとその製造法に関する。
FIELD OF THE INVENTION The present invention relates to an organopolysiloxane and a method for producing the same. More specifically, it relates to an organopolysiloxane obtained by cohydrolyzing and condensing a tetraalkoxy functional silane and 3-glycidoxypropylalkyldialkoxysilane in the presence of a condensation catalyst and a hydrolysis catalyst, and a method for producing the same.

【0002】[0002]

【従来の技術とその問題点】シランカップリング剤はガ
ラス強化FRP用途に1947年頃より実用化されダウ
コニング社のプルードマン(E.P.Plueddem
ane)等により応用展開がはかられたシラン化合物で
ある。現在でも主として熱硬化樹脂とフィーラ間に作用
して耐熱水強度向上や電気特性のダウンを抑えるバイン
ダーとして広く使用されている。最近では、強度向上目
的以外に繊維処理剤としてヌメリ感や反発弾性を与える
薬剤としての使い方やプラスチックマグネット製造時に
添加されて配向性と強度向上目的で使われている。また
ビニルシランカップリング剤ではポリエチレンの簡便な
架橋剤として電線被覆に適応されている。3−グリシド
キシプロピル基を有するシランカップリング剤はエポキ
シ樹脂コンパウンドに添加されてIC封止剤の特性維持
に効果的に使われたり、プラスチックレンズの染色タイ
プのハードコート剤にも使われている。また、テトラメ
トキシシランと3−グリシドキシプロピルトリメトキシ
シランの共加水分解物が試作されているが、後述の本発
明とは異なってアルコキシ基を相当量残した極低粘度の
オイルである。これは、いわゆるポリマー化シランカッ
プリング剤としての展開を模索するものであり、構造的
にも機能的にも全く似て否なるものである。ポリメチル
シロキサン主鎖にペンダントとしてアルコキシ基を持た
せたものも提案されているが、いずれも有機樹脂との相
溶性の問題が大きなネックとなり応用展開がはかられな
いままである。
2. Description of the Related Art Silane coupling agents have been put to practical use since 1947 for use in glass-reinforced FRP and have been manufactured by Dow Corning's E.P.
lane) is a silane compound whose application has been developed. Even today, it is widely used as a binder that acts mainly between the thermosetting resin and the feeler to suppress the improvement of hot water resistance and the deterioration of electrical properties. Recently, in addition to the purpose of improving strength, it has been used as a fiber treatment agent as a chemical for giving slimy feel and impact resilience, and added for the purpose of improving orientation and strength by being added during the manufacture of plastic magnets. In addition, vinyl silane coupling agents are suitable for coating electric wires as a simple crosslinking agent for polyethylene. The silane coupling agent having a 3-glycidoxypropyl group is added to the epoxy resin compound and effectively used for maintaining the characteristics of the IC encapsulant, and also used as a dye-type hard coat agent for plastic lenses. There is. In addition, a co-hydrolyzate of tetramethoxysilane and 3-glycidoxypropyltrimethoxysilane has been experimentally produced, but unlike the present invention described later, it is an extremely low-viscosity oil in which a considerable amount of alkoxy groups remain. This seeks development as a so-called polymerized silane coupling agent, and is completely similar in structure and function. A polymethylsiloxane main chain having an alkoxy group as a pendant has also been proposed, but in both cases, the problem of compatibility with an organic resin becomes a major bottleneck and its application cannot be developed.

【0003】[0003]

【発明が解決しようとする課題】本発明者は、鋭意研究
の結果、次の諸事実を見出し、これらの知見に基づいて
本発明を完成した。すなわち、テトラアルコキシシラン
とオルガノ官能性アルコキシシランカップリング剤の共
加水分解でアルコキシ基を残留させず、シラノール基に
変換させる為にはシランのモル数の少なくとも3倍モル
の水、好ましくは3.5倍モル以上の水を反応させる必
要がある。この為には使用する親水性溶媒は添加される
水を充分溶解し得る量が必要である。かかる条件を満た
しS520の如く酸触媒のみでは加水分解が長期間かか
るシランカップリング剤では有機錫化合物の様な縮合触
媒を添加する事で解決し得る事を見いだした。本発明に
関わる反応原料の内の正珪酸エチルはこれ単独での加水
分解速度は常温で30分以内にモノマー消失する早さで
あるが、S520との混合で加水分解をスタートさせる
と著しい遅延反応が生じる。本発明ではこの問題も二段
加水分解縮合反応方法にて解決した。以上の記述から明
らかなように本発明は従来より提案されてきた残留アル
コキシ基を利用するのでなく、架橋性、反応性に富み、
かつ常温では安定なシラノール基を含み三次元構造を含
む3−グリシドキシプロピル基官能性のポリシロキサン
とその製造法を提供することを目的とする。このシラノ
ール基はメチル系ポリマーとの縮重合やポリシロキサン
架橋による硬化物を得る事も可能である。含有するエポ
キシ基は勿論通常のポリマー化反応をさせる事が出来る
し、エポキシ樹脂との良相溶性から従来のポリシロキサ
ンでは出来なかった均質なポリマー化が出来るので新た
な需要を創設可能である。
As a result of earnest research, the present inventor has found the following facts and completed the present invention based on these findings. That is, in order to convert an alkoxy group into a silanol group without leaving an alkoxy group by cohydrolysis of a tetraalkoxysilane and an organofunctional alkoxysilane coupling agent, at least 3 times the molar amount of silane, preferably water, of 3. It is necessary to react 5 times or more of water. For this purpose, the hydrophilic solvent used must be in an amount sufficient to dissolve the added water. It has been found that a silane coupling agent which satisfies the above conditions and which is hydrolyzed for a long time only with an acid catalyst like S520 can be solved by adding a condensation catalyst such as an organic tin compound. Among the reaction raw materials relating to the present invention, ethyl orthosilicate alone has a hydrolysis rate of disappearing monomers within 30 minutes at room temperature, but when hydrolysis is started by mixing with S520, a significantly delayed reaction occurs. Occurs. In the present invention, this problem is also solved by the two-step hydrolysis condensation reaction method. As is clear from the above description, the present invention does not utilize the residual alkoxy group which has been conventionally proposed, but is rich in crosslinkability and reactivity,
Moreover, it is an object of the present invention to provide a polysiloxane functionalized with 3-glycidoxypropyl group containing a silanol group and a three-dimensional structure, which is stable at room temperature, and a method for producing the same. It is also possible to obtain a cured product of this silanol group by polycondensation with a methyl polymer or polysiloxane cross-linking. Of course, the contained epoxy group can be subjected to a usual polymerization reaction, and because of its good compatibility with the epoxy resin, it is possible to carry out a homogeneous polymerization which was not possible with conventional polysiloxanes, so that a new demand can be created.

【0004】[0004]

【課題を解決するための手段】本発明は、下記(1)な
いし(5)の各構成を有する。 (1)四アルコキシ官能シランと3−グリシドキシプロ
ピルアルキルジアルコキシシランを親水性溶剤ないし親
水性溶剤を含む混合溶剤中で有機錫縮合触媒と酸加水分
解触媒存在下にシラン総モルの3〜4倍モルの水で加水
分解、縮合反応せしめて[化5]で示されるオルガノポ
リシロキサンオイルを得ることを特徴とする該オイルの
製造法。
The present invention has the following configurations (1) to (5). (1) In a mixed solvent containing a tetraalkoxy-functional silane and 3-glycidoxypropylalkyldialkoxysilane in a hydrophilic solvent or a hydrophilic solvent, in the presence of an organotin condensation catalyst and an acid hydrolysis catalyst, the total molar amount of silane is 3 to 3. A process for producing an organopolysiloxane oil represented by [Chemical Formula 5], which comprises hydrolyzing and condensing with 4-fold molar water to obtain an organopolysiloxane oil represented by [Chemical Formula 5].

【化5】 (ここでxは1.5〜0.5、n,mはそれぞれ1〜1
0の整数、Rは炭素数1〜8の飽和炭化水素基またはア
ルケニル基である。) (2)一般式Si(OR14 で示されるテトラアルコ
キシシランと一般式[化6]で示される3−グリシドキ
シプロピルアルキルジアルコキシシランを有機錫縮合触
媒の存在下で親水性溶剤叉は親水性溶剤を含む混合溶剤
中にて酸触媒にてシラン総モルの3〜4倍モルの水を用
いて共加水分解、縮合反応せしめてなるとするオルガノ
ポリシロキサン。
[Chemical 5] (Here, x is 1.5 to 0.5, and n and m are 1 to 1 respectively.
An integer of 0 and R is a saturated hydrocarbon group having 1 to 8 carbon atoms or an alkenyl group. (2) Tetraalkoxysilane represented by the general formula Si (OR 1 ) 4 and 3-glycidoxypropylalkyldialkoxysilane represented by the general formula [Chemical Formula 6] in the presence of an organic tin condensation catalyst in a hydrophilic solvent. Alternatively, an organopolysiloxane obtained by co-hydrolyzing and condensing with an acid catalyst in a mixed solvent containing a hydrophilic solvent and using 3 to 4 times the molar amount of water of the silane.

【化6】 (ここでアルキル基RはC1 〜C8 の飽和炭化水素基あ
るいはアルケニル基である。) (3)前記(2)のテトラアルコキシシランと3−グリ
シドキシプロピルアルキルジアルコキシシランのモル比
を1/1以下で反応させた次に示す[化7]であるオル
ガノポリシロキサン。
[Chemical 6] (Here, the alkyl group R is a C 1 to C 8 saturated hydrocarbon group or an alkenyl group.) (3) The molar ratio of the tetraalkoxysilane and the 3-glycidoxypropylalkyldialkoxysilane of the above (2) is An organopolysiloxane represented by the following [Chemical Formula 7] which is reacted at 1/1 or less.

【化7】 (シラノール基xは1.5〜0.5の範囲であってポリ
マー末端基はシラノール基である。) (4)テトラアルコキシシランと3−グリシドキシプロ
ピルアルキルジアルコキシシランの共加水分解、縮合反
応に先だってテトラアルコキシシランを酸触媒及び総シ
ランモルの3〜4倍モルの水を加えて加水分解させた後
に有機錫触媒と所定モル比の3−グリシドキシプロピル
アルキルジアルコキシシランを加えて共加水分解縮合反
応せしめる二段加水分解縮合方法による[化8]で示さ
れるオルガノポリシロキサン化合物の製造法。
[Chemical 7] (The silanol group x is in the range of 1.5 to 0.5 and the polymer end group is a silanol group.) (4) Cohydrolysis and condensation of tetraalkoxysilane and 3-glycidoxypropylalkyldialkoxysilane Prior to the reaction, tetraalkoxysilane was hydrolyzed by adding an acid catalyst and 3 to 4 times the molar amount of water to the total amount of silane, followed by addition of an organotin catalyst and a predetermined molar ratio of 3-glycidoxypropylalkyldialkoxysilane. A method for producing an organopolysiloxane compound represented by [Chemical Formula 8] by a two-step hydrolysis and condensation method of causing a hydrolysis and condensation reaction.

【化8】 (5)テトラアルコキシシランがテトラメトキシシラン
またはテトラエトキサシランであり、3−グリシドキシ
プロピルジアルコキシシランが3−グリシドキシプロピ
ルメチルジメトキシシランもしくは3−グリシドキシプ
ロピルメチルジエトキシシランのいずれかの組み合わせ
で前記(4)の化合物の製造法。
[Chemical 8] (5) The tetraalkoxysilane is tetramethoxysilane or tetraethoxasilane, and the 3-glycidoxypropyldialkoxysilane is either 3-glycidoxypropylmethyldimethoxysilane or 3-glycidoxypropylmethyldiethoxysilane. A method for producing the compound of the above (4) by combining the above.

【0005】本発明の構成と効果につき以下に詳述す
る。本発明に使用するテトラアルコキシシランとして
は、テトラメトキシシラン、テトラエトキシシラン、テ
トラn−プロキシシラン等をあげることができる。これ
らの中では、加水分解速度とSi含有率から判断してテ
トラメトキシシランあるいはテトラエトキシシランが有
利に使用される。すなわち、テトラエトキシシランとし
ては多摩化学社製正珪酸エチル等の市販品が利用出来
る。他方、3−グリシドキシプロピル基を含むジアルコ
キシのシランカップリング剤としてはアルキル基RはC
1 〜C8 の飽和炭化水素基あるいはアルケニル基が適応
されるが、特に好適にはC1 〜C2 の飽和炭化水素基あ
るいはビニル基が使用出来る。2つのアルコキシ基もC
1 〜C8 の飽和アルコールより製したものが適当で、特
に好適にはその加水分解速度よりメトキシ基あるいはエ
トキシ基が挙げられる。すなわち3−グリシドキシプロ
ピルメチルジメトキシシラン(チッソ株式会社製サイラ
エースS520)や3−グリシドキシプロピルメチルジ
エトキシシラン(信越化学社製CFシランKBE40
2)等の市販品が利用出来る。
The structure and effect of the present invention will be described in detail below. Examples of the tetraalkoxysilane used in the present invention include tetramethoxysilane, tetraethoxysilane, and tetra-n-proxysilane. Among these, tetramethoxysilane or tetraethoxysilane is advantageously used, judging from the hydrolysis rate and Si content. That is, as tetraethoxysilane, a commercially available product such as ethyl orthosilicate manufactured by Tama Chemical Co., Ltd. can be used. On the other hand, as a dialkoxy silane coupling agent containing a 3-glycidoxypropyl group, an alkyl group R is C
Saturated hydrocarbon group or an alkenyl group having 1 -C 8 is adapted, but particularly preferably C 1 -C 2 saturated hydrocarbon group or a vinyl group can be used. Two alkoxy groups are also C
Those prepared from 1 to C 8 saturated alcohol are suitable, and particularly preferred are methoxy group and ethoxy group depending on the hydrolysis rate. That is, 3-glycidoxypropylmethyldimethoxysilane (Sila Ace S520 manufactured by Chisso Corporation) and 3-glycidoxypropylmethyldiethoxysilane (CF silane KBE40 manufactured by Shin-Etsu Chemical Co., Ltd.)
Commercial products such as 2) can be used.

【0006】次に加水分解触媒としての酸であるが、使
用量としては触媒量の酸があればよく酸濃度は特に規定
しない。例えば希釈した酸を規定量の水の分だけ添加す
る方法もある。酸の種類としては酢酸等の有機酸や塩
酸、硫酸等の無機酸あるいは強酸性イオン交換樹脂のい
ずれも使用出来るが好ましくは加水分解速度の早い無機
酸が推奨される。
Next, regarding an acid as a hydrolysis catalyst, the acid concentration is not particularly specified as long as a catalytic amount of acid is used. For example, there is a method in which a diluted acid is added by a specified amount of water. As the type of acid, any of an organic acid such as acetic acid, an inorganic acid such as hydrochloric acid and sulfuric acid, or a strongly acidic ion exchange resin can be used, but an inorganic acid having a high hydrolysis rate is preferably recommended.

【0007】シラノール縮合触媒として作用する広範な
種類の物質のいずれもが本発明に用いる事が出来る。か
かる物質には、例えば、ジブチル錫ジラウレート、酢酸
第一錫、オクタン酸第一錫の様な有機錫化合物、あるい
はナフテン酸亜鉛、オクタン酸亜鉛、2−エチルヘキサ
ン酸及びナフテン酸コバルトの如き金属カルボキシレー
ト、チタニウムエステル及びキレートが挙げられる。好
ましい化合物は有機錫化合物で特に錫カルボキシレー
ト、例えばジブチル錫ジラウレート、ジブチル錫ジアセ
テートがある。縮合触媒量は触媒量であれば特に規定し
ないが一般的にはシラン総量の0.05%以下で行われ
る。加水分解を充分行わせる為の水の量は総シランモル
に対して3〜4倍モル、好ましくは3.5倍モル以上の
添加が必要である。
Any of a wide variety of materials that act as silanol condensation catalysts can be used in the present invention. Such materials include, for example, organotin compounds such as dibutyltin dilaurate, stannous acetate, stannous octoate, or metal carboxylates such as zinc naphthenate, zinc octanoate, 2-ethylhexanoic acid and cobalt naphthenate. Rates, titanium esters and chelates. Preferred compounds are organotin compounds, especially tin carboxylates such as dibutyltin dilaurate, dibutyltin diacetate. The amount of condensation catalyst is not particularly limited as long as it is a catalytic amount, but is generally 0.05% or less of the total amount of silane. It is necessary to add water in an amount of 3 to 4 times mol, preferably 3.5 times mol or more based on the total mol of silane in order to sufficiently perform hydrolysis.

【0008】反応溶媒としては親水性溶媒単独でもよい
が、親水性溶媒の混合溶媒や親油性と親水溶媒の混合溶
媒も適応出来る。例えば、メタノール、エタノール、ア
セトン、ターシャリブタノール、ジアセトンアルコール
等の親水性溶媒、あるいはキシレン/アルコール、トル
エン/アルコール等の混合溶媒も使用できる。
The reaction solvent may be a hydrophilic solvent alone, but a mixed solvent of hydrophilic solvent and a mixed solvent of lipophilic and hydrophilic solvent are also applicable. For example, hydrophilic solvents such as methanol, ethanol, acetone, tert-butanol and diacetone alcohol, or mixed solvents such as xylene / alcohol and toluene / alcohol can be used.

【0009】本発明によるオルガノポリシロキサンの製
造では二段加水分解縮合方法が発明の重要な位置を占め
ている。すなわち、正珪酸エチルの如きテトラアルコキ
シシランは単独で酸触媒下の加水分解をガスクロマグラ
フィー(GC)でのチェック方法で測定すると室温で数
十分でモノマーが消失する。一方S520の如きジアル
コキシのシランカップリング剤は加水分解時間がテトラ
アルコキシシランに比べ著しく長く2日間で40%弱が
加水分解したに過ぎない程である。これを早めるには前
記した縮合触媒添加が有効である事を見いだした。しか
しながら、正珪酸エチルとS520を混合一括仕込にて
共加水分解縮合反応を行おうとした場合、縮合触媒なし
の条件下で正珪酸エチルの加水分解には数日間を要する
という著しい遅延が生じる。勿論S520の加水分解も
遅い。縮合触媒を添加するとS520の加水分解は促進
されて数時間で加水分解する。しかしやはり正珪酸エチ
ルは3日後でも仕込の約40%が残存する遅さである。
何故この様な大幅な反応遅延が起こるのかは不明であ
る。
In the production of the organopolysiloxane according to the present invention, the two-stage hydrolytic condensation method occupies an important position in the invention. That is, when tetraalkoxysilane such as ethyl orthosilicate alone is used to measure hydrolysis under an acid catalyst by a gas chromatographic (GC) check method, the monomer disappears in several tens of minutes at room temperature. On the other hand, a dialkoxy silane coupling agent such as S520 has a significantly longer hydrolysis time than tetraalkoxysilane, and only a little less than 40% is hydrolyzed in two days. It was found that the addition of the condensation catalyst described above is effective in accelerating this. However, when an attempt is made to carry out a cohydrolysis condensation reaction by mixing ethyl orthosilicate and S520 in a batch, a significant delay occurs that the hydrolysis of ethyl orthosilicate takes several days under the condition without a condensation catalyst. Of course, the hydrolysis of S520 is slow. When the condensation catalyst is added, the hydrolysis of S520 is promoted and the hydrolysis is performed in several hours. However, after all, about 40% of the charged ethyl silicate remained after 3 days.
It is unclear why such a large reaction delay occurs.

【0010】本発明ではかかる事実にかんがみ、正珪酸
エチルを酸触媒下に規定量の水で加水分解後に縮合触媒
と規定モルのS520を加えて共加水分解縮合反応せし
める。この二段加水分解縮合反応によれば室温条件にて
数時間内に反応を完結出来る。従ってポリマーの構造形
態はブロックコポリマーをとる事が予想される。
In view of such a fact, in the present invention, ethyl orthosilicate is hydrolyzed with a specified amount of water in the presence of an acid catalyst, and then a condensation catalyst and a specified mole of S520 are added to cause a cohydrolysis condensation reaction. According to this two-step hydrolysis condensation reaction, the reaction can be completed within several hours at room temperature. Therefore, the structural form of the polymer is expected to be a block copolymer.

【0011】更に本発明では共加水分解縮合反応させた
オルガノポリシロキサンを常温にて安定なシラノール基
を有し、仕込モル相当のエポキシ酸素量を持つ新規化合
物を単離する事に成功した。単離には使用した有機溶媒
を低温で親水性溶媒、中温で親油性溶媒及びこれら溶媒
の水共沸混合物として留去せしめる。残った水を除くた
めにバス温140〜150℃で加熱乾燥する。
Further, in the present invention, a novel compound having a silanol group which is stable at room temperature and having an epoxy oxygen amount equivalent to the charged mol of organopolysiloxane which has been subjected to a cohydrolysis condensation reaction has been successfully isolated. For isolation, the organic solvent used is distilled off at low temperature as a hydrophilic solvent, at medium temperature as a lipophilic solvent and a water azeotrope of these solvents. Heat and dry at a bath temperature of 140 to 150 ° C. to remove the remaining water.

【0012】本発明で得られたオルガノポリシロキサン
オイルの溶解性の測定はガラスサンプル管に本発明のシ
リコーンオイルサンプル100mgを採り、これに1m
lの各溶媒を加えて肉眼観察により溶け易さを判定する
方法で行った。その結果は易溶、溶解、微溶(微白
濁)、難溶(白濁)、不溶の5段階表示で行った。本発
明によるオロガノポリシロキサンオイルはトルエン、ア
ルコール等の多くの溶剤に溶ける。この特性はメチル系
シリコーンオイルに無い性質である。
To measure the solubility of the organopolysiloxane oil obtained in the present invention, 100 mg of the silicone oil sample of the present invention was placed in a glass sample tube and 1 m
It was carried out by the method of adding 1 of each solvent and observing the solubility by visual observation. The results were displayed in 5 grades: easily soluble, soluble, slightly soluble (slightly cloudy), slightly soluble (white cloudy), and insoluble. The organopolysiloxane oil according to the present invention is soluble in many solvents such as toluene and alcohol. This property is a property that methyl silicone oil does not have.

【0013】本発明のオルガノポリシロキサン化合物は
一般に次の(a)〜(d)の様な手段で上記一般式で示
される化合物である事を確認出来る。 (a)赤外吸収スペクトル(IR)の解析 3450cm-1付近のSi−OHの特徴的吸収、300
0〜2900cm-1付近のCH結合に基づく数本の吸
収、1100〜1000cm-1付近のSi−O−Siの
ブロードな吸収が現れる。3450cm-1付近の吸収ピ
ークと2940cm-1付近の吸収ピークとの吸光度(l
ogI0 /I)比はシラノール基含有率の相対値の指標
となる。すなわち、この値が1.0以下であれば常温で
安定なシラノール基を有したオイルである。この値が
1.0以上では数十℃の加熱で樹脂状態の固体を呈する
オルガノポリシロキサンポリマーである。 (b)1 H−核磁気共鳴スペクトル(1 H−NMR) 本発明のオルガノポリシロキサン化合物中の水素原子の
個数や結合様式、更に重水素置換により(Si)−OH
である確認、水素原子の比から(Si)−OHの個数を
知る事が出来る。後述の実施例1の構造式とシグナルの
関係は下記の如くである。
It can be confirmed that the organopolysiloxane compound of the present invention is generally a compound represented by the above general formula by means of the following (a) to (d). (A) Analysis of infrared absorption spectrum (IR) Characteristic absorption of Si—OH around 3450 cm −1 , 300
Several absorptions due to CH bonds near 0 to 2900 cm −1 and a broad absorption of Si—O—Si near 1100 to 1000 cm −1 appear. 3450 cm -1 absorbance of the absorption peak and 2940 cm -1 vicinity of the absorption peak in the vicinity (l
The ogI 0 / I) ratio is an index of the relative value of the silanol group content rate. That is, if this value is 1.0 or less, it is an oil having a silanol group that is stable at room temperature. When this value is 1.0 or more, it is an organopolysiloxane polymer that exhibits a resin-state solid upon heating at several tens of degrees Celsius. (B) 1 H-nuclear magnetic resonance spectrum ( 1 H-NMR) The number and bonding mode of hydrogen atoms in the organopolysiloxane compound of the present invention, and (Si) -OH depending on deuterium substitution.
It is possible to know the number of (Si) -OH from the ratio of hydrogen atoms. The relationship between the structural formula and the signal in Example 1 described later is as follows.

【0014】[0014]

【化9】 [Chemical 9]

【0015】[0015]

【表1】 [Table 1]

【0016】 オキシラン酸素の定量はヨウ素−チオ硫酸カリの酸化還
元滴定法により求める。 (d)炭素、水素(CH)元素分析 ミクロ元素分析法により炭素、水素含有率を知る事が出
来る。
[0016] The oxirane oxygen content is determined by a redox titration method with iodine-potassium thiosulfate. (D) Carbon and hydrogen (CH) elemental analysis The carbon and hydrogen content can be known by the micro elemental analysis method.

【0017】粘度データーの測定は東京計器(株)製回
転粘度計‘VISCONIC’を用いて25℃恒温で行
った。本発明の実施例1〜実施例3のオルガノポリシロ
キサンでは粘度は約1000cp〜8000cpの範囲
でS520/正珪酸エチルのモル比に比例的に変化し
た。すなわち正珪酸エチルのモル比が高い程粘度が高く
なり、これと同様な関係が赤外吸収(IR)でも観察さ
れた。すなわち、シラノールに基づく3450cm-1
収ピークとCHに基づく2950cm-1吸収ピークの強
度につきlogI0 /I吸光光度で両ピークの比をとっ
てモル比との関係をプロットすると正珪酸エチルが多く
なるにつれて相対シラノール量も多くなる。これは三次
元の立体構造性の正珪酸エチル成分が多くなり、線状ポ
リマー成分であるS520成分が相対的に減るのである
から、正珪酸エチル増大が粘度上昇とシラノール基の増
加をもたらすのは容易に理解出来る。また、本発明の二
段加水分解縮合反応方法による製造方法では、一段目の
正珪酸エチル単独での加水分解反応によりGC測定でモ
ノマー及びオリゴマーが検出されない事から少なくも5
量体以上のオリゴマ−ブロック形成しているものと推察
される。二段目の反応で上述の粘度、シラノール挙動か
らしてブロック状コポリマーであると考察される。
Viscosity data was measured using a rotational viscometer'VISCONIC 'manufactured by Tokyo Keiki Co., Ltd. at a constant temperature of 25 ° C. In the organopolysiloxanes of Examples 1 to 3 of the present invention, the viscosity was changed in proportion to the S520 / ethyl orthosilicate molar ratio in the range of about 1000 cp to 8000 cp. That is, the higher the molar ratio of orthoethyl silicate, the higher the viscosity, and a similar relationship was observed in infrared absorption (IR). In other words, to the ethyl orthosilicate many plotting the relationship between the molar ratio per strength 2950 cm -1 absorption peak based on 3450 cm -1 absorption peak and CH based on silanol log I 0 / I spectrophotometric taking the ratio of both peaks As the amount of relative silanol increases. This is because the ethyl orthosilicate component having a three-dimensional three-dimensional structure is increased and the S520 component, which is a linear polymer component, is relatively decreased. Therefore, the increase in ethyl orthosilicate causes increase in viscosity and increase in silanol groups. Easy to understand. Further, in the production method by the two-step hydrolysis-condensation reaction method of the present invention, at least 5 since no monomer or oligomer is detected by GC measurement due to the hydrolysis reaction of ethyl orthosilicate alone in the first step.
It is presumed that an oligomer block of a monomer or higher is formed. From the above viscosity and silanol behavior in the second reaction, it is considered to be a block copolymer.

【0018】[0018]

【発明の効果】本発明のオルガノポリシロキサンは、後
述した実施例において証明されている如く、ポリマー中
に常温にて安定なシラノール基をテトラアルコキシシラ
ンと3−グリシドキシプロピルアルキルジアルコキシシ
ランの仕込みモル比に応じて一ユニット当たり0.5個
から1.5個有している。また3−グリシドキシプロピ
ルアルキルジアルコキシシランの仕込みモル比分のグリ
シジルタイプのエポキシ基を有機官能基として有してい
る。それ故に大抵のメチル系ポリシロキサンが有機溶媒
や有機樹脂に溶解ないし親和性を持つていないのに対し
て本発明のオルガノポリシロキサンは多種類の有機溶媒
に溶解する。また多種類の有機樹脂に親和性を示す。こ
れら特徴より変性シリコーンオイルとしての用途は勿
論、その他離型剤、剥離紙用シリコーン、パーソナルケ
ア用シリコーン、塗料添加剤、シリコーン粘着剤、接着
シール材、変性シリコーンシラント他広範囲の用途に展
開出来る有用な化合物である。本発明を更に具体的に説
明する為に以下実施例をあげて説明するが、本発明はこ
れらの実施例に限定されるものではない。
EFFECTS OF THE INVENTION The organopolysiloxane of the present invention has a silanol group stable at room temperature in a polymer, which is composed of tetraalkoxysilane and 3-glycidoxypropylalkyldialkoxysilane, as proved in Examples described later. It has 0.5 to 1.5 per unit depending on the charged molar ratio. Further, it has a glycidyl type epoxy group as an organic functional group in an amount corresponding to the charged molar ratio of 3-glycidoxypropylalkyldialkoxysilane. Therefore, most methyl-based polysiloxanes do not dissolve or have an affinity in organic solvents or organic resins, whereas the organopolysiloxanes of the present invention dissolve in many types of organic solvents. It also has an affinity for many kinds of organic resins. Due to these characteristics, it can be used not only as a modified silicone oil, but also in a wide range of other applications such as release agents, silicones for release paper, silicones for personal care, paint additives, silicone adhesives, adhesive sealing materials, and modified silicone silanes. It is a useful compound. The present invention will be described below in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0019】[0019]

【実施例】【Example】

実施例1 シラノール基含有ポリシロキサン−3−グリシドキシプ
ロピルメチルポリシロキサン共重合オイルの合成S52
0/正珪酸エチル=2/1(モル) 1Lの三口フラスコに多摩化学(株)製の正珪酸エチル
70gを採り、反応溶剤としてトルエン/メタノール=
60/40の混合溶媒500mlを加える。加水分解触
媒として塩酸を触媒量と3.5倍モルの水64mlを加
えて常温下に30分間攪拌反応せしめる。ガスクロマト
グラフィー(GC)にて正珪酸エチルのピークの消失を
確認する。チッソ(株)製S520の148gと縮合触
媒としてジブチル錫ジラウレートの0.05gを添加
し、常温にて攪拌下に3〜5時間加水分解縮合反応させ
る。GCにてS520及びこれのオリゴマーピーク消失
を確認して反応終了とする。ウオーターバスにて加温し
強攪拌下でメタノール及び共沸溶剤を留去する。残留液
を300mlフラスコに移し、オイルバスにて加温し強
攪拌下で残留トルエン及び塩酸を含む水を留去せしめ
る。こうして得られたオイルは119gで理論収率の9
8%、無色微かに甘い香りのする透明粘性液体、オキシ
ラン酸素含有8.7%、C46.3%、H8.15%で
あった。実験式C14295 Si3 に対する計算値であ
るオキシラン酸素8.9%、C46.5%,H8.1
%、O22.1%、Si24.1%によく一致した。粘
度は7,800センチポイズ(25℃)であった。IR
チャート及びNMRチャートを図1、図2に示した。な
おNMRで1.96ppmのシグナルがOHに基ずく事
の証明は図3に示した重水素置換により確認した。肉眼
観察による溶け易さの判定結果は、トルエン、ヘキサ
ン、アセトンに易溶、メタノール、酢酸エチル、メチル
エチルケトン、クロロホルムに溶解、エタノールに微溶
(微白濁)、イソプロパノールに難溶(白濁)、水に不
溶であった。前記、3450cm-1付近の吸収ピークと
2940cm-1付近の吸収ピークとの吸光度(logI
0 /I)比は繰り返し実験でそれぞれ0.70、0.8
2であった。
Example 1 Synthesis of silanol group-containing polysiloxane-3-glycidoxypropylmethylpolysiloxane copolymer oil S52
0 / ethyl orthosilicate = 2/1 (mol) 70 g of ethyl orthosilicate manufactured by Tama Chemical Co., Ltd. was placed in a 1 L three-necked flask, and toluene / methanol = as a reaction solvent.
Add 500 ml of 60/40 mixed solvent. Hydrochloric acid as a hydrolysis catalyst and a catalytic amount and 64 ml of 3.5 times mol of water are added, and the mixture is stirred and reacted at room temperature for 30 minutes. The disappearance of the peak of ethyl orthosilicate is confirmed by gas chromatography (GC). 148 g of S520 manufactured by Chisso Corporation and 0.05 g of dibutyltin dilaurate as a condensation catalyst are added, and the mixture is hydrolyzed and condensed under stirring at room temperature for 3 to 5 hours. The reaction is terminated by confirming the disappearance of S520 and its oligomer peak by GC. Heat in a water bath and distill off methanol and azeotropic solvent under strong stirring. The residual liquid is transferred to a 300 ml flask, heated in an oil bath, and the water containing residual toluene and hydrochloric acid is distilled off under vigorous stirring. The oil thus obtained weighed 119 g and had a theoretical yield of 9
It was 8%, a transparent viscous liquid with a colorless and slightly sweet scent, containing oxirane oxygen of 8.7%, C46.3%, and H of 8.15%. Calculated values for the empirical formula C 14 H 29 O 5 Si 3 oxirane oxygen 8.9%, C 46.5%, H 8.1
%, O22.1%, Si24.1%. The viscosity was 7,800 centipoise (25 ° C). IR
The chart and the NMR chart are shown in FIGS. 1 and 2. The proof that the signal at 1.96 ppm in NMR was based on OH was confirmed by the deuterium substitution shown in FIG. The results of determination of solubility by visual observation are as follows: soluble in toluene, hexane, acetone, soluble in methanol, ethyl acetate, methyl ethyl ketone, chloroform, slightly soluble in ethanol (slightly cloudy), slightly soluble in isopropanol (cloudy), in water. It was insoluble. The absorbance of the absorption peak and 2940 cm -1 vicinity of the absorption peak around 3450 cm -1 (log I
0 / I) ratios were 0.70 and 0.8 respectively in repeated experiments.
It was 2.

【0020】実施例2 シラノール基含有ポリシロキサン−3−グリシドキシプ
ロピルメチルポリシロキサン共重合オイルの合成S52
0/正珪酸エチル=4/1(モル) 実施例1と同様に二段加水分解縮合反応にて製造する。
但し仕込量は正珪酸エチル17.6g、トルエン/メタ
ノール=60/40の混合溶媒250ml、10分の1
規定塩酸溶液28.3ml(一段目)、S520の7
4.0gとジブチル錫ジラウレートの0.01g(二段
目)数時間後、GCにてモノマー消失確認して溶媒及び
水等を留去せしめる。こうして得られたオイルは55g
で理論収率の95%、無色微かに甘い香りのする透明粘
性液体、オキシラン酸素含有9.1%、C47.9%、
H8.21%であった。実験式C2856.89.9 Si5
に対する計算値であるオキシラン酸素9.3%、C4
8.6%,H8.2%、O22.9%、Si20.3%
によく一致した。粘度は1570センチポイズ(25
℃)であった。IRチャート及びNMRチャートを図
4、図5に示した。なおNMRでメチレン基に重なった
1.63ppmのシグナルがOHに基ずく事の証明は図
6に示した重水素置換により確認した。前記、3450
cm-1付近の吸収ピークと2940cm-1付近の吸収ピ
ークとの吸光度(logI0 /I)比は0.30であっ
た。
Example 2 Synthesis of silanol group-containing polysiloxane-3-glycidoxypropylmethylpolysiloxane copolymerized oil S52
0 / ethyl orthosilicate = 4/1 (mol) It is produced by a two-step hydrolysis condensation reaction as in Example 1.
However, the charged amount was 17.6 g of ethyl orthosilicate, 250 ml of a mixed solvent of toluene / methanol = 60/40, and 1/10.
28.3 ml of normal hydrochloric acid solution (first step), 7 of S520
After 4.0 g and 0.01 g of dibutyltin dilaurate (second step) for several hours, the disappearance of the monomer is confirmed by GC, and the solvent and water are distilled off. 55 g of oil thus obtained
95% of theoretical yield, transparent viscous liquid with colorless and slightly sweet scent, oxirane oxygen-containing 9.1%, C47.9%,
It was H 8.21%. Empirical formula C 28 H 56.8 O 9.9 Si 5
Calculated value for oxirane oxygen 9.3%, C4
8.6%, H8.2%, O22.9%, Si20.3%
Well matched. Viscosity is 1570 centipoise (25
℃). IR chart and NMR chart are shown in FIGS. 4 and 5. The proof that the 1.63 ppm signal superimposed on the methylene group by NMR was based on OH was confirmed by the deuterium substitution shown in FIG. The 3450
cm -1 vicinity absorbance of the absorption peak and 2940 cm -1 vicinity of the absorption peak of the (logI 0 / I) ratio was 0.30.

【0021】実施例3 シラノール基含有ポリシロキサン−3−グリシドキシプ
ロピルメチルポリシロキサン共重合オイルの合成S52
0/正珪酸エチル=8/1(モル) 実施例1と同様に二段加水分解縮合反応にて製造する。
但し仕込量は正珪酸エチル8.8g、トルエン/メタノ
ール=60/40の混合溶媒250ml、10分の1規
定塩酸溶液26.0ml(一段目)、S520の74.
0gとジブチル錫ジラウレートの0.01g(二段目)
数時間後、GCにてモノマー消失確認して溶媒及び水等
を留去せしめる。こうして得られたオイルは53gで理
論収率の96%、無色微かに甘い香りのする透明粘性液
体、オキシラン酸素含有9.7%、C50.9%、H
8.05%であった。実験式C56112.617.8Si9
に対する計算値であるオキシラン酸素9.7%、C5
0.8%,H8.6%、O21.5%、Si19.1%
によく一致した。粘度は1210センチポイズ(25
℃)であった。IRチャート及びNMRチャートを図
7、図8に示した。なおNMRでメチレン基に重なった
1.63ppmのシグナルがOHに基ずく事の証明は図
9に示した重水素置換により確認した。前記、3450
cm-1付近の吸収ピークと2940cm-1付近の吸収ピ
ークとの吸光度(logI0 /I)比は0.23であっ
た。
Example 3 Synthesis of silanol group-containing polysiloxane-3-glycidoxypropylmethylpolysiloxane copolymerized oil S52
0 / ethyl orthosilicate = 8/1 (mol) It is produced by a two-step hydrolysis condensation reaction as in Example 1.
However, the charge amount was 8.8 g of ethyl orthosilicate, 250 ml of a mixed solvent of toluene / methanol = 60/40, 26.0 ml of 1/10 normal hydrochloric acid solution (first stage), 74.
0 g and 0.01 g of dibutyltin dilaurate (second stage)
After several hours, the disappearance of the monomer is confirmed by GC, and the solvent and water are distilled off. The oil thus obtained was 53 g in 96% of the theoretical yield, a transparent viscous liquid with a colorless and slightly sweet scent, oxirane oxygen-containing 9.7%, C50.9%, H
It was 8.05%. Empirical formula C 56 H 112.6 O 17.8 Si 9
Calculated value for oxirane oxygen 9.7%, C5
0.8%, H8.6%, O21.5%, Si19.1%
Well matched. Viscosity is 1210 centipoise (25
℃). IR chart and NMR chart are shown in FIGS. 7 and 8. The proof by NMR that the 1.63 ppm signal superimposed on the methylene group was based on OH was confirmed by the deuterium substitution shown in FIG. The 3450
cm -1 vicinity absorbance of the absorption peak and 2940 cm -1 vicinity of the absorption peak of the (logI 0 / I) ratio was 0.23.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の赤外吸収図を示す。FIG. 1 shows an infrared absorption diagram of an example of the present invention.

【図4】上記に同じ。FIG. 4 Same as above.

【図7】上記に同じ。FIG. 7 Same as above.

【図2】本発明の実施例のNMRチャートを示す。FIG. 2 shows an NMR chart of an example of the present invention.

【図3】上記に同じ。FIG. 3 Same as above.

【図5】上記に同じ。FIG. 5 Same as above.

【図6】上記に同じ。FIG. 6 Same as above.

【図8】上記に同じ。FIG. 8 Same as above.

【図9】上記に同じ。FIG. 9 Same as above.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年5月31日[Submission date] May 31, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の赤外吸収図を示す。FIG. 1 shows an infrared absorption diagram of an example of the present invention.

【図2】本発明の実施例のNMRチャートを示す。FIG. 2 shows an NMR chart of an example of the present invention.

【図3】本発明の実施例のNMRチャートを示す。FIG. 3 shows an NMR chart of an example of the present invention.

【図4】本発明の実施例の赤外吸収図を示す。FIG. 4 shows an infrared absorption diagram of an example of the present invention.

【図5】本発明の実施例のNMRチャートを示す。FIG. 5 shows an NMR chart of an example of the present invention.

【図6】本発明の実施例のNMRチャートを示す。FIG. 6 shows an NMR chart of an example of the present invention.

【図7】本発明の実施例の赤外吸収図を示す。FIG. 7 shows an infrared absorption diagram of an example of the present invention.

【図8】本発明の実施例のNMRチャートを示す。FIG. 8 shows an NMR chart of an example of the present invention.

【図9】本発明の実施例のNMRチャートを示す。FIG. 9 shows an NMR chart of an example of the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 四アルコキシ官能シランと3−グリシド
キシプロピルアルキルジアルコキシシランを親水性溶剤
ないし親水性溶剤を含む混合溶剤中で有機錫縮合触媒と
酸加水分解触媒の存在下にシラン総モルの3〜4倍モル
の水で加水分解、縮合反応せしめて[化1]で示される
オルガノポリシロキサンオイルを得ることを特徴とする
該オイルの製造法。 【化1】 (ここでxは1.5〜0.5、n,mはそれぞれ1〜1
0の整数、Rは炭素数1〜8の飽和炭化水素基またはア
ルケニル基である。)
1. A total mole of silane in the presence of an organotin condensation catalyst and an acid hydrolysis catalyst in a hydrophilic solvent or a mixed solvent containing a hydrophilic solvent containing tetraalkoxy-functional silane and 3-glycidoxypropylalkyldialkoxysilane. A method for producing the oil, which comprises subjecting the organopolysiloxane oil represented by [Chemical Formula 1] to hydrolysis and condensation with 3 to 4 times the molar amount of water to obtain the organopolysiloxane oil. [Chemical 1] (Here, x is 1.5 to 0.5, and n and m are 1 to 1 respectively.
An integer of 0 and R is a saturated hydrocarbon group having 1 to 8 carbon atoms or an alkenyl group. )
【請求項2】 一般式Si(OR14 で示されるテト
ラアルコキシシランと一般式[化2]で示される3−グ
リシドキシプロピルアルキルジアルコキシシランを有機
錫縮合触媒の存在下で親水性溶剤又は親水性溶剤を含む
混合溶剤中にて酸触媒にてシラン総モルの3〜4倍モル
の水を用いて共加水分解、縮合反応せしめてなるとする
オルガノポリシロキサン。 【化2】 (ここでアルキル基RはC1 〜C8 の飽和炭化水素基あ
るいはアルケニル基である。)
2. A tetraalkoxysilane represented by the general formula Si (OR 1 ) 4 and a 3-glycidoxypropylalkyldialkoxysilane represented by the general formula [Chemical Formula 2] are hydrophilic in the presence of an organotin condensation catalyst. An organopolysiloxane obtained by co-hydrolyzing and condensing a solvent or a mixed solvent containing a hydrophilic solvent with an acid catalyst in an amount of 3 to 4 times the molar amount of water of the silane. [Chemical 2] (Here, the alkyl group R is a C 1 to C 8 saturated hydrocarbon group or an alkenyl group.)
【請求項3】 請求項2のテトラアルコキシシランと3
−グリシドキシプロピルメチルジアルコキシシランのモ
ル比を1/1以下で反応させた次に示す[化3]である
オルガノポリシロキサン。 【化3】 (シラノール基xは1.5〜0.5の範囲であってポリ
マー末端基はシラノール基である。)
3. The tetraalkoxysilane of claim 2 and 3
An organopolysiloxane of the following [Chemical Formula 3] which is obtained by reacting glycidoxypropylmethyldialkoxysilane at a molar ratio of 1/1 or less. [Chemical 3] (The silanol group x is in the range of 1.5 to 0.5 and the polymer end group is a silanol group.)
【請求項4】 テトラアルコキシシランと3−グリシド
キシプロピルアルキルジアルコキシシランの共加水分
解、縮合反応に先だってテトラアルコキシシランを酸触
媒及び総シランモルの3〜4倍モルの水を加えて加水分
解させた後に有機錫触媒と所定モル比の3−グリシドキ
シプロピルアルキルジアルコキシシランを加えて共加水
分解縮合反応せしめる二段加水分解縮合方法による[化
4]で示されるオルガノポリシロキサン化合物の製造
法。 【化4】
4. Tetraalkoxysilane and 3-glycidoxypropylalkyldialkoxysilane are hydrolyzed by adding an acid catalyst and water in an amount of 3 to 4 times the total silane moles prior to the cohydrolysis and condensation reaction. After that, an organotin catalyst and a predetermined molar ratio of 3-glycidoxypropylalkyldialkoxysilane are added to cause a cohydrolysis condensation reaction to produce an organopolysiloxane compound represented by [Chemical Formula 4]. Law. [Chemical 4]
【請求項5】 テトラアルコキシシランがテトラメトキ
シシランまたはテトラエトキサシランであり、3−グリ
シドキシプロピルジアルコキシシランが3−グリシドキ
シプロピルメチルジメトキシシランもしくは3−グリシ
ドキシプロピルメチルジエトキシシランのいずれかの組
み合わせで請求項4の化合物の製造法。
5. The tetraalkoxysilane is tetramethoxysilane or tetraethoxasilane, and the 3-glycidoxypropyldialkoxysilane is 3-glycidoxypropylmethyldimethoxysilane or 3-glycidoxypropylmethyldiethoxysilane. The method for producing the compound according to claim 4, which is a combination of any of the above.
JP30989793A 1993-11-16 1993-11-16 Organopolysiloxane and its production method Expired - Fee Related JP3844788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30989793A JP3844788B2 (en) 1993-11-16 1993-11-16 Organopolysiloxane and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30989793A JP3844788B2 (en) 1993-11-16 1993-11-16 Organopolysiloxane and its production method

Publications (2)

Publication Number Publication Date
JPH07138369A true JPH07138369A (en) 1995-05-30
JP3844788B2 JP3844788B2 (en) 2006-11-15

Family

ID=17998645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30989793A Expired - Fee Related JP3844788B2 (en) 1993-11-16 1993-11-16 Organopolysiloxane and its production method

Country Status (1)

Country Link
JP (1) JP3844788B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112538333A (en) * 2020-12-10 2021-03-23 江西晨光新材料股份有限公司 Bi-component room temperature vulcanized silicone rubber and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112538333A (en) * 2020-12-10 2021-03-23 江西晨光新材料股份有限公司 Bi-component room temperature vulcanized silicone rubber and preparation method and application thereof
CN112538333B (en) * 2020-12-10 2022-04-29 江西晨光新材料股份有限公司 Bi-component room temperature vulcanized silicone rubber and preparation method and application thereof

Also Published As

Publication number Publication date
JP3844788B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
EP0669362B1 (en) Method for the preparation of organic solvent-soluble polytitanosiloxanes
JPH05105758A (en) Organopolysiloxane and its production
KR20070045947A (en) Resin composition for sealing optical device, cured product thereof, and method of sealing semiconductor element
JP3635180B2 (en) Silylated polymethylsilsesquioxane, process for producing the same, and composition using the same
JPH1087834A (en) Polyorganosilsesquioxane, its production, and resin composition containing the same compound
JP3263177B2 (en) Epoxy group-containing silicone resin and method for producing the same
JPS6241243B2 (en)
JP3801208B2 (en) Curable polymethylsilsesquioxane composition
JP3713719B2 (en) Method for producing polysiloxane
JPH0532783A (en) Diphenylsiloxane-dimethylsiloxane copolymer and its production
KR100190741B1 (en) Curable coating composition
JP3622218B2 (en) New silicone compounds
JP3586879B2 (en) New organopolysiloxane copolymer
JP3622215B2 (en) Novel polysiloxane and its production method
JPH07138369A (en) Organopolysiloxane and its production
TW200844145A (en) Organopolysiloxanes containing organic functional groups and multiple kinds of alkoxy groups having different carbon numbers
JP3584482B2 (en) New silicone compound and its production method
JP3635179B2 (en) Silylated polymethylsilsesquioxane, process for producing the same, and composition using the same
JPH10158403A (en) Polymer-compatible polymethlysilsequioxane
JP2001040094A (en) Epoxy group-containing silicone resin
JP3740714B2 (en) Siloxane compound, method for producing the same, and curable composition
JP3012358B2 (en) Heat-curable epoxy resin composition
JPH1121353A (en) Production of curable silicone resin and production of cured article
JP3494229B2 (en) New polysiloxane and its production method
JPH06293782A (en) Coating composition

Legal Events

Date Code Title Description
A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees