JPH07130996A - High-breakdown-strength semiconductor element - Google Patents
High-breakdown-strength semiconductor elementInfo
- Publication number
- JPH07130996A JPH07130996A JP5188855A JP18885593A JPH07130996A JP H07130996 A JPH07130996 A JP H07130996A JP 5188855 A JP5188855 A JP 5188855A JP 18885593 A JP18885593 A JP 18885593A JP H07130996 A JPH07130996 A JP H07130996A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- type
- layer
- gate
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 149
- 230000015556 catabolic process Effects 0.000 claims description 26
- 239000000758 substrate Substances 0.000 claims description 12
- 239000004020 conductor Substances 0.000 claims 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 26
- 229920005591 polysilicon Polymers 0.000 abstract description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 229910052814 silicon oxide Inorganic materials 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000012535 impurity Substances 0.000 description 8
- 230000005684 electric field Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7813—Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/0619—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/402—Field plates
- H01L29/405—Resistive arrangements, e.g. resistive or semi-insulating field plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7816—Lateral DMOS transistors, i.e. LDMOS transistors
- H01L29/7817—Lateral DMOS transistors, i.e. LDMOS transistors structurally associated with at least one other device
- H01L29/7821—Lateral DMOS transistors, i.e. LDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7816—Lateral DMOS transistors, i.e. LDMOS transistors
- H01L29/7824—Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
- H01L29/0692—Surface layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/402—Field plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42372—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
- H01L29/42376—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Thin Film Transistor (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高耐圧半導体素子に係
り、特にMOS構造を有する高耐圧半導体素子に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high breakdown voltage semiconductor element, and more particularly to a high breakdown voltage semiconductor element having a MOS structure.
【0002】[0002]
【従来の技術】近年、コンピュータや通信機器の重要部
分には、多数のトランジスタや抵抗等を電気回路を達成
するようにむすびつけ、1チップ上に集積化して形成し
た集積回路(IC)が多用されている。このようなIC
中で、高耐圧素子を含むものはパワーICと呼ばれてい
る。2. Description of the Related Art In recent years, an integrated circuit (IC) formed by integrating a large number of transistors, resistors and the like so as to achieve an electric circuit and forming them on one chip has been widely used in important parts of computers and communication equipment. ing. IC like this
Among them, a device including a high breakdown voltage element is called a power IC.
【0003】図26は、高耐圧素子の一つである横型M
OSFETの素子断面図である。図中、101はp型シ
リコン基板を示し、このp型シリコン基板101上には
n型高抵抗半導体層102が設けられ、その表面にはチ
ャネル形成用のp型ウェル層103が形成されている。
p型ウェル層103の表面にはn型ソース層104が選
択的に形成されている。n型ソース層104からp型ウ
ェル層103にまたがる領域にはソース電極106が設
けられている。FIG. 26 shows a horizontal type M which is one of high breakdown voltage elements.
It is an element sectional view of OSFET. In the figure, 101 indicates a p-type silicon substrate, an n-type high resistance semiconductor layer 102 is provided on the p-type silicon substrate 101, and a p-type well layer 103 for forming a channel is formed on the surface thereof. .
An n-type source layer 104 is selectively formed on the surface of the p-type well layer 103. A source electrode 106 is provided in a region extending from the n-type source layer 104 to the p-type well layer 103.
【0004】n型高抵抗半導体層102の表面にはn型
ドレイン層105が選択的に形成され、このn型ドレイ
ン層105にはドレイン電極107が設けられている。
n型高抵抗半導体層102とn型ソース層104とで挟
まれた領域のp型ウェル層103上には、シリコン酸化
膜からなるゲート絶縁膜108を介してゲート電極10
9が設けられている。An n-type drain layer 105 is selectively formed on the surface of the n-type high resistance semiconductor layer 102, and a drain electrode 107 is provided on the n-type drain layer 105.
On the p-type well layer 103 in the region sandwiched between the n-type high resistance semiconductor layer 102 and the n-type source layer 104, the gate electrode 10 is formed with a gate insulating film 108 made of a silicon oxide film interposed therebetween.
9 is provided.
【0005】横型MOSFETは、各電極間の容量を小
さくできるので、特に高速なスイッチングが可能という
利点がある。しかし、従来の横型MOSFETには次の
ような問題があった。すなわち、オン状態では、ゲート
電極109の下部にしかチャネルchが形成されず、n
型高抵抗半導体層102の抵抗によって、オン電圧が高
くなるという問題があった。特に高耐圧素子ではオン電
圧が著しく高いため、MOSFETは用いられない。Since the lateral MOSFET can reduce the capacitance between the electrodes, it has an advantage that particularly high-speed switching is possible. However, the conventional lateral MOSFET has the following problems. That is, in the ON state, the channel ch is formed only under the gate electrode 109, and n
There is a problem that the on-voltage is increased due to the resistance of the high-resistance semiconductor layer 102. In particular, MOSFETs are not used in high breakdown voltage devices because the on-voltage is extremely high.
【0006】図27は、上記問題を解決するために提案
された横型MOSFETの構造を示す素子断面図であ
る。この横型MOSFETが図26のそれと異なる点
は、ゲート電極109aがn型ドレイン層105上まで
延在していることにある。このため、オン状態では、n
型ソース層104からn型ドレイン層105までの表面
にチャネルが形成され、オン電圧は低くなる。FIG. 27 is a cross-sectional view of an element showing the structure of a lateral MOSFET proposed to solve the above problem. This lateral MOSFET differs from that of FIG. 26 in that the gate electrode 109 a extends up to the n-type drain layer 105. Therefore, in the ON state, n
A channel is formed on the surface from the type source layer 104 to the n-type drain layer 105, and the on-voltage becomes low.
【0007】しかしながら、オフ状態でゲート・ドレイ
ン間の電圧が高くなると、ゲート電極109aのドレイ
ン端部110に電界が集中し、その部分の耐圧が低下す
るという問題があった。However, when the voltage between the gate and the drain is increased in the off state, the electric field is concentrated on the drain end portion 110 of the gate electrode 109a, and the breakdown voltage of that portion is lowered.
【0008】[0008]
【発明が解決しようとする課題】上述の如く、従来の横
型MOSFETの場合、ゲート電極が(チャネル方向
に)短いと、オン電圧が高くなるという問題があった。
また、オン電圧を下げるためにゲート電極を長くする
と、オフ状態で、ゲート電極のドレイン端部に電界が集
中し、耐圧が低下するという問題があった。本発明は、
上記事情を考慮してなされたもので、その目的とすると
ころは、オン電圧が低く、耐圧が高い高耐圧半導体素子
を提供することにある。As described above, the conventional lateral MOSFET has a problem that the ON voltage becomes high when the gate electrode is short (in the channel direction).
Further, if the gate electrode is lengthened in order to lower the on-voltage, there is a problem that the electric field is concentrated at the drain end of the gate electrode in the off state, and the breakdown voltage is lowered. The present invention is
The present invention has been made in view of the above circumstances, and an object thereof is to provide a high breakdown voltage semiconductor element having a low on-voltage and a high breakdown voltage.
【0009】[0009]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明の高耐圧半導体素子は、第1導電型半導体
基板上に設けられた第2導電型高抵抗半導体層と、この
第2導電型高抵抗半導体層の表面に選択的に形成された
第1導電型半導体層と、この第1導電型半導体層の表面
に選択的に形成された第2導電型ソース層と、前記第2
導電型高抵抗半導体層の表面に選択的に形成された第2
導電型ドレイン層と、前記第2導電型ドレイン層に接す
るドレイン電極と、前記第1導電型半導体層及び前記第
2導電型ソース層に接するソース電極と、前記第2導電
型ソース層と前記第2導電型ドレイン層とで挟まれた前
記第1導電型半導体層と前記第2導電型高抵抗半導体層
との上に、ゲート絶縁膜を介して設けられ、前記ソース
電極と接しないゲート半導体層と、前記第2導電型ソー
ス層と前記第2導電型高抵抗半導体層とで挟まれた前記
第1導電型半導体層上の前記ゲート半導体層に接するゲ
ート電極と、前記ドレイン電極と前記ゲート電極との電
位差に基づいて、オン時に前記ゲート半導体層と前記ド
レイン電極とを電気的に分離するゲート半導体層制御手
段とを備えたことを特徴とする。In order to achieve the above object, a high breakdown voltage semiconductor device of the present invention comprises a second conductivity type high resistance semiconductor layer provided on a first conductivity type semiconductor substrate and a second conductivity type high resistance semiconductor layer. A first conductive type semiconductor layer selectively formed on the surface of the second conductive type high resistance semiconductor layer; a second conductive type source layer selectively formed on the surface of the first conductive type semiconductor layer; Two
The second selectively formed on the surface of the conductive type high resistance semiconductor layer
A conductive type drain layer, a drain electrode in contact with the second conductive type drain layer, a source electrode in contact with the first conductive type semiconductor layer and the second conductive type source layer, the second conductive type source layer and the second conductive type drain layer. A gate semiconductor layer provided on the first conductive type semiconductor layer and the second conductive type high resistance semiconductor layer sandwiched by a two conductive type drain layer with a gate insulating film interposed therebetween and not in contact with the source electrode. A gate electrode in contact with the gate semiconductor layer on the first conductivity type semiconductor layer sandwiched between the second conductivity type source layer and the second conductivity type high resistance semiconductor layer, the drain electrode and the gate electrode And a gate semiconductor layer control means for electrically separating the gate semiconductor layer and the drain electrode from each other based on a potential difference between the gate semiconductor layer and the drain electrode.
【0010】[0010]
【作用】本発明によれば、オン時に、ゲート絶縁膜側の
ゲート半導体層の表面にチャネルが形成され、ゲート半
導体層の抵抗が著しく低下し、ゲート半導体層の電位は
ゲート印加電圧と同じになる。このため、第1導電型半
導体層から第2導電型高抵抗半導体層の表面にわたって
チャネルが形成される。According to the present invention, when turned on, a channel is formed on the surface of the gate semiconductor layer on the side of the gate insulating film, the resistance of the gate semiconductor layer is significantly reduced, and the potential of the gate semiconductor layer becomes equal to the gate applied voltage. Become. Therefore, a channel is formed from the first conductivity type semiconductor layer to the surface of the second conductivity type high resistance semiconductor layer.
【0011】すなわち、第2導電型ソース層から第2導
電型ドレイン層に向かって、従来よりも長いチャネルが
形成され、実効的に長いゲート電極が形成された場合と
同じ状態になる。したがって、オン電圧が低下する。ま
た、ゲート半導体層制御手段によって、オン状態のとき
のドレイン電極からゲート半導体層への電流の流れ込み
は生じない。That is, a channel longer than the conventional one is formed from the second-conductivity-type source layer toward the second-conductivity-type drain layer, which is the same state as when an effectively longer gate electrode is formed. Therefore, the on-voltage decreases. Further, the gate semiconductor layer control means does not cause a current to flow from the drain electrode to the gate semiconductor layer in the ON state.
【0012】一方、オフ時には、ゲート半導体層の表面
のチャネルが消滅し、上記実効的に長いゲート電極が消
滅することになる。また、ゲート半導体層が空乏化する
ことにより、ゲート電極のドレイン端部の耐圧低下は生
じない。On the other hand, when turned off, the channel on the surface of the gate semiconductor layer disappears, and the effectively long gate electrode disappears. In addition, since the gate semiconductor layer is depleted, the breakdown voltage at the drain end of the gate electrode does not decrease.
【0013】[0013]
【実施例】以下、図面を参照しながら実施例を説明す
る。図1は、本発明の第1の実施例に係る横型MOSF
ETのオン状態の様子を示す素子断面図である。また、
図2は、オフ状態の様子を示す素子断面図である。図
中、1はp型シリコン基板を示し、このp型シリコン基
板1上にはn型高抵抗半導体層2が設けられ、その表面
にはチャネル形成用のp型ウェル層3が形成されてい
る。Embodiments will be described below with reference to the drawings. FIG. 1 shows a lateral MOSF according to a first embodiment of the present invention.
It is an element cross-sectional view showing a state of an ET on state. Also,
FIG. 2 is a cross-sectional view of an element showing a state of the off state. In the figure, 1 indicates a p-type silicon substrate, an n-type high resistance semiconductor layer 2 is provided on the p-type silicon substrate 1, and a p-type well layer 3 for forming a channel is formed on the surface thereof. .
【0014】p型ウェル層3の表面にはn型ソース層4
が選択的に形成され、このn型ソース層4からp型ウェ
ル層3にまたがる領域にはソース電極6が設けられてい
る。n型高抵抗半導体層2の表面にはn型ドレイン層5
が選択的に形成され、このn型ドレイン層5にはドレイ
ン電極7が設けられている。ソース電極6とドレイン電
極7との間の領域上には、シリコン酸化膜からなるゲー
ト絶縁膜8が設けられている。n型ソース層4とn型高
抵抗半導体層2とで挟まれた領域のp型ウェル層3の上
方に当たるゲート絶縁膜8上には、ソース電極6と接し
ない高濃度のp型半導体層10が設けられ、このp型半
導体層10にはゲート電極13が設けられている。An n-type source layer 4 is formed on the surface of the p-type well layer 3.
Are selectively formed, and a source electrode 6 is provided in a region extending from the n-type source layer 4 to the p-type well layer 3. An n-type drain layer 5 is formed on the surface of the n-type high resistance semiconductor layer 2.
Are selectively formed, and a drain electrode 7 is provided on the n-type drain layer 5. A gate insulating film 8 made of a silicon oxide film is provided on the region between the source electrode 6 and the drain electrode 7. A high-concentration p-type semiconductor layer 10 that is not in contact with the source electrode 6 is formed on the gate insulating film 8 above the p-type well layer 3 in a region sandwiched between the n-type source layer 4 and the n-type high resistance semiconductor layer 2. The gate electrode 13 is provided on the p-type semiconductor layer 10.
【0015】ドレイン側のゲート絶縁膜8の端部上には
n型半導体層11とp型半導体層12とからなるツェナ
ーダイオードが設けられている。p型半導体層12はド
レイン電極7に接している。p型半導体層10とn型半
導体層11との間のゲート絶縁膜8上には、不純物濃度
の低いi型ポリシリコン層9が設けられている。なお、
ポリシリコンの代わりにシリコンを用いても良い。A Zener diode composed of an n-type semiconductor layer 11 and a p-type semiconductor layer 12 is provided on the end of the gate insulating film 8 on the drain side. The p-type semiconductor layer 12 is in contact with the drain electrode 7. An i-type polysilicon layer 9 having a low impurity concentration is provided on the gate insulating film 8 between the p-type semiconductor layer 10 and the n-type semiconductor layer 11. In addition,
Silicon may be used instead of polysilicon.
【0016】このように構成された横型MOSFETに
よれば、ゲート電極13にソース電極6に対して正の電
圧を印加すると、p型半導体層10の下部のp型ウェル
層3の表面にチャネルch1が形成されると同時にi型
ポリシリコン層9の表面にチャネルch2が誘起され
る。この結果、i型ポリシリコン層9の抵抗が著しく低
下し、i型ポリシリコン層9の電位はゲート印加電圧と
同じになる。このため、n型高抵抗半導体層2の表面に
チャネルch3が形成される。According to the lateral MOSFET thus configured, when a positive voltage is applied to the gate electrode 13 with respect to the source electrode 6, the channel ch1 is formed on the surface of the p-type well layer 3 below the p-type semiconductor layer 10. The channel ch2 is induced on the surface of the i-type polysilicon layer 9 at the same time that the channel is formed. As a result, the resistance of the i-type polysilicon layer 9 is significantly reduced, and the potential of the i-type polysilicon layer 9 becomes the same as the gate applied voltage. Therefore, the channel ch3 is formed on the surface of the n-type high resistance semiconductor layer 2.
【0017】したがって、n型ソース層4とn型ドレイ
ン層5とは一つのチャネルで繋がるようになる。すなわ
ち、図27に示した横型MOSFETのように、実効的
に長いゲート電極109aが形成された場合と同じよう
に、長いチャネルが形成される。したがって、n型ソー
ス層4、n型ドレイン層5がn型高抵抗半導体層2の表
面に形成されていても、オン電圧を低くできる。また、
このとき、n型半導体層11とp型半導体層12とで形
成されるダイオードは逆バイアスされるので、ドレイン
電極7からi型ポリシリコン層9に電流が流れる込むと
いう不都合は生じない。Therefore, the n-type source layer 4 and the n-type drain layer 5 are connected by one channel. That is, like the lateral MOSFET shown in FIG. 27, a long channel is formed as in the case where the effectively long gate electrode 109a is formed. Therefore, even if the n-type source layer 4 and the n-type drain layer 5 are formed on the surface of the n-type high resistance semiconductor layer 2, the on-voltage can be lowered. Also,
At this time, the diode formed by the n-type semiconductor layer 11 and the p-type semiconductor layer 12 is reverse-biased, so that there is no inconvenience that a current flows from the drain electrode 7 to the i-type polysilicon layer 9.
【0018】一方、オフ時には、ゲート電極13には電
圧は印加されず、ドレイン電極7には高電圧が印加され
るため、図2に示すように、p型ウェル層3の表面にチ
ャネルch1は形成されない。この結果、チャネルch
2,ch3は誘起されず、i型ポリシリコン層9は空乏
化する。すなわち、図27に示した横型MOSFETの
ような、実効的に長いゲート電極109aは消滅する。
したがって、ドレイン電極7の近傍の電界集中が回避さ
れ、n型ドレイン電極7の近傍の耐圧低下は生じない。On the other hand, when turned off, no voltage is applied to the gate electrode 13 and a high voltage is applied to the drain electrode 7, so that the channel ch1 is formed on the surface of the p-type well layer 3 as shown in FIG. Not formed. As a result, channel ch
2 and ch3 are not induced and the i-type polysilicon layer 9 is depleted. That is, the effectively long gate electrode 109a like the lateral MOSFET shown in FIG. 27 disappears.
Therefore, the electric field concentration near the drain electrode 7 is avoided, and the breakdown voltage does not decrease near the n-type drain electrode 7.
【0019】したがって、本実施例によれば、オン電圧
が低く、耐圧が高い横型MOSFETが得られる。図3
は、本発明の第2の実施例に係る横型MOSFETのオ
ン状態の様子を示す素子断面図である。なお、以下の図
3〜図9において、前出した図と同一符号(添字が異な
るものを含む)は同一部分または相当部分を示す。Therefore, according to this embodiment, a lateral MOSFET having a low on-voltage and a high breakdown voltage can be obtained. Figure 3
FIG. 6 is an element cross-sectional view showing an on-state of a lateral MOSFET according to a second example of the present invention. In FIGS. 3 to 9 below, the same reference numerals (including those with different subscripts) as in the above-mentioned drawings indicate the same or corresponding portions.
【0020】本実施例の横型MOSFETは、先の実施
例のそれをSOI構造としたものである。シリコン基板
1a上には埋め込みシリコン酸化膜10が形成され、シ
リコン酸化膜10が上には薄いn型高抵抗半導体層2a
が形成されている。また、n型高抵抗半導体層2aには
シリコン酸化膜10に達するp型ウェル層3aが形成さ
れている。その他の構造は先の実施例と同じである。The lateral MOSFET of this embodiment has the SOI structure of that of the previous embodiment. A buried silicon oxide film 10 is formed on a silicon substrate 1a, and a thin n-type high resistance semiconductor layer 2a is formed on the silicon oxide film 10.
Are formed. A p-type well layer 3a reaching the silicon oxide film 10 is formed in the n-type high resistance semiconductor layer 2a. The other structure is the same as that of the previous embodiment.
【0021】このように構成された横型MOSFETで
も、先の実施例と同様な効果が得られるのは勿論のこ
と、更に、オン電圧が低く、SOI構造により素子の接
合容量が小さくなるので、高速なスイッチングが行なえ
るようになる。図4は、本発明の第3の実施例に係るM
OSFETの構造を示す素子断面図である。In the lateral MOSFET thus constructed, the same effect as in the previous embodiment can be obtained, and further, since the on-state voltage is low and the SOI structure reduces the junction capacitance of the element, the high speed is achieved. It becomes possible to perform the switching. FIG. 4 shows the M according to the third embodiment of the present invention.
It is an element sectional view showing a structure of OSFET.
【0022】これは本発明をトレンチ溝を用いたMOS
FETに適用した例である。通常、トレンチ溝内にゲー
ト電極を設けた素子の場合、トレンチ溝の下端部分で電
界集中が生じ、その部分の耐圧が劣化するという問題が
ある。しかし、本実施例によれば、i型ポリシリコン層
9が空乏化し、トレンチ溝の下端部分での電界集中が緩
和するので、耐圧が改善される。This is because the present invention is a MOS using a trench groove.
This is an example applied to a FET. Usually, in the case of an element in which a gate electrode is provided in the trench groove, there is a problem that electric field concentration occurs at the lower end portion of the trench groove and the breakdown voltage of that portion deteriorates. However, according to this embodiment, the i-type polysilicon layer 9 is depleted and the electric field concentration at the lower end portion of the trench groove is relaxed, so that the breakdown voltage is improved.
【0023】図5は、本発明の第4の実施例に係る横型
MOSFETの構造を示す素子断面図である。本実施例
の横型MOSFETが第2の実施例のそれと異なる点
は、ゲート電極10とドレイン電極7との間の半導体層
9,10,11,12の表面がポリシリコン高抵抗膜
(SIPOS)15で被覆されていることにある。FIG. 5 is an element cross-sectional view showing the structure of a lateral MOSFET according to the fourth embodiment of the present invention. The lateral MOSFET of this embodiment is different from that of the second embodiment in that the surface of the semiconductor layers 9, 10, 11, 12 between the gate electrode 10 and the drain electrode 7 is a polysilicon high resistance film (SIPOS) 15. It is covered with.
【0024】このように構成された横型MOSFETに
よれば、ポリシリコン高抵抗膜15によって、オフ時に
i型ポリシリコン層9内を流れる微小電流によるn型高
抵抗半導体層2a内の電界の変動を抑制でき、更に耐圧
が向上する。図6は、本発明の第5の実施例に係る横型
MOSFETの構造を示す素子断面図である。According to the lateral MOSFET having the above structure, the polysilicon high resistance film 15 prevents the electric field in the n type high resistance semiconductor layer 2a from varying due to a minute current flowing in the i type polysilicon layer 9 when it is turned off. It can be suppressed and the breakdown voltage is further improved. FIG. 6 is an element sectional view showing the structure of the lateral MOSFET according to the fifth embodiment of the present invention.
【0025】本実施例の横型MOSFETが第2の実施
例のそれと異なる点は、低不純物濃度のi型ポリシリコ
ン層9の代わりに、p型ポリシリコン層9a(他の半導
体材料でも良い)を用いたことにある。通常、n型高抵
抗半導体層2aが薄い(2μm以下)場合には、n型高
抵抗半導体層2aの不純物濃度は、耐圧の関係上、ある
程度の値(ドーズ量1.5×1012/cm2 )以上にで
きない。The lateral MOSFET of this embodiment is different from that of the second embodiment in that a p-type polysilicon layer 9a (other semiconductor material may be used) instead of the i-type polysilicon layer 9 having a low impurity concentration. I used it. Usually, when the n-type high-resistance semiconductor layer 2a is thin (2 μm or less), the impurity concentration of the n-type high-resistance semiconductor layer 2a has a certain value (dose amount 1.5 × 10 12 / cm 3) due to the breakdown voltage. 2 ) You can't do more.
【0026】しかし、本実施例によれば、オフ時の空乏
化によって生じるp型ポリシリコン層9a内の負電荷と
n型高抵抗半導体層2a内の正電荷とが互いに打ち消し
合うため、n型高抵抗半導体層2aの不純物濃度を高く
できる。したがって、オン電圧が更に低くなる。図7
は、本発明の第6の実施例に係る横型MOSFETの構
造を示す素子断面図である。However, according to this embodiment, the negative charges in the p-type polysilicon layer 9a and the positive charges in the n-type high-resistance semiconductor layer 2a, which are generated by depletion at the time of turning off, cancel each other out, so that the n-type The impurity concentration of the high resistance semiconductor layer 2a can be increased. Therefore, the on-voltage becomes even lower. Figure 7
[FIG. 11A] is an element cross-sectional view showing the structure of a lateral MOSFET according to a sixth embodiment of the present invention.
【0027】本実施例の横型MOSFETが第2の実施
例のそれと異なる点は、低不純物濃度のi型ポリシリコ
ン層9の代わりに、n型ポリシリコン層9b(他の半導
体材料でも良い)を用いたことにある。本実施例によれ
ば、オフ時に、ソース側からドレイン側に向かって、n
型ポリシリコン層9bおよびn型高抵抗半導体層2a内
に空乏層が広がる。このため、n型高抵抗半導体層2a
が厚く、縦方向(膜厚方向)の電界が大きくても、ゲー
ト絶縁膜8に高電圧が印加されないので、耐圧を改善で
きる。なお、n型半導体層11の不純物濃度を高く(1
×1017〜1018cm-3程度以上)し、ゲート絶縁膜8
側のn型半導体層11の表面にチャネルが誘起されるの
を防止することが好ましい。The lateral MOSFET of this embodiment is different from that of the second embodiment in that an n-type polysilicon layer 9b (other semiconductor material may be used) instead of the i-type polysilicon layer 9 having a low impurity concentration. I used it. According to the present embodiment, when off, n from the source side toward the drain side
A depletion layer spreads in the type polysilicon layer 9b and the n-type high resistance semiconductor layer 2a. Therefore, the n-type high resistance semiconductor layer 2a
Since the gate insulating film 8 is thick and the electric field in the vertical direction (the film thickness direction) is large, the high voltage is not applied to the gate insulating film 8, so that the breakdown voltage can be improved. In addition, the impurity concentration of the n-type semiconductor layer 11 is increased (1
X 10 17 to 10 18 cm −3 or more), and the gate insulating film 8
It is preferable to prevent a channel from being induced on the surface of the n-type semiconductor layer 11 on the side.
【0028】図8は、本発明の第7の実施例に係る横型
MOSFETの構造を示す素子断面図である。本実施例
の横型MOSFETが第6の実施例のそれと異なる点
は、p型半導体層12がn型ポリシリコン層9bの上部
表面に形成されていることにある。図中、14はドレイ
ン電極7に繋がった電極を示している。FIG. 8 is an element cross-sectional view showing the structure of a lateral MOSFET according to the seventh embodiment of the present invention. The lateral MOSFET of this embodiment differs from that of the sixth embodiment in that the p-type semiconductor layer 12 is formed on the upper surface of the n-type polysilicon layer 9b. In the figure, 14 indicates an electrode connected to the drain electrode 7.
【0029】本実施例によれば、ゲート絶縁膜8側のn
型ポリシリコン層9bの表面にチャネルが誘起されて
も、p型半導体層12は上記チャネルと繋がらないの
で、チャネルストッパ層が不要になる。図9は、本発明
の第8の実施例に係る横型MOSFETの構造を示す素
子断面図である。According to this embodiment, n on the gate insulating film 8 side is
Even if a channel is induced on the surface of the type polysilicon layer 9b, the p-type semiconductor layer 12 is not connected to the channel, so that the channel stopper layer becomes unnecessary. FIG. 9 is an element cross-sectional view showing the structure of the lateral MOSFET according to the eighth embodiment of the present invention.
【0030】本実施例の横型MOSFETが第7の実施
例のそれと異なる点は、p型半導体層12を無くし、電
極14が直接n型ポリシリコン層9bの上部表面に接す
るようになっていることにある。本実施例によれば、電
極14とn型ポリシリコン層9bとによりショットキー
接合が形成され、これによりダイオードが形成されるの
で、p型半導体層12が無くても先の実施例と同様な効
果が得られる。The lateral MOSFET of this embodiment is different from that of the seventh embodiment in that the p-type semiconductor layer 12 is eliminated and the electrode 14 is in direct contact with the upper surface of the n-type polysilicon layer 9b. It is in. According to the present embodiment, since the Schottky junction is formed by the electrode 14 and the n-type polysilicon layer 9b and the diode is formed by this, the same as in the previous embodiment without the p-type semiconductor layer 12. The effect is obtained.
【0031】以上の実施例は、横型IGBTにも適用で
き、その横型IGBTの構造は、図1,図3,図5,図
6,図7,図8,図9に対応して、それぞれ、図28,
図29,図30,図31,図32,図33,図34の如
きになり、上記実施例と同様な効果が得られる。なお、
各図中の16はIGBTを構成するp型半導体層を示し
ている。The above embodiment can be applied to a lateral IGBT, and the structure of the lateral IGBT corresponds to FIG. 1, FIG. 3, FIG. 5, FIG. 6, FIG. 7, FIG. 8 and FIG. 28,
29, FIG. 30, FIG. 31, FIG. 32, FIG. 33, and FIG. 34, the same effects as those of the above embodiment can be obtained. In addition,
Reference numeral 16 in each figure denotes a p-type semiconductor layer that constitutes the IGBT.
【0032】図10は、本発明の第9の実施例に係る横
型MOSFETの平面図である。また、図11、図12
は、それぞれ、図10の横型MOSFETのA−A´断
面図、B−B´断面図である。なお、以下の図10〜図
24において、前出した図と同一符号(添字が異なるも
のを含む)は同一部分または相当部分を示す。これを製
造工程に従い説明すると、まず、シリコン基板21にシ
リコン酸化膜22を埋め込み形成する。次いでシリコン
酸化膜22上にn型半導体層31を形成し、このn型半
導体層31にシリコン酸化膜22に達するp型ウェル層
24を選択的に形成する。このとき、p型ウェル層24
とチャネル形成部分42とソース電極27とのコンタク
ト部41を残しておく。FIG. 10 is a plan view of a lateral MOSFET according to the ninth embodiment of the present invention. Also, FIG. 11 and FIG.
11A and 11B are respectively an AA ′ sectional view and a BB ′ sectional view of the lateral MOSFET of FIG. 10. Note that, in FIGS. 10 to 24 below, the same reference numerals (including those with different subscripts) as in the above-mentioned drawings indicate the same or corresponding portions. This will be described according to the manufacturing process. First, the silicon oxide film 22 is embedded and formed in the silicon substrate 21. Next, the n-type semiconductor layer 31 is formed on the silicon oxide film 22, and the p-type well layer 24 reaching the silicon oxide film 22 is selectively formed on the n-type semiconductor layer 31. At this time, the p-type well layer 24
The contact portion 41 between the channel forming portion 42 and the source electrode 27 is left.
【0033】次にp型ウェル層24内にシリコン酸化膜
22に達するストライプ状のn型ソース層25を形成す
るとともに、n型半導体層31内にシリコン酸化膜22
に達するストライプ状のn型ドレイン層26を形成す
る。次にn型ソース層25とn型ドレイン層26とで挟
まれた領域にシリコン酸化膜22に達するストライプ状
のp型半導体層32を形成する。このストライプの方向
はn型ソース層25(n型ドレイン層26)のそれと直
角である。Next, a stripe-shaped n-type source layer 25 reaching the silicon oxide film 22 is formed in the p-type well layer 24, and the silicon oxide film 22 is formed in the n-type semiconductor layer 31.
To form a stripe-shaped n-type drain layer 26. Next, a stripe-shaped p-type semiconductor layer 32 reaching the silicon oxide film 22 is formed in a region sandwiched by the n-type source layer 25 and the n-type drain layer 26. The direction of this stripe is perpendicular to that of the n-type source layer 25 (n-type drain layer 26).
【0034】次にp型ウェル層24上にゲート絶縁膜2
9を形成した後、このゲート絶縁膜29上にゲート電極
30を形成する。最後に、n型ソース層25に接するソ
ース電極27、n型ドレイン層26に接するドレイン電
極28を形成する。なお、製造工程の順序は上記のもの
に限定されるものではない。Next, the gate insulating film 2 is formed on the p-type well layer 24.
After forming 9, the gate electrode 30 is formed on the gate insulating film 29. Finally, a source electrode 27 in contact with the n-type source layer 25 and a drain electrode 28 in contact with the n-type drain layer 26 are formed. The order of manufacturing steps is not limited to the above.
【0035】以上述べた方法により得られる横型MOS
FETによれば、n型半導体層31の濃度を上げても、
オフ時の空乏化によってn型半導体層31内に生じる正
電荷は、p型半導体層32内に生じる負電荷によって打
ち消されるので、耐圧は改善される。一方、図24に示
す従来の横型MOSFETの場合には、図25に示すよ
うに、n型半導体層23の単位面積当り不純物濃度が1
×1012cm-2を越えると、耐圧は急激に低下する。Lateral MOS obtained by the method described above
According to the FET, even if the concentration of the n-type semiconductor layer 31 is increased,
The positive charge generated in the n-type semiconductor layer 31 due to depletion at the time of off is canceled by the negative charge generated in the p-type semiconductor layer 32, so that the breakdown voltage is improved. On the other hand, in the case of the conventional lateral MOSFET shown in FIG. 24, the impurity concentration per unit area of the n-type semiconductor layer 23 is 1 as shown in FIG.
When it exceeds × 10 12 cm -2 , the breakdown voltage drops sharply.
【0036】したがって、本実施例によれば、耐圧の低
下を招くこと無く、n型半導体層31の濃度を上げるこ
とができるので、オン抵抗を低くできる。図13、図1
4は、本発明の第10の実施例に係る横型MOSFET
の素子断面図で、それぞれ、図11、図12に対応する
ものである。本実施例の横型MOSFETが先の実施例
のそれと異なる点は、厚いn型半導体層31に素子を形
成したことにある。このため、p型ウェル層24、n型
ソース層25、n型ドレイン層26、n型半導体層3
1、p型半導体層32をシリコン酸化膜22に達しない
ように形成できる。Therefore, according to this embodiment, since the concentration of the n-type semiconductor layer 31 can be increased without lowering the breakdown voltage, the on-resistance can be lowered. 13 and 1
4 is a lateral MOSFET according to the tenth embodiment of the present invention
11 are sectional views of the element corresponding to FIG. 11 and FIG. 12, respectively. The lateral MOSFET of this embodiment is different from that of the previous embodiment in that an element is formed on the thick n-type semiconductor layer 31. Therefore, the p-type well layer 24, the n-type source layer 25, the n-type drain layer 26, and the n-type semiconductor layer 3 are formed.
1. The p-type semiconductor layer 32 can be formed so as not to reach the silicon oxide film 22.
【0037】図15〜図20は、n型半導体層31、p
型半導体層32の他の配置パターンを示す図で、いずれ
の配置パターンも、n型半導体層31の不純物濃度がソ
ース側で低く、ドレイン側で高くなるようになってい
る。このような条件を満たす配置パターンを選んだの
は、上記の如きの濃度勾配があると、ソース・ドレイン
間の耐圧が高くなるという研究報告に基づく(ISPS
D´91,p31,Marchant et al. )。15 to 20 show n-type semiconductor layers 31, p.
It is a figure which shows the other arrangement | positioning pattern of the type | mold semiconductor layer 32. In each arrangement | positioning pattern, the impurity concentration of the n-type semiconductor layer 31 is low in the source side, and becomes high in the drain side. The reason why the layout pattern satisfying such a condition is selected is based on a research report that the breakdown voltage between the source and the drain becomes high when the above concentration gradient is present (ISPS).
D'91, p31, Marchant et al.).
【0038】しかし、従来の技術では濃度勾配を形成す
るのに、多数の拡散工程を要し、プロセス上の問題が多
かったが、上記配置パターンのようなものであれば、従
来の問題を回避できる。図15に示す配置パターンは、
p型半導体層32の幅をドレインに向かって徐々に細く
することにより、平均的に直線的な濃度勾配が得られ
る。However, in the conventional technique, a large number of diffusion steps were required to form the concentration gradient, and there were many process problems. However, in the case of the above arrangement pattern, the conventional problem can be avoided. it can. The arrangement pattern shown in FIG. 15 is
By gradually narrowing the width of the p-type semiconductor layer 32 toward the drain, an average linear concentration gradient can be obtained.
【0039】図16に示す配置パターンは、p型半導体
層32がn型ドレイン層26に達しないもので、平均的
にソース側とドレイン側とに濃度差を設けている。図1
7に示す配置パターンは、各p型半導体層32の長さを
変えることにより、図15に示した配置パターンと同じ
効果を実現するものである。図15〜図17の配置パタ
ーンの場合、p型半導体層32がp型ウェル層24に接
しているため、その接している部分ではチャネルが形成
されず、チャネル幅が短なり、オン電圧が高くなる。The arrangement pattern shown in FIG. 16 is one in which the p-type semiconductor layer 32 does not reach the n-type drain layer 26, and there is an average concentration difference between the source side and the drain side. Figure 1
The arrangement pattern shown in FIG. 7 realizes the same effect as the arrangement pattern shown in FIG. 15 by changing the length of each p-type semiconductor layer 32. In the arrangement patterns of FIGS. 15 to 17, since the p-type semiconductor layer 32 is in contact with the p-type well layer 24, a channel is not formed in the contact portion, the channel width is short, and the on-voltage is high. Become.
【0040】図18、図19に示す配置パターンは、こ
のようなオン電圧の問題を解決できるものである。すな
わち、図18に示す配置パターンは、p型半導体層32
とp型ウェル層24とが接しないもので、p型半導体層
32をいわゆるガードリングのようにフローティングと
することにより、オン電圧を小さくしている。The arrangement patterns shown in FIGS. 18 and 19 can solve such a problem of ON voltage. That is, the arrangement pattern shown in FIG. 18 has the p-type semiconductor layer 32.
And the p-type well layer 24 are not in contact with each other, and the p-type semiconductor layer 32 is floated like a so-called guard ring to reduce the on-voltage.
【0041】図19に示す配置パターンは、図18にお
いて、一本のストライプをより短い複数のストライプに
したものである。図20に示す配置パターンは、p型半
導体層32のストライプ方向をn型ソース層25(n型
ドレイン層26)のそれと同じにし、p型半導体層32
をガードリング配置としたものである。図21は、図2
0のA−A´断面図である。この配置パターンの場合、
図20に示すゲート電極30の下部33、ドレイン電極
28の下部34の電位集中が、従来に比べて十分緩和さ
れ、耐圧が改善される。The arrangement pattern shown in FIG. 19 is obtained by forming one stripe into a plurality of shorter stripes in FIG. In the arrangement pattern shown in FIG. 20, the stripe direction of the p-type semiconductor layer 32 is the same as that of the n-type source layer 25 (n-type drain layer 26), and the p-type semiconductor layer 32 is formed.
Is a guard ring arrangement. FIG. 21 corresponds to FIG.
It is AA 'sectional drawing of 0. For this placement pattern,
The potential concentration in the lower portion 33 of the gate electrode 30 and the lower portion 34 of the drain electrode 28 shown in FIG. 20 is sufficiently relaxed as compared with the conventional case, and the breakdown voltage is improved.
【0042】図22、図23は、図20の配置パターン
をIGBTに適用した場合の素子断面図を示し、図22
はn型半導体層23が厚いIGBT、図23は半導体層
23が薄いIGBTの例を示している。なお、図中、3
5は高濃度n型半導体層を示し、36はp型エミッタ層
を示している。22 and 23 are sectional views of elements when the arrangement pattern of FIG. 20 is applied to an IGBT.
Shows an example of an IGBT in which the n-type semiconductor layer 23 is thick, and FIG. 23 shows an example of an IGBT in which the semiconductor layer 23 is thin. In the figure, 3
Reference numeral 5 indicates a high-concentration n-type semiconductor layer, and 36 indicates a p-type emitter layer.
【0043】[0043]
【発明の効果】以上詳述したように本発明によれば、オ
ン電圧が低く、耐圧が高い高耐圧半導体素子が得られ
る。As described in detail above, according to the present invention, a high breakdown voltage semiconductor element having a low on-voltage and a high breakdown voltage can be obtained.
【図1】本発明の第1の実施例に係る横型MOSFET
のオン状態の様子を示す素子断面図。FIG. 1 is a lateral MOSFET according to a first embodiment of the present invention.
6 is a cross-sectional view of an element showing a state of ON state of FIG.
【図2】図1の横型MOSFETのオフ状態の様子を示
す素子断面図。2 is an element cross-sectional view showing a state of the lateral MOSFET of FIG. 1 in an off state.
【図3】本発明の第2の実施例に係る横型MOSFET
のオン状態の様子を示す素子断面図。FIG. 3 is a lateral MOSFET according to a second embodiment of the present invention.
6 is a cross-sectional view of an element showing a state of ON state of FIG.
【図4】本発明の第3の実施例に係るMOSFETの構
造を示す素子断面図。FIG. 4 is an element sectional view showing a structure of a MOSFET according to a third embodiment of the present invention.
【図5】本発明の第4の実施例に係る横型MOSFET
の構造を示す素子断面図。FIG. 5 is a lateral MOSFET according to a fourth embodiment of the present invention.
3 is a cross-sectional view of an element showing the structure of FIG.
【図6】本発明の第5の実施例に係る横型MOSFET
の構造を示す素子断面図。FIG. 6 is a lateral MOSFET according to a fifth embodiment of the present invention.
3 is a cross-sectional view of an element showing the structure of FIG.
【図7】本発明の第6の実施例に係る横型MOSFET
の構造を示す素子断面図。FIG. 7 is a lateral MOSFET according to a sixth embodiment of the present invention.
3 is a cross-sectional view of an element showing the structure of FIG.
【図8】本発明の第7の実施例に係る横型MOSFET
の構造を示す素子断面図。FIG. 8 is a lateral MOSFET according to a seventh embodiment of the present invention.
3 is a cross-sectional view of an element showing the structure of FIG.
【図9】本発明の第8の実施例に係る横型MOSFET
の構造を示す素子断面図。FIG. 9 is a lateral MOSFET according to an eighth embodiment of the present invention.
3 is a cross-sectional view of an element showing the structure of FIG.
【図10】本発明の第9の実施例に係る横型MOSFE
Tの平面図。FIG. 10 is a lateral MOSFE according to a ninth embodiment of the present invention.
The top view of T.
【図11】図10の横型MOSFETのA−A´断面
図。11 is a cross-sectional view taken along the line AA ′ of the lateral MOSFET of FIG.
【図12】図10の横型MOSFETのB−B´断面
図。12 is a cross-sectional view taken along the line BB ′ of the lateral MOSFET of FIG.
【図13】本発明の第10の実施例に係る横型MOSF
ETの素子断面図。FIG. 13 is a lateral MOSF according to a tenth embodiment of the present invention.
The element sectional view of ET.
【図14】本発明の第10の実施例に係る横型MOSF
ETの素子断面図。FIG. 14 is a lateral MOSF according to a tenth embodiment of the present invention.
The element sectional view of ET.
【図15】n型半導体層、p型半導体層の配置パターン
を示す図。FIG. 15 is a diagram showing an arrangement pattern of an n-type semiconductor layer and a p-type semiconductor layer.
【図16】n型半導体層、p型半導体層の他の配置パタ
ーンを示す図。FIG. 16 is a diagram showing another arrangement pattern of an n-type semiconductor layer and a p-type semiconductor layer.
【図17】n型半導体層、p型半導体層の他の配置パタ
ーンを示す図。FIG. 17 is a diagram showing another arrangement pattern of an n-type semiconductor layer and a p-type semiconductor layer.
【図18】n型半導体層、p型半導体層の他の配置パタ
ーンを示す図。FIG. 18 is a diagram showing another arrangement pattern of an n-type semiconductor layer and a p-type semiconductor layer.
【図19】n型半導体層、p型半導体層の他の配置パタ
ーンを示す図。FIG. 19 is a diagram showing another arrangement pattern of an n-type semiconductor layer and a p-type semiconductor layer.
【図20】n型半導体層、p型半導体層の他の配置パタ
ーンを示す図。FIG. 20 is a diagram showing another arrangement pattern of an n-type semiconductor layer and a p-type semiconductor layer.
【図21】図20のA−A´断面図。21 is a cross-sectional view taken along the line AA ′ of FIG.
【図22】図20の配置パターンをIGBTに適用した
例を示す図。22 is a diagram showing an example in which the arrangement pattern of FIG. 20 is applied to an IGBT.
【図23】図20の配置パターンをIGBTに適用した
例を示す図。23 is a diagram showing an example in which the arrangement pattern of FIG. 20 is applied to an IGBT.
【図24】従来の横型MOSFETの素子断面図。FIG. 24 is a device cross-sectional view of a conventional lateral MOSFET.
【図25】従来の横型MOSFETの問題点を説明する
ための特性図。FIG. 25 is a characteristic diagram for explaining problems of the conventional lateral MOSFET.
【図26】従来の他の横型MOSFETの素子断面図。FIG. 26 is a cross-sectional view of another conventional lateral MOSFET device.
【図27】従来の他の横型MOSFETの素子断面図。FIG. 27 is an element cross-sectional view of another conventional lateral MOSFET.
【図28】図1の横型MOSFETの特徴を適用した横
型IGBTの素子断面図。28 is an element cross-sectional view of a lateral IGBT to which the characteristics of the lateral MOSFET of FIG. 1 are applied.
【図29】図3の横型MOSFETの特徴を適用した横
型IGBTの素子断面図。29 is an element cross-sectional view of a lateral IGBT to which the characteristics of the lateral MOSFET of FIG. 3 are applied.
【図30】図5の横型MOSFETの特徴を適用した横
型IGBTの素子断面図。30 is a cross-sectional view of a lateral IGBT device to which the features of the lateral MOSFET of FIG. 5 are applied.
【図31】図6の横型MOSFETの特徴を適用した横
型IGBTの素子断面図。31 is an element cross-sectional view of a lateral IGBT to which the characteristics of the lateral MOSFET of FIG. 6 are applied.
【図32】図7の横型MOSFETの特徴を適用した横
型IGBTの素子断面図。32 is an element cross-sectional view of a lateral IGBT in which the characteristics of the lateral MOSFET of FIG. 7 are applied.
【図33】図8の横型MOSFETの特徴を適用した横
型IGBTの素子断面図。33 is an element cross-sectional view of a lateral IGBT to which the characteristics of the lateral MOSFET of FIG. 8 are applied.
【図34】図9の横型MOSFETの特徴を適用した横
型IGBTの素子断面図。34 is an element cross-sectional view of a lateral IGBT in which the characteristics of the lateral MOSFET in FIG. 9 are applied.
1…p型シリコン基板(第1導電型半導体基板)、1a
…シリコン基板、2、2a…n型高抵抗半導体層(第2
導電型高抵抗半導体層)、3…p型ウェル層(第1導電
型半導体層)、4…n型ソース層(第2導電型ソース
層)、5…n型ドレイン層(第2導電型ドレイン層)、
6…ソース電極、7…ドレイン電極、8…ゲート絶縁
膜、9…i型ポリシリコン層(ゲート半導体層)、9a
…p型ポリシリコン層(ゲート半導体層)、9b…n型
ポリシリコン層(ゲート半導体層)、10…シリコン酸
化膜、11…n型半導体層(ゲート半導体層制御手
段)、12…p型半導体層(ゲート半導体層制御手
段)、13…ゲート電極、14…電極、15…ポリシリ
コン高抵抗膜、16…p型半導体層。21…シリコン基
板、22…シリコン酸化膜、23…n型半導体層、24
…p型ウェル層、25…n型ソース層、26…n型ドレ
イン層、27…ソース電極、28…ドレイン電極、29
…ゲート絶縁膜、30…ゲート電極、31…n型半導体
層、32…p型半導体層、33…ゲート電極の下部、3
4…ドレイン電極の下部、35…高濃度n型半導体層、
36…、37…、38…、39…、40…、41…コン
タクト部、42…チャネル形成部分。1 ... P-type silicon substrate (first conductivity type semiconductor substrate) 1a
... Silicon substrate, 2, 2a ... n-type high resistance semiconductor layer (second
Conductive type high resistance semiconductor layer), 3 ... p type well layer (first conductive type semiconductor layer), 4 ... n type source layer (second conductive type source layer), 5 ... n type drain layer (second conductive type drain) layer),
6 ... Source electrode, 7 ... Drain electrode, 8 ... Gate insulating film, 9 ... i-type polysilicon layer (gate semiconductor layer), 9a
... p-type polysilicon layer (gate semiconductor layer), 9b ... n-type polysilicon layer (gate semiconductor layer), 10 ... silicon oxide film, 11 ... n-type semiconductor layer (gate semiconductor layer control means), 12 ... p-type semiconductor Layer (gate semiconductor layer control means), 13 ... Gate electrode, 14 ... Electrode, 15 ... Polysilicon high resistance film, 16 ... P-type semiconductor layer. 21 ... Silicon substrate, 22 ... Silicon oxide film, 23 ... N-type semiconductor layer, 24
... p-type well layer, 25 ... n-type source layer, 26 ... n-type drain layer, 27 ... source electrode, 28 ... drain electrode, 29
... gate insulating film, 30 ... gate electrode, 31 ... n-type semiconductor layer, 32 ... p-type semiconductor layer, 33 ... lower part of gate electrode, 3
4 ... Lower part of drain electrode, 35 ... High concentration n-type semiconductor layer,
36 ..., 37 ..., 38 ..., 39 ..., 40 ..., 41 ... Contact portion, 42 ... Channel forming portion.
Claims (1)
導電型高抵抗半導体層と、 この第2導電型高抵抗半導体層の表面に選択的に形成さ
れた第1導電型半導体層と、 この第1導電型半導体層の表面に選択的に形成された第
2導電型ソース層と、 前記第2導電型高抵抗半導体層の表面に選択的に形成さ
れた第2導電型ドレイン層と、 前記第1導電型半導体層及び前記第2導電型ソース層に
接するソース電極と、 前記第2導電型ドレイン層に接するドレイン電極と、 前記第2導電型ソース層と前記第2導電型ドレイン層と
で挟まれた前記第1導電型半導体層と前記第2導電型高
抵抗半導体層との上に、ゲート絶縁膜を介して設けら
れ、前記ソース電極と接しないゲート半導体層と、 前記第2導電型ソース層と前記第2導電型高抵抗半導体
層とで挟まれた前記第1導電型半導体層上の前記ゲート
半導体層に接するゲート電極と、 前記ドレイン電極と前記ゲート電極との電位差に基づい
て、オン時に前記ゲート半導体層と前記ドレイン電極と
を電気的に分離するゲート半導体層制御手段とを具備し
てなることを特徴とする高耐圧半導体素子。1. A second device provided on a first conductivity type semiconductor substrate.
A conductive type high resistance semiconductor layer, a first conductive type semiconductor layer selectively formed on the surface of the second conductive type high resistance semiconductor layer, and a selectively formed on the surface of the first conductive type semiconductor layer. A second conductive type source layer, a second conductive type drain layer selectively formed on the surface of the second conductive type high resistance semiconductor layer, a first conductive type semiconductor layer and the second conductive type source layer. A source electrode in contact with the second conductive type drain layer; a drain electrode in contact with the second conductive type drain layer; the first conductive type semiconductor layer and the second conductive layer sandwiched between the second conductive type source layer and the second conductive type drain layer; And a high-conductivity-type high-resistance semiconductor layer and a gate semiconductor layer that is provided via a gate insulating film and is not in contact with the source electrode, and the second-conductivity-type source layer and the second-conductivity-type high-resistance semiconductor layer. The gate half on the first conductive type semiconductor layer It comprises a gate electrode in contact with the conductor layer, and a gate semiconductor layer control means for electrically separating the gate semiconductor layer and the drain electrode when turned on, based on a potential difference between the drain electrode and the gate electrode. A high breakdown voltage semiconductor device characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18885593A JP3400025B2 (en) | 1993-06-30 | 1993-06-30 | High voltage semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18885593A JP3400025B2 (en) | 1993-06-30 | 1993-06-30 | High voltage semiconductor device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002357264A Division JP4142943B2 (en) | 2002-12-09 | 2002-12-09 | High voltage semiconductor element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07130996A true JPH07130996A (en) | 1995-05-19 |
JP3400025B2 JP3400025B2 (en) | 2003-04-28 |
Family
ID=16231036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18885593A Expired - Fee Related JP3400025B2 (en) | 1993-06-30 | 1993-06-30 | High voltage semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3400025B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5826221A (en) * | 1995-11-30 | 1998-10-20 | Oki Electric Industry Co., Ltd. | Vocal tract prediction coefficient coding and decoding circuitry capable of adaptively selecting quantized values and interpolation values |
JP2001156288A (en) * | 1999-11-25 | 2001-06-08 | Toyota Motor Corp | Semiconductor device |
US6878998B1 (en) | 2000-04-13 | 2005-04-12 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device with region that changes depth across the direction of current flow |
JP2005531153A (en) * | 2002-06-26 | 2005-10-13 | ケンブリッジ セミコンダクター リミテッド | Lateral semiconductor devices |
JP2006279064A (en) * | 1996-01-22 | 2006-10-12 | Fuji Electric Device Technology Co Ltd | Method of manufacturing semiconductor device |
JP2006303111A (en) * | 2005-04-19 | 2006-11-02 | Sanken Electric Co Ltd | Semiconductor device |
JP2012175029A (en) * | 2011-02-24 | 2012-09-10 | Sanken Electric Co Ltd | Semiconductor device |
JP2018098221A (en) * | 2016-12-07 | 2018-06-21 | トヨタ自動車株式会社 | Semiconductor device |
CN110010469A (en) * | 2012-03-16 | 2019-07-12 | ams有限公司 | The method for manufacturing high-voltage transistor device |
JP2019145716A (en) * | 2018-02-22 | 2019-08-29 | 株式会社豊田中央研究所 | Semiconductor device |
CN111725071A (en) * | 2020-07-20 | 2020-09-29 | 西安电子科技大学 | Silicon-based junction accumulation layer and buffer layer lateral double-diffusion field effect transistor and manufacturing method thereof |
CN111725320A (en) * | 2020-07-20 | 2020-09-29 | 西安电子科技大学 | Junction accumulation layer silicon carbide transverse field effect transistor and manufacturing method thereof |
CN113707708A (en) * | 2021-07-26 | 2021-11-26 | 西安电子科技大学 | Junction accumulation layer enhanced AlGaN/GaN high electron mobility transistor and manufacturing method thereof |
CN113707709A (en) * | 2021-07-26 | 2021-11-26 | 西安电子科技大学 | AlGaN/GaN high electron mobility transistor with accumulation layer epitaxial grid MIS structure and manufacturing method thereof |
WO2023125145A1 (en) * | 2021-12-31 | 2023-07-06 | 无锡华润上华科技有限公司 | Dmos device having junction field plate and manufacturing method therefor |
CN117558762A (en) * | 2024-01-12 | 2024-02-13 | 深圳天狼芯半导体有限公司 | Groove type MOSFET and preparation method |
-
1993
- 1993-06-30 JP JP18885593A patent/JP3400025B2/en not_active Expired - Fee Related
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5826221A (en) * | 1995-11-30 | 1998-10-20 | Oki Electric Industry Co., Ltd. | Vocal tract prediction coefficient coding and decoding circuitry capable of adaptively selecting quantized values and interpolation values |
JP2006279064A (en) * | 1996-01-22 | 2006-10-12 | Fuji Electric Device Technology Co Ltd | Method of manufacturing semiconductor device |
JP2001156288A (en) * | 1999-11-25 | 2001-06-08 | Toyota Motor Corp | Semiconductor device |
US6878998B1 (en) | 2000-04-13 | 2005-04-12 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device with region that changes depth across the direction of current flow |
JP2005531153A (en) * | 2002-06-26 | 2005-10-13 | ケンブリッジ セミコンダクター リミテッド | Lateral semiconductor devices |
JP2006303111A (en) * | 2005-04-19 | 2006-11-02 | Sanken Electric Co Ltd | Semiconductor device |
JP2012175029A (en) * | 2011-02-24 | 2012-09-10 | Sanken Electric Co Ltd | Semiconductor device |
CN110010469A (en) * | 2012-03-16 | 2019-07-12 | ams有限公司 | The method for manufacturing high-voltage transistor device |
JP2018098221A (en) * | 2016-12-07 | 2018-06-21 | トヨタ自動車株式会社 | Semiconductor device |
JP2019145716A (en) * | 2018-02-22 | 2019-08-29 | 株式会社豊田中央研究所 | Semiconductor device |
CN111725071A (en) * | 2020-07-20 | 2020-09-29 | 西安电子科技大学 | Silicon-based junction accumulation layer and buffer layer lateral double-diffusion field effect transistor and manufacturing method thereof |
CN111725320A (en) * | 2020-07-20 | 2020-09-29 | 西安电子科技大学 | Junction accumulation layer silicon carbide transverse field effect transistor and manufacturing method thereof |
CN111725071B (en) * | 2020-07-20 | 2021-06-18 | 西安电子科技大学 | Silicon-based junction accumulation layer and buffer layer lateral double-diffusion field effect transistor and manufacturing method thereof |
CN113707708A (en) * | 2021-07-26 | 2021-11-26 | 西安电子科技大学 | Junction accumulation layer enhanced AlGaN/GaN high electron mobility transistor and manufacturing method thereof |
CN113707709A (en) * | 2021-07-26 | 2021-11-26 | 西安电子科技大学 | AlGaN/GaN high electron mobility transistor with accumulation layer epitaxial grid MIS structure and manufacturing method thereof |
CN113707708B (en) * | 2021-07-26 | 2023-03-14 | 西安电子科技大学 | Junction accumulation layer enhanced AlGaN/GaN high electron mobility transistor and manufacturing method thereof |
CN113707709B (en) * | 2021-07-26 | 2023-03-14 | 西安电子科技大学 | AlGaN/GaN high electron mobility transistor with accumulation layer epitaxial grid MIS structure and manufacturing method thereof |
WO2023125145A1 (en) * | 2021-12-31 | 2023-07-06 | 无锡华润上华科技有限公司 | Dmos device having junction field plate and manufacturing method therefor |
CN117558762A (en) * | 2024-01-12 | 2024-02-13 | 深圳天狼芯半导体有限公司 | Groove type MOSFET and preparation method |
CN117558762B (en) * | 2024-01-12 | 2024-05-28 | 深圳天狼芯半导体有限公司 | Groove type MOSFET and preparation method |
Also Published As
Publication number | Publication date |
---|---|
JP3400025B2 (en) | 2003-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6667515B2 (en) | High breakdown voltage semiconductor device | |
US6118150A (en) | Insulated gate semiconductor device and method of manufacturing the same | |
US5086332A (en) | Planar semiconductor device having high breakdown voltage | |
JP3400025B2 (en) | High voltage semiconductor device | |
US11728421B2 (en) | Split trench gate super junction power device | |
US20030137016A1 (en) | Lateral power MOSFET for high switching speeds | |
EP2546882A1 (en) | Semiconductor device | |
US5043781A (en) | Semiconductor device | |
US5612564A (en) | Semiconductor device with limiter diode | |
KR100194661B1 (en) | Power transistor | |
US6198130B1 (en) | Semiconductor device and method for manufacturing the same | |
US6437419B1 (en) | Emitter ballast resistor with enhanced body effect to improve the short circuit withstand capability of power devices | |
JP2590863B2 (en) | Conduction modulation type MOSFET | |
JPH0851197A (en) | Mos control thyristor having electric current saturation property | |
WO1999056323A1 (en) | Semiconductor device and process for manufacturing the same | |
JP3522887B2 (en) | High voltage semiconductor device | |
JP4177229B2 (en) | Semiconductor device and manufacturing method thereof | |
US20220005804A1 (en) | Semiconductor device and method of manufacturing the same | |
JPH0888357A (en) | Lateral igbt | |
JP4142943B2 (en) | High voltage semiconductor element | |
KR0175402B1 (en) | Power semiconductor device and its manufacturing method | |
JP3249175B2 (en) | Thyristor with insulated gate and high breakdown voltage semiconductor device | |
JPH10229194A (en) | Lateral insulated-gate bipolar transistor | |
JPH10229192A (en) | Semiconductor switch element | |
WO2005067057A1 (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080221 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090221 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |