JPH0713246B2 - Method of adding Mn to molten iron - Google Patents
Method of adding Mn to molten ironInfo
- Publication number
- JPH0713246B2 JPH0713246B2 JP30020089A JP30020089A JPH0713246B2 JP H0713246 B2 JPH0713246 B2 JP H0713246B2 JP 30020089 A JP30020089 A JP 30020089A JP 30020089 A JP30020089 A JP 30020089A JP H0713246 B2 JPH0713246 B2 JP H0713246B2
- Authority
- JP
- Japan
- Prior art keywords
- molten iron
- ore
- cao
- agent
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Description
【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、転炉、電気炉等で行う溶鉄へのMnの添加方法
とそれに適した添加用Mn剤に係わり、特に高いMn歩留と
添加費の低減を目的とした溶鉄へのMn添加方法とそれを
達成する添加用Mn剤に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a method for adding Mn to molten iron in a converter, an electric furnace, etc. and a Mn agent for addition suitable for the method. The present invention relates to a method for adding Mn to molten iron for the purpose of reducing the addition cost and an Mn agent for addition that achieves the method.
〈従来の技術〉 従来、溶鉄へのMnの添加にはFe−Mnが使用されていた。
良く知られている様に、このFe−Mnの添加はMn歩留は高
く90%前後に達するが、Fe−Mnの製造コストが高く、不
可避的にMnの添加原単価が高くなって、鋼の製造コスト
を増大するのでその対策が望まれている。<Prior Art> Conventionally, Fe-Mn has been used to add Mn to molten iron.
As is well known, the addition of Fe-Mn has a high Mn yield and reaches around 90%, but the manufacturing cost of Fe-Mn is high, and the unit cost of Mn addition is unavoidably high. As a result, the manufacturing cost is increased, and therefore a countermeasure is desired.
尚Mn歩留(%)は次式による。The Mn yield (%) is calculated by the following formula.
但し、A=Mn鉱石添加前の溶鉄中Mn量 B=Mn鉱石添加後の溶鉄中Mn量 これに応えるものとして、例えば、特開昭61−183405
号公報、及び特開昭62−238314号公報にMn鉱石を転炉
又は溶鉄の脱炭処理工程に添加して高Mn鋼を製造するた
めの溶鉄の処理方法が提案されている。 However, A = Mn amount in molten iron before addition of Mn ore B = Mn amount in molten iron after addition of Mn ore In order to respond to this, for example, JP-A-61-183405
JP-A-62-238314 and JP-A-62-238314 propose a method for treating molten iron for producing high Mn steel by adding Mn ore to a converter or a decarburizing treatment step of molten iron.
〈発明が解決しようとする課題〉 しかしながら、では吹止〔C〕の制御が困難であり、
ではFe−Siを使用するので製造コストの上昇が避けら
れず、それ等の新たな問題の発生のため現状ではFe−Mn
を用いた添加方法に代わり得ておらず、そのため添加Mn
の原単価低減、低いコストで高い歩留が得られるMnの添
加方法及びそれを実現する添加用Mn剤が強く求められて
いる。<Problems to be Solved by the Invention> However, it is difficult to control the blow stop [C],
However, since Fe-Si is used, an increase in manufacturing cost is unavoidable. Due to the occurrence of new problems such as Fe-Mn,
Could not replace the addition method using
There is a strong demand for a method of adding Mn that can reduce the original unit price, obtain a high yield at low cost, and an additive Mn agent that realizes the method.
本発明は上記した従来技術の問題点を本質的に改善し、
高い歩留が得られるMnの添加方法とを提供する事を課題
とするものである。The present invention essentially improves the above-mentioned problems of the prior art,
It is an object of the present invention to provide a method for adding Mn that can obtain a high yield.
〈課題を解決するための手段〉 本発明の溶鉄にMnを添加する方法は、(1)MnO2、Mn2O
3、Mn3O4を単味又は複数含むMn鉱石とCaOを配合して、C
aO/T.Mn≧0.15とCaO/SiO2≧3.0にし、これを1000℃以上
で焼成した焼結鉱を溶鉄に添加することを特徴とする。<Means for Solving the Problems> The method of adding Mn to the molten iron of the present invention is (1) MnO 2 , Mn 2 O
3 , Mn ore containing Mn 3 O 4 alone or in combination with CaO, C
It is characterized by adding aO / T.Mn ≧ 0.15 and CaO / SiO 2 ≧ 3.0, and adding sinter ore that is fired at 1000 ° C. or higher to molten iron.
(2)MnO2、Mn2O3、Mn3O4を単味又は複数含むMn鉱石と
CaOを配合してCaO/T.Mn≧0.15とCaO/SiO2≧3.0にし、こ
れを1000℃以上で焼成し粒径を1mm以下にした焼結鉱を
溶鉄に添加することを特徴とする。(2) Mn ore containing MnO 2 , Mn 2 O 3 and Mn 3 O 4 either alone or in combination.
It is characterized in that CaO is mixed to make CaO / T.Mn ≧ 0.15 and CaO / SiO 2 ≧ 3.0, and this is sintered at 1000 ° C. or higher to add a sinter having a particle size of 1 mm or less to molten iron.
(3)MnO2、Mn2O3、Mn3O4を単味または複数含むMn鉱石
とCaOと1〜5重量%のNa2CO3及び又はB2O3を配してCaO
/T.Mn≧0.15とCaO/SiO2≧3.0にし、これを1000℃以上で
焼成した焼結鉱を溶鉄に添加することを特徴とする。(3) CaO by arranging Mn ore containing MnO 2 , Mn 2 O 3 , and Mn 3 O 4 alone or in plural, CaO, and 1 to 5% by weight of Na 2 CO 3 and / or B 2 O 3.
It is characterized in that /T.Mn≧0.15 and CaO / SiO 2 ≧ 3.0 are set, and a sinter that is fired at 1000 ° C. or higher is added to molten iron.
(4)MnO2、Mn2O3、Mn3O4を単味又は複数含むMn鉱石と
CaOと1〜5重量%のNa2CO3及び又はB2O3を配合してCaO
/T.Mn≧0.15とCaO/SiO2≧3.0にし、これを1000℃以上で
焼成し粒径を1mm以下にした焼結鉱を溶鉄に添加するこ
とを特徴とする。(4) Mn ore containing MnO 2 , Mn 2 O 3 , and Mn 3 O 4 either alone or in combination.
CaO mixed with 1 to 5 wt% of Na 2 CO 3 and / or B 2 O 3
It is characterized in that /T.Mn≧0.15 and CaO / SiO 2 ≧ 3.0 are set, and sinter ore having a grain size of 1 mm or less by firing this at 1000 ° C. or higher is added to molten iron.
〈作用〉 本発明者等は上記課題を達成するため、種々のMn鉱石を
種々の条件で添加し、現状把握と問題点の確認を行っ
た。第1図にその結果を示す。<Operation> In order to achieve the above object, the present inventors have added various Mn ores under various conditions, and have grasped the present situation and confirmed the problems. The results are shown in FIG.
第1図は、粒径が1mm以下で、主体がMnO2のMn鉱石と、
主体がMn2O3、Mn3O4のMn鉱石の各々をMn分が等量になる
様に用意し、一方、実験炉に重量%で2.5〜2.7〔C〕、
0.3〜0.35〔Mn〕、温度が1450℃で転炉吹錬の中期の溶
鉄の条件に該当する溶鉄を準備し、該溶鉄に上記各Mn鉱
石を15kg/ton−溶鉄添加し、Mn還元の状況を溶鉄中Mn重
量%で示したものである。図に明らかな通り、MnO2が主
体のMn鉱石は添加中にはMn還元が見られず、逆にMnの酸
化現象つまり溶鉄中Mnの脱Mnが見られた。その後Mn還元
反応が進行を始め、実験終了時の〔Mn〕は0.47重量%を
示した。Figure 1 shows Mn ore with a grain size of 1 mm or less and the main component is MnO 2 .
Each of the Mn ores whose main constituents are Mn 2 O 3 and Mn 3 O 4 is prepared so that the Mn content is equal, while the experimental furnace has a weight percentage of 2.5 to 2.7 [C],
0.3 to 0.35 [Mn], a temperature of 1450 ° C., prepared molten iron corresponding to the conditions of molten iron in the middle stage of converter blowing, and added 15 kg / ton-molten iron of each of the above Mn ores to the molten iron, and the state of Mn reduction Is represented by Mn weight% in molten iron. As is clear from the figure, Mn ore mainly composed of MnO 2 did not show Mn reduction during addition, but conversely, Mn oxidation phenomenon, that is, Mn de-Mn in molten iron was seen. After that, the Mn reduction reaction started to proceed, and [Mn] at the end of the experiment was 0.47% by weight.
一方Mn2O3、とMn3O4が主体のMn鉱石は、添加中の酸化は
見られず、添加開始から直線的に還元反応が進行し、そ
の還元速度はMnO2が主体のMn鉱石より格段に速く、上記
例と添加後同時間経過後の実験終了時の〔Mn〕は0.67重
量%を示した。On the other hand, Mn ore mainly composed of Mn 2 O 3 and Mn 3 O 4 showed no oxidation during addition, and the reduction reaction proceeded linearly from the start of addition, and the reduction rate was Mn ore mainly composed of MnO 2 It was much faster, and the [Mn] at the end of the experiment, which was the same time after addition as the above example, was 0.67% by weight.
各々の最終サンプルから算出したMn還元率は、MnO2が主
体のMn鉱石を添加した場合は21.5%で、Mn2O3とMn3O4が
主体のMn鉱石を添加した場合は45.4%で、MnO2が主体の
Mn鉱石の2倍強と高いMn還元率を示した。尚Mn還元率は
次により求めた。The Mn reduction rate calculated from each final sample was 21.5% when MnO 2 mainly composed of MnO 2 was added and 45.4% when Mn ore mainly composed of Mn 2 O 3 and Mn 3 O 4 was added. , Mainly MnO 2
It showed a high Mn reduction rate, more than twice that of Mn ore. The Mn reduction rate was calculated as follows.
但し、A=Mn鉱石添加前の溶鉄中Mn量 B=Mn鉱石添加後の溶鉄中Mn量 この現象は、本発明者等の調査によるとMn鉱石中の分解
可能酸素(加熱により鉱石から分解解離する酸素で活性
酸素とも言う)の量の差による事が判明した。 However, A = Mn amount in molten iron before addition of Mn ore B = Mn amount in molten iron after addition of Mn ore This phenomenon shows that decomposable oxygen in Mn ore (decomposition and dissociation from ore by heating) It is found that the difference is the amount of oxygen which is also called active oxygen).
本発明者等が過マンガン酸カリウム滴定法(JIS−M−8
233)で得た該分解可能酸素の量は、MnO2が主体のMn鉱
石が13.3%であるのに対して、Mn2O3とMn3O4が主体のMn
鉱石は6.3%で、MnO2が主体のMn鉱石の分解可能酸素量
はMn2O3とMn3O4が主体のMn鉱石の2倍強であり、これが
両者のMn鉱石添加中における溶鉄中〔Mn〕の還元現象の
差を生み上記の結果を招いている事を知見した。The present inventors have found that potassium permanganate titration method (JIS-M-8
The amount of the decomposable oxygen obtained in 233) is 13.3% for MnO 2 which is mainly MnO 2 , whereas the amount of Mn 2 O 3 and Mn 3 O 4 is mainly MnO 2.
The content of ore is 6.3%, and the decomposable oxygen content of MnO 2 mainly composed of MnO 2 is more than twice as high as that of Mn 2 ore composed mainly of Mn 2 O 3 and Mn 3 O 4 , which is the amount of molten iron in the addition of both Mn ores. It was found that the above results are caused by the difference in the reduction phenomenon of [Mn].
この分解可能酸素の去就に直接影響するMn鉱石の加熱変
化については、室蘭工業大学の田中章彦氏の学位論文
「マンガン系合金鉄の製錬に関する物理化学的研究」の
中で詳細に報告されている通り、鉱石の組成により幅が
あり、鉱石中のMnO2がMn2O3に分解する温度は560℃〜
720℃で、Mn2O3からMn3O4に分解する温度は880℃〜10
30℃である。The heating change of Mn ore, which directly affects the succession of decomposable oxygen, was reported in detail in the thesis "A physicochemical study on the smelting of manganese ferroalloys" by Akihiko Tanaka of Muroran Institute of Technology. As you can see, there is a range depending on the composition of the ore, and the temperature at which MnO 2 in the ore decomposes into Mn 2 O 3 is 560 ℃ ~
At 720 ℃, the temperature to decompose Mn 2 O 3 to Mn 3 O 4 is 880 ℃ ~ 10
30 ° C.
又本発明者等の実験結果によると、Mn3O4が分解してM
nOとなり、分解可能酸素が無くなるにはMn鉱石の温度が
1200℃を超える必要があり、この間に分解可能酸素が分
解解離する率は、の段階では50%、の段階では34
%、の段階では残りの16%が分解解離する事が判明し
た。According to the results of experiments conducted by the present inventors, Mn 3 O 4 is decomposed and
It becomes nO, and the temperature of Mn ore must be
It is necessary to exceed 1200 ° C, and the rate of decomposition and dissociation of decomposable oxygen during this period is 50% at the stage and 34 at the stage.
%, It was found that the remaining 16% decomposed and dissociated at the stage of.
前記した第1図の知見と上記の各知見及びMn剤としての
MnOの化学的不安定さ(再酸化現象)から、本発明者等
は加熱負荷が小さいにも関わらず分解可能酸素量の50%
(560℃以上加熱のの段階)又は84%(880℃以上加熱
の+の段階)が分解解離し、高いMn還元率及び添加
Mn歩留が得られる事から、又は+の段階迄の加熱
を添加前に行って添加するか、Mn2O3又はMn3O4の何れか
一方、或いはMn2O3とMn3O4の両者からなるMn剤(大部分
はMn2O3とMn3O4が共存する形態をとる。)添加し、残る
高温域でのの分解を溶鉄に添加後に溶鉄中で行わせ、
その時溶鉄中のCと反応せしめてMnを溶鉄中に還元させ
る事が最も工業的に有利な方法であり、含有分解可能酸
素量を6.3重量%以下としたMn剤を溶鉄に添加する事が
技術的にも、経済的にも最も優れている事を見出した。The above-mentioned findings of FIG. 1 and the above-mentioned findings and Mn agents
Due to the chemical instability (reoxidation phenomenon) of MnO, the present inventors have found that the amount of oxygen that can be decomposed is 50% of the decomposable amount of oxygen even though the heating load is small.
(At 560 ℃ or higher heating step) or 84% (at 880 ℃ or higher heating + step) decomposes and dissociates, resulting in high Mn reduction rate and addition
Since Mn yield is obtained, or heating is performed up to the + stage before addition, either Mn 2 O 3 or Mn 3 O 4 is added, or Mn 2 O 3 and Mn 3 O 4 are added. Mn agent consisting of both (mostly in the form of Mn 2 O 3 and Mn 3 O 4 coexisting) is added, and decomposition in the remaining high temperature range is performed in molten iron after addition to molten iron,
At that time, the most industrially advantageous method is to react with C in the molten iron to reduce Mn into the molten iron, and the technique is to add an Mn agent containing less than 6.3% by weight of decomposable oxygen content to the molten iron. It was found to be the most economically and economically superior.
尚Mn鉱石をMn剤とするために560℃以上の熱履歴を与え
る熱源は、転炉、コークス炉、高炉等の副生ガス、プロ
パン、天然等の燃料ガス又は加熱プロセスの排出ガス等
のガス類の他、電気、重油コークス等の熱源を使用する
事が出来る。The heat source that gives a heat history of 560 ° C or higher to use Mn ore as an Mn agent is a by-product gas such as a converter, a coke oven, a blast furnace, a fuel gas such as propane or nature, or a gas such as an exhaust gas of a heating process Other than the above, heat sources such as electricity and heavy oil coke can be used.
本発明者等は更に粒度が30〜50mmでMnO2が主体のMn鉱石
を種々の温度で加熱後常温としたMn剤を〔C〕2.5〜2.7
重量%、〔Mn〕0.34〜0.37重量%で温度が1450℃の溶鉄
にMn剤40kg/ton−溶鉄添加した。結果を第2図に示す。The inventors of the present invention have further prepared an Mn agent having a particle size of 30 to 50 mm and containing MnO 2 as a main component at various temperatures and then normalizing the Mn agent [C] 2.5 to 2.7.
%, [Mn] 0.34 to 0.37% by weight, and 40 kg / ton of molten iron was added to molten iron at a temperature of 1450 ° C. Results are shown in FIG.
第1図の結果に比して第2図の結果は、第1図でMn
2O3、Mn3O4鉱石が見せた初期からのMn還元が見られなか
った。Compared with the result of Fig. 1, the result of Fig. 2 shows that Mn
The Mn reduction from the early stage which 2 O 3 and Mn 3 O 4 ores showed was not seen.
これはMn剤の投入原単位が第1図例の2.7倍となり、Mn
剤から溶鉄に持ち込んだ分解可能酸素量が増えたためで
あると思われる。This means that the input unit of Mn agent is 2.7 times that of the example in Fig. 1,
This is probably because the amount of decomposable oxygen brought into the molten iron from the agent increased.
第1図のMn鉱石と第2図のMn剤の投入原単位の条件を等
価にして比較すると、図に(e)と(f)及び(g)の
差として明らかな様にMnO2系Mn鉱石でも560℃以上に一
度加熱されていると前記効果が得られ、その効果は加熱
温度が高い程増加し、又同一粒度では鉄焼結鉱と同様に
Mn焼結鉱とした(a)(b)(c)の方が改善程度が向
上する事が判明した。Comparing the conditions of input unit of Mn ore in Fig. 1 and Mn agent in Fig. 2 under the same conditions, it is clear that the difference between (e) and (f) and (g) shows that MnO 2 system Mn Even if ore is heated once above 560 ℃, the above-mentioned effect can be obtained, and the effect increases as the heating temperature increases, and with the same grain size, similar to iron sinter.
It was found that the degree of improvement is higher in (a), (b) and (c) which are Mn sintered ores.
これは、通常1300℃以上で焼結され、その時のCaO/SiO2
が1.4〜1.5程度の自溶性である鉄焼結鉱と同様に、上記
Mn焼結鉱を製造して使用したので、分解可能酸素が大幅
に除去されると共に前記鉄焼結鉱と同様に、自溶性によ
りスラグの溶融状態が改善され、これ等両者の効果が相
乗的に作用してもたらした効果と思われる。This is usually sintered at 1300 ℃ or above, and CaO / SiO 2 at that time
Is similar to the iron sinter that is self-fluxing about 1.4-1.5
Since Mn sintered ore was manufactured and used, decomposable oxygen was largely removed, and the molten state of slag was improved by self-dissolving property like the iron sintered ore. It seems to be the effect brought about by acting on.
本発明者等は本実験検討の過程から、1000℃以上の温度
でMn鉱石を焼結すると、各成分は単に加熱される過程を
過ぎて化学反応を始め、焼結体を形成して溶融温度が低
下し、滓化を促進する事を見出した。From the process of the present experimental study, the present inventors have found that when Mn ore is sintered at a temperature of 1000 ° C. or higher, each component starts a chemical reaction past the process of being simply heated to form a sintered body and melt temperature. It has been found that the value of slag decreases and promotes slag formation.
又この焼結時に1〜5重量%(5%を超えると耐火物の
溶損が進む)の範囲で、Na2CO3を添加した(h)、B2O3
を添加した(i)は前記(a)に対して更にMn歩留が向
上する事を知見した。これは滓化剤として知られている
低融点のNa2CO3、B2O3が、Mn鉱石の焼結時にも自溶性を
助長する結果と思われる。Also, during this sintering, Na 2 CO 3 was added in the range of 1 to 5% by weight (if it exceeds 5%, the melting loss of the refractory material advances) (h), B 2 O 3
It was found that (i) with addition of Mn further improved the Mn yield compared to (a). This is probably because low melting point Na 2 CO 3 and B 2 O 3 known as slagging agents promote self-dissolving property even during sintering of Mn ore.
又Mn剤の粒径を(j)の如く小さくすると、溶融状態の
改善効果と反応界面積の増大効果が相乗的に作用して改
善程度が更に向上する事が判明した。It was also found that when the particle size of the Mn agent is reduced as shown in (j), the effect of improving the molten state and the effect of increasing the area of the reaction interface act synergistically to further improve the degree of improvement.
そこで本発明者等は改善効果が大きいMn焼結鉱につい
て、更にCaO/T.MnとCaO/SiO2を種々変えてMn焼結鉱のよ
り良い焼結条件を探索して第3図と第4図を得た。Therefore, the present inventors searched for better sintering conditions of Mn sintered ore by changing CaO / T.Mn and CaO / SiO 2 variously with respect to the Mn sintered ore, which has a large improvement effect, and searched for FIG. 4 figures were obtained.
第3図はCaO/SiO2=4のMn焼結鉱のCaO/T.MnとMn還元率
の関係を示し、第4図はCaO/T.Mn=0.2のMn焼結鉱のCaO
/SiO2とMn還元率の関係を示す。Figure 3 shows the relationship between CaO / T.Mn and Mn reduction rate of Mn sinter with CaO / SiO 2 = 4, and Figure 4 shows CaO of Mn sinter with CaO / T.Mn = 0.2.
The relationship between / SiO 2 and the Mn reduction rate is shown.
本発明者等は、図からCaO/T.Mnが0.15以上であってCaO/
SiO2が3以上あるMn焼結鉱をMn剤として溶鉄へ添加すれ
ば、従来の添加Mn源で最高のMn歩留が得られるFe−Mnを
使用した場合と同等又はそれ以上のMn歩留が得られる事
を知得した。The present inventors, from the figure CaO / T.Mn is 0.15 or more CaO /
If Mn sinter containing 3 or more SiO 2 is added to molten iron as an Mn agent, the highest Mn yield can be obtained with the conventional added Mn source. Mn yield equal to or higher than that when using Fe-Mn I knew that I could get.
本発明者等は以上の知見を基に、溶鉄容器の耐火物の耐
久性と溶鉄精錬の作業性の調和を図りつつMn剤を添加す
れば、本発明の課題が達成出来る事を知得し本発明を確
立したのである。Based on the above findings, the present inventors have found that if the Mn agent is added while trying to harmonize the durability of the refractory of the molten iron container and the workability of molten iron refining, the subject of the present invention can be achieved. The present invention was established.
〈実施例〉 (1):Mn剤を添加した溶鉄の種類と該溶鉄の精錬装置 脱Si、脱P済予備処理溶銑→転炉 電気炉精練中の溶鋼→電気炉 (2):Mn剤を添加前の溶鉄の化学分分と温度 (第1表に記載) (3):Mn剤を添加した溶鉄の温度 (第1表に記載) (4):Mn剤の加熱装置 転炉用Mn剤=直接加熱装置 電気炉用Mn剤=間接加熱装置 (5):Mn剤の添加条件 (第1表に記載) (6):Mn剤の添加結果 (第1表に記載) Mn剤添加後の溶鉄化学成分 Mn剤添加後の溶鉄温度 Mn歩留 表に明らかな如く鋼番1〜8に示す本発明例のMn歩留は
高く、79〜93%であった。<Example> (1): Kind of molten iron added with Mn agent and refining apparatus for the molten iron De-Si, de-Ped pre-treated hot metal → converter Molten steel during electric furnace refining → Electric furnace (2): Mn agent Chemical content and temperature of molten iron before addition (listed in Table 1) (3): Temperature of molten iron added with Mn agent (listed in Table 1) (4): Mn agent heating device Mn agent for converter = Direct heating device Mn agent for electric furnace = Indirect heating device (5): Mn agent addition conditions (listed in Table 1) (6): Mn agent addition results (listed in Table 1) After addition of Mn agent Molten iron chemical component Mn yield after addition of Mn agent Mn retention rate As is clear from the table, the Mn retention rates of the examples of the present invention shown in Steel Nos. 1 to 8 were high and 79 to 93%.
しかし鋼番9〜12に示す比較例のMn歩留は最高が67%で
最低は59%であった。However, the maximum Mn yield of the comparative examples shown in Steel Nos. 9 to 12 was 67% and the minimum was 59%.
〈発明の効果〉 本発明は、Mn剤として前記の如く塩基度を規定し又は塩
基度規定に加え滓化促進剤を添加したMnの焼結鉱を溶銑
に添加するのでMn還元率、Mn歩留は従来最高を示してい
たFe−Mnと同等に高いにもかかわらず、Fe−Mnに比して
Mn剤の添加原単価を大幅に低減する事を可能とし、この
種産業分野にもたらす効果は大きい。<Effects of the Invention> The present invention defines the basicity as the Mn agent as described above or the addition of the sinter of Mn to which the slag formation accelerator is added in addition to the basicity regulation is added to the hot metal. Although the distillate is as high as that of Fe-Mn, which has been the highest in the past, it is higher than that of Fe-Mn.
It makes it possible to significantly reduce the unit price of Mn agents added, and has a great effect on this kind of industrial field.
第1図は、溶鉄に添加したMn鉱石中のMnの形態と該各Mn
鉱石を添加した溶鉄中のMn重量%との関係を示す。 第2図は、溶鉄に添加した添加Mn剤の種類と該各Mn剤を
添加した溶鉄中のMn重量%との関係を示す。 第3図は、Mn剤のCaO/T.MnとMn還元率の関係を示し、第
4図は、Mn剤のCaO/SiO2とMn還元率の関係を示す。Fig. 1 shows the morphology of Mn in Mn ore added to molten iron and the Mn
The relation with the Mn weight% in the molten iron added with ore is shown. FIG. 2 shows the relationship between the type of the added Mn agent added to the molten iron and the Mn weight% in the molten iron added with each Mn agent. FIG. 3 shows the relationship between CaO / T.Mn of the Mn agent and the Mn reduction rate, and FIG. 4 shows the relationship between CaO / SiO 2 of the Mn agent and the Mn reduction rate.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 真也 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (56)参考文献 特開 昭63−210029(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Shinya Nakano No. 1 Nishinosu, Oita-shi, Oita, Japan Oita Steel Co., Ltd. (56) Reference JP-A-63-210029 (JP, A)
Claims (4)
鉱石とCaOを配合して、CaO/T.Mn≧0.15とCaO/SiO2≧3.0
にし、これを1000℃以上で焼成した焼結鉱を溶鉄に添加
する事を特徴とする溶鉄にMnを添加する方法。1. Mn containing MnO 2 , Mn 2 O 3 and Mn 3 O 4 alone or in plurality.
Mixing ore and CaO, CaO / T.Mn ≧ 0.15 and CaO / SiO 2 ≧ 3.0
And a method of adding Mn to molten iron, characterized by adding to the molten iron sintered sinter that has been fired at 1000 ° C or higher.
鉱石とCaOを配合してCaO/T.Mn≧0.15とCaO/SiO2≧3.0に
し、これを1000℃以上で焼成し粒径を1mm以下にした焼
結鉱を溶鉄に添加する事を特徴とする溶鉄にMnを添加す
る方法。 2. Mn containing MnO 2 , Mn 2 O 3 and Mn 3 O 4 alone or in plurality.
Characterized by adding ore and CaO to make CaO / T.Mn ≧ 0.15 and CaO / SiO 2 ≧ 3.0, and adding sinter ore with a particle size of 1 mm or less by firing this at 1000 ° C or more to molten iron. A method of adding Mn to molten iron.
Mn鉱石とCaOと1〜5重量%のNa2CO3及び又はB2O3を配
してCaO/T.Mn≧0.15とCaO/SiO2≧3.0にし、これを1000
℃以上で焼成した焼結鉱を溶鉄に添加する事を特徴とす
る溶鉄にMnを添加する方法。 3. A single or a plurality of MnO 2 , Mn 2 O 3 and Mn 3 O 4 are contained.
Mn ore and CaO and 1 to 5 wt% of Na 2 CO 3 and / or B 2 O 3 are arranged to make CaO / T.Mn ≧ 0.15 and CaO / SiO 2 ≧ 3.0.
A method for adding Mn to molten iron, characterized in that sinter ore calcined at ℃ or higher is added to molten iron.
鉱石とCaOと1〜5重量%のNa2CO3及び又はB2O3を配合
してCaO/T.Mn≧0.15とCaO/SiO2≧3.0にし、これを1000
℃以上で焼成し粒径を1mm以下にした焼結鉱を溶鉄に添
加する事を特徴とする溶鉄にMnを添加する方法。 4. Mn containing MnO 2 , Mn 2 O 3 and Mn 3 O 4 alone or in plurality.
Ore, CaO and 1-5 wt% Na 2 CO 3 and / or B 2 O 3 are mixed to make CaO / T.Mn ≧ 0.15 and CaO / SiO 2 ≧ 3.0, which is 1000
A method for adding Mn to molten iron, characterized by adding to the molten iron a sinter that has been fired at a temperature of ℃ or above and has a particle size of 1 mm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30020089A JPH0713246B2 (en) | 1988-11-22 | 1989-11-18 | Method of adding Mn to molten iron |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29534288 | 1988-11-22 | ||
JP63-295342 | 1988-11-22 | ||
JP1-267445 | 1989-10-14 | ||
JP26744589 | 1989-10-14 | ||
JP30020089A JPH0713246B2 (en) | 1988-11-22 | 1989-11-18 | Method of adding Mn to molten iron |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03219006A JPH03219006A (en) | 1991-09-26 |
JPH0713246B2 true JPH0713246B2 (en) | 1995-02-15 |
Family
ID=27335557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30020089A Expired - Lifetime JPH0713246B2 (en) | 1988-11-22 | 1989-11-18 | Method of adding Mn to molten iron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0713246B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5949627B2 (en) * | 2013-03-28 | 2016-07-13 | Jfeスチール株式会社 | Method of refining hot metal in converter |
CN111534660B (en) * | 2020-05-22 | 2022-04-29 | 山东钢铁股份有限公司 | Method for improving manganese element in molten steel at converter end point |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63210029A (en) * | 1987-02-27 | 1988-08-31 | Japan Metals & Chem Co Ltd | Superfine manganese oxide and production thereof |
-
1989
- 1989-11-18 JP JP30020089A patent/JPH0713246B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03219006A (en) | 1991-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU706170B2 (en) | Process for the production of hydraulic binders and/or alloys, such as, e.g., ferrochromium or ferrovanadium | |
JPH0215130A (en) | Utilization of zinc-containing metallurgical dust and sludge | |
CA2398344C (en) | Method for treating slags or slag mixtures on an iron bath | |
WO2020261767A1 (en) | Method for removing phosphorus from phosphorus-containing substance, method for producing starting material for metal smelting or starting material for metal refining, and method for producing metal | |
JPH10330822A (en) | Method for recovering valuable metal from industrial waste | |
JPH0713246B2 (en) | Method of adding Mn to molten iron | |
US4971622A (en) | Sulphur and silicon control in ferrochromium production | |
US4274867A (en) | Method for producing low-carbon steel from iron ores containing vanadium and/or titanium | |
US1820998A (en) | Smelting of ores | |
JP2808045B2 (en) | Unfired manganese ore pellets for steel refining | |
KR102597737B1 (en) | Method for removing phosphorus from phosphorus-containing substance, method for manufacturing raw material for metal smelting or raw material for metal refining, and method for manufacturing metal | |
JPH07100807B2 (en) | Method for producing molten iron containing low S chromium | |
RU2198235C2 (en) | Method of production of ferromanganese and silicomanganese | |
JPS6250543B2 (en) | ||
KR920007933B1 (en) | Making process for fe-cr by smelting reduction process | |
JPS59126706A (en) | Treatment of molten iron | |
RU2118670C1 (en) | Method of smelting silicon-vanadium alloy | |
JPH0372129B2 (en) | ||
US1185396A (en) | Process of refining ferro metals. | |
JPS6242004B2 (en) | ||
SU998517A1 (en) | Method for producing low-carbon steel | |
JPH079023B2 (en) | Desulfurization method of chromium-containing pig iron in electric pig iron | |
JPH0978119A (en) | Method for denitrification of molten metal and flux for denitrification | |
JPS6123244B2 (en) | ||
JP2000034512A (en) | Desiliconizing agent for molten iron, and molten pig iron desiliconization method using the agent |