JPH07130622A - Shaping method for electron beam section at position of aperture for angle stop of electron beam exposure system - Google Patents

Shaping method for electron beam section at position of aperture for angle stop of electron beam exposure system

Info

Publication number
JPH07130622A
JPH07130622A JP27341293A JP27341293A JPH07130622A JP H07130622 A JPH07130622 A JP H07130622A JP 27341293 A JP27341293 A JP 27341293A JP 27341293 A JP27341293 A JP 27341293A JP H07130622 A JPH07130622 A JP H07130622A
Authority
JP
Japan
Prior art keywords
aperture
charged particle
particle beam
electron beam
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27341293A
Other languages
Japanese (ja)
Inventor
Katsuhiko Kobayashi
克彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27341293A priority Critical patent/JPH07130622A/en
Publication of JPH07130622A publication Critical patent/JPH07130622A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To conform, in a short time, the section of an electron beam to a circle whose diameter is equal to a set value, by obtaining a first driving signal for making the section circular and making the section diameter nearly equal to an aperture diameter, on the basis of the sectional form of the charged particle beam, and supplying the signal to a corrector. CONSTITUTION:An electron beam EB which has passed an aperture 34a is cast and converged on a semiconductor wafer 10, and detected as a current I by a current detector 40. An astigmatism correction circuit outputs a signal proportional to a driving signal to be supplied to an astigmatism corrector 36, in order to make the transversal section of the electron beam EB at the position of an angle stop plate 34 circular. A signal proportional to a driving signal to 'be supplied to an image deflection corrector 38 is outputted, in order to make the transversal section diameter of the electron beam EB at the position of the angle stop plate 34 nearly equal to the diameter of the aperture 34a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ステンシルマスクを用
いた電子ビーム露光装置の角度絞り用アパーチャの位置
での電子ビーム断面整形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for shaping an electron beam cross section at the position of an aperture for an angle diaphragm of an electron beam exposure apparatus using a stencil mask.

【0002】[0002]

【従来の技術】LSIの回路素子の微細化に伴い、ステ
ンシルマスクを用いた電子ビーム露光装置の開発が進め
られている。この装置では、光軸上を通る電子ビームを
2段のマスク入射側偏向器で振ってステンシルマスク上
の選択した通過孔パターンに通し、さらに2段のマスク
出射側偏向器で電子ビームを振り戻して光軸上に通ら
せ、次いで角度絞り用アパーチャを通過させた後、半導
体ウエーハ上に収束させて露光する。このような露光装
置によれば、電子ビーム断面が可変矩形の露光装置に比
し、極めて少ないショット数の電子ビームで微細パター
ンを、ウエーハ上に描画することができる。
2. Description of the Related Art With the miniaturization of LSI circuit elements, an electron beam exposure apparatus using a stencil mask is being developed. In this device, an electron beam passing through the optical axis is swung by a two-stage mask entrance side deflector to pass through a selected passage hole pattern on a stencil mask, and further two stages of a mask exit side deflector are used to swing back the electron beam. To pass on the optical axis, and then through the aperture for angle diaphragm, and then converge on a semiconductor wafer to expose. According to such an exposure apparatus, it is possible to draw a fine pattern on a wafer with an electron beam having an extremely small number of shots as compared with an exposure apparatus having a variable rectangular electron beam cross section.

【0003】[0003]

【発明が解決しようとする課題】しかし、アパーチャの
位置での電子ビーム断面であるクロスオーバー像が、非
点収差及び像面湾曲により、一般に図7(A)に示す如
く楕円形となり、アパーチャを通過する電子ビームの量
が制限され、このため、露光時間が長くなる。本発明の
目的は、このような問題点に鑑み、角度絞り用アパーチ
ャの位置での電子ビームの断面を短時間で円形かつ設定
直径にすることが可能な電子ビーム断面整形方法を提供
することにある。
However, the crossover image, which is a cross section of the electron beam at the position of the aperture, generally becomes elliptical as shown in FIG. 7A due to astigmatism and field curvature, and the aperture is reduced. The amount of electron beam passing through is limited, which increases the exposure time. In view of such a problem, an object of the present invention is to provide an electron beam cross-section shaping method capable of making a cross section of an electron beam at a position of an aperture for an angle diaphragm into a circular shape and a set diameter in a short time. is there.

【0004】[0004]

【課題を解決するための手段及びその作用】図1は、本
発明の原理構成を示す。本発明は、荷電粒子ビーム露光
装置の角度絞り用アパーチャ1aの位置での荷電粒子ビ
ーム断面整形方法であって、この荷電粒子ビーム露光装
置は、ステンシルマスク2上の選択した通過孔パターン
に荷電粒子ビームEBを通して荷電粒子ビームEBの横
断面を成形し、絞り板1に形成されたアパーチャ1aに
荷電粒子ビームEBを通して試料3上、例えば半導体ウ
エーハ又はマスク上に収束照射させるものであり、か
つ、アパーチャ1aの上方に、荷電粒子ビームEBを偏
向させる偏向器4とアパーチャ1aの位置での荷電粒子
ビーム断面を第1駆動信号S1に応答して電界又は磁界
により整形するための補正器5とが配置されている。
[Means for Solving the Problem and Its Action] FIG. 1 shows the principle of the present invention. The present invention relates to a charged particle beam cross-section shaping method at the position of the aperture 1a for an angle diaphragm of a charged particle beam exposure apparatus, in which the charged particle beam exposure apparatus forms charged particles in a selected passage hole pattern on the stencil mask 2. The cross section of the charged particle beam EB is shaped through the beam EB, and the aperture 1a formed in the diaphragm plate 1 is converged and irradiated onto the sample 3, for example, a semiconductor wafer or a mask through the charged particle beam EB, and the aperture is also formed. A deflector 4 for deflecting the charged particle beam EB and a corrector 5 for shaping the cross section of the charged particle beam at the position of the aperture 1a by an electric field or a magnetic field in response to the first drive signal S1 are arranged above 1a. Has been done.

【0005】本発明では、(A2)偏向器4に供給する
第2駆動信号S2を変化させて荷電粒子ビームEBを絞
り板1上で走査させながら、絞り板1で遮られ又はアパ
ーチャ1aを通過する荷電粒子ビームEBの電流Iを検
出することにより、荷電粒子ビームEBの断面形状を測
定し、(A5)該断面形状に基づいて、例えば予め与え
られた関係式から、該断面を円形にしかつ断面直径をア
パーチャ1aの直径に略一致させるための第1駆動信号
S1を求め、(A6)求めた第1駆動信号S1を補正器
5に供給する。
In the present invention, (A2) while changing the second drive signal S2 supplied to the deflector 4 to scan the charged particle beam EB on the diaphragm plate 1, it is blocked by the diaphragm plate 1 or passes through the aperture 1a. The cross-sectional shape of the charged particle beam EB is measured by detecting the electric current I of the charged particle beam EB, and (A5) the cross section is made circular based on the cross-sectional shape, for example, from a previously given relational expression. A first drive signal S1 for making the cross-sectional diameter substantially match the diameter of the aperture 1a is obtained, and (A6) the obtained first drive signal S1 is supplied to the corrector 5.

【0006】本発明では、アパーチャの位置での荷電粒
子ビームEBの断面形状を測定し、これに基づいて、該
断面を円形にしかつ断面直径をアパーチャ1aの直径に
略一致させるための第1駆動信号S1を求めているの
で、荷電粒子ビームEBの断面形状を求めずに電流Iの
みに基づいて試行錯誤を多数回繰り返す方法よりも補正
の際の繰り返し処理回数が比較的少なくなり、これによ
り、比較的短時間でアパーチャの位置での荷電粒子ビー
ムの断面を円形かつ設定直径にすることができる。
In the present invention, the cross-sectional shape of the charged particle beam EB at the position of the aperture is measured, and based on this, the first driving for making the cross-section circular and making the cross-sectional diameter substantially coincide with the diameter of the aperture 1a. Since the signal S1 is obtained, the number of times of the iterative processing in the correction is relatively smaller than that in the method of repeating the trial and error many times based on only the current I without obtaining the cross-sectional shape of the charged particle beam EB. The cross section of the charged particle beam at the position of the aperture can be made circular and have a set diameter in a relatively short time.

【0007】本発明の第1態様では、(A3)荷電粒子
ビームEBの断面形状から、例えば図8(B)又は
(C)に示すような、該形状の3つの特徴量L1、L
2、L3を抽出し、(A4)第1駆動信号S1を変化さ
せて第1駆動信号S1の変化量ΔS1と特徴量L1、L
2、L3の変化量との関係を求め、(A5)該断面を円
形にしかつ断面直径をアパーチャ1aの直径に略一致さ
せるための第1駆動信号S1を該関係から求める。
In the first aspect of the present invention, from (A3) the cross-sectional shape of the charged particle beam EB, three characteristic quantities L1 and L of the shape as shown in, for example, FIG.
2 and L3 are extracted, and (A4) the first drive signal S1 is changed, and the change amount ΔS1 of the first drive signal S1 and the feature amounts L1 and L
2, the relationship with the amount of change of L3 is obtained, and (A5) the first drive signal S1 for making the cross section circular and making the cross section diameter substantially coincide with the diameter of the aperture 1a is obtained from the relationship.

【0008】この構成の場合、第1駆動信号S1を変化
させて第1駆動信号S1の変化量ΔS1と特徴量L1、
L2、L3の変化量との関係を求めているので、周囲温
度や各種偏向器及び磁界レンズへの駆動信号をパラメー
タとする複雑な実験式を予め与える必要が無く、簡単か
つ正確に第1駆動信号S1の最適値を求めることができ
る。
In the case of this configuration, the first drive signal S1 is changed to change ΔS1 of the first drive signal S1 and the characteristic amount L1,
Since the relationship with the amount of change in L2 and L3 is obtained, it is not necessary to previously give a complicated empirical formula in which the driving signals to the ambient temperature and various deflectors and magnetic field lenses are used as parameters, and the first driving can be performed easily and accurately. The optimum value of the signal S1 can be obtained.

【0009】本発明の第2態様では、偏向器4は、ステ
ンシルマスク2の上方に配置され、荷電粒子ビームEB
をステンシルマスク2の面に略垂直にして選択した通過
孔パターンに通させるためのものであり、(A1)アパ
ーチャ1aを通る荷電粒子ビームEBの量が極大値にな
るように偏向器4に供給する第2駆動信号S2を調整
し、(A2〜A6)次いで上記本発明の処理を行い、
(A7)次いでアパーチャ1aを通る荷電粒子ビームE
Bの量が極大値になるように偏向器4に供給する第2駆
動信号S2を再度調整する。
In the second aspect of the present invention, the deflector 4 is disposed above the stencil mask 2 and the charged particle beam EB is used.
To pass through the selected passage pattern with the stencil mask 2 substantially perpendicular to the surface, and (A1) supply the deflector 4 so that the amount of the charged particle beam EB passing through the aperture 1a becomes a maximum value. The second drive signal S2 is adjusted (A2 to A6), and then the process of the present invention is performed.
(A7) Next, the charged particle beam E passing through the aperture 1a
The second drive signal S2 supplied to the deflector 4 is readjusted so that the amount of B becomes the maximum value.

【0010】この構成の場合、互いに関係した第1駆動
信号S1及び第2駆動信号S2の最適値を、効率よく容
易迅速に求めることができる。逆に言えば、もし、互い
に関係した第1駆動信号S1及び第2駆動信号S2の最
適値を同時的に求めようとすると、処理が極めて複雑に
なり、かつ、所要時間が長くなる。
In the case of this configuration, the optimum values of the first drive signal S1 and the second drive signal S2 which are related to each other can be obtained efficiently, easily and quickly. Conversely, if the optimum values of the first drive signal S1 and the second drive signal S2 that are related to each other are to be obtained simultaneously, the processing becomes extremely complicated and the required time becomes long.

【0011】[0011]

【実施例】以下、図面に基づいて本発明の一実施例を説
明する。図4は、電子ビーム露光装置の要部構成を示
す。試料としての半導体ウエーハ10は、走査用のX−
Yステージ12上に載置されている。X−Yステージ1
2の上方には、X−Yステージ12の上面に垂直な光軸
Cに沿って上方から磁界レンズ14、16、18、20
及び22が配置され、これら磁界レンズにより電子ビー
ムは二点鎖線で示す如く、平行束となり、収束及び発散
を繰り返して半導体ウエーハ10に収束照射される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 4 shows the main configuration of the electron beam exposure apparatus. The semiconductor wafer 10 as a sample is a scanning X-
It is mounted on the Y stage 12. XY stage 1
2 above the magnetic field lenses 14, 16, 18, 20 along the optical axis C perpendicular to the upper surface of the XY stage 12.
And 22 are arranged, the electron beam becomes a parallel bundle by these magnetic field lenses as shown by the chain double-dashed line, and the semiconductor wafer 10 is converged and irradiated by repeating convergence and divergence.

【0012】平行化された電子ビームが通る磁界レンズ
14と16との間には、ステンシルマスク24がX−Y
ステージ25に取り付けられて配置されている。ステン
シルマスク24上は、図9(B)に示す如くエリアE1
1〜E55に分割され、各エリアに不図示の通過孔パタ
ーンがマトリックス状に形成されている。磁界レンズ1
4とステンシルマスク24との間には、2段のマスク入
射側偏向器26及び28が配置され、ステンシルマスク
24と磁界レンズ16との間には、2段のマスク出射側
偏向器30及び32が配置されている。光軸上を通る電
子ビームEBは、偏向器26で振られ、偏向器28で振
り戻されてステンシルマスク24に対し略垂直に入射
し、選択された通過孔パターンを通り、偏向器30で光
軸C側へ振られ、偏向器32で振り戻されて略光軸C上
を通る。
A stencil mask 24 is provided between the magnetic field lenses 14 and 16 through which the collimated electron beam passes.
The stage 25 is attached and arranged. The area on the stencil mask 24 is the area E1 as shown in FIG.
1 to E55, and through-hole patterns (not shown) are formed in a matrix in each area. Magnetic field lens 1
4 and the stencil mask 24, two stages of mask incident side deflectors 26 and 28 are arranged, and between the stencil mask 24 and the magnetic field lens 16 two stages of mask emitting side deflectors 30 and 32. Are arranged. The electron beam EB passing on the optical axis is deflected by the deflector 26, is deflected by the deflector 28, is made incident on the stencil mask 24 substantially perpendicularly, passes through the selected passage hole pattern, and is deflected by the deflector 30. It is swung to the axis C side, is swung back by the deflector 32, and passes substantially on the optical axis C.

【0013】2段のマスク入射側偏向器26及び28で
選択できる通過孔パターンは、図9(B)に示す1つの
エリア内であり、他のエリアの通過孔パターンは、X−
Yステージ25でステンシルマスク24をエリア配列の
ピッチで駆動することにより選択可能となる。磁界レン
ズ18と磁界レンズ20との間には、アパーチャ34a
が形成された角度絞り板34が、アパーチャ34aの中
心を光軸Cに一致させて配置されている。角度絞り板3
4の位置での電子ビームEBの横断面であるクロスオー
バ像CE1は、図7(A)に示す如く、非点収差及び像
面湾曲により、一般に楕円形となる。非点収差及び像面
湾曲を補正してクロスオーバ像CE1を円形し、かつ、
その直径をアパーチャ34aの直径d0に略一致させる
ことにより、露光不足を解消するため、図4に示す如
く、ステンシルマスク24と磁界レンズ16との間に非
点収差補正器36及び像面湾曲補正器38が配置されて
いる。
The passage hole patterns selectable by the two-stage mask entrance side deflectors 26 and 28 are within one area shown in FIG. 9B, and the passage hole patterns in other areas are X-.
It can be selected by driving the stencil mask 24 on the Y stage 25 at the pitch of the area arrangement. An aperture 34a is provided between the magnetic field lens 18 and the magnetic field lens 20.
The angle diaphragm plate 34 in which is formed is arranged so that the center of the aperture 34a coincides with the optical axis C. Angle diaphragm plate 3
The crossover image CE1 which is the cross section of the electron beam EB at the position 4 is generally elliptical due to astigmatism and field curvature, as shown in FIG. 7 (A). Astigmatism and field curvature are corrected to make the crossover image CE1 circular, and
By making its diameter substantially equal to the diameter d0 of the aperture 34a, in order to eliminate the underexposure, astigmatism corrector 36 and field curvature correction are provided between the stencil mask 24 and the magnetic field lens 16 as shown in FIG. A container 38 is arranged.

【0014】図5は、非点収差補正器36及び像面湾曲
補正器38の原理構成を示す。非点収差補正器36は、
X軸と同心に巻回された一対のコイル361及び362
と、Y軸と同心に巻回された一対のコイル363及び3
64を有し、像面湾曲補正器38は、光軸Cと同心に巻
回されたコイルを有する。ここに、X軸及びY軸は、光
軸Cに垂直な面内の互いに直交する軸である。簡単化の
ために、コイル361とコイル362には、X=0、Y
=0でそれぞれが形成する磁界の向きが互いに逆になり
且つ磁界の大きさが互いに等しくなるように、互いに等
しい電流が供給され、同様に、コイル363とコイル3
64には、X=0、Y=0でそれぞれが形成する磁界の
向きが互いに逆になり且つ磁界の大きさが互いに等しく
なるように、互いに等しい電流が供給される。
FIG. 5 shows the principle configuration of the astigmatism corrector 36 and the field curvature corrector 38. The astigmatism corrector 36 is
A pair of coils 361 and 362 wound concentrically with the X axis
And a pair of coils 363 and 3 wound concentrically with the Y axis.
The field curvature corrector 38 has a coil 64 that is wound concentrically with the optical axis C. Here, the X axis and the Y axis are axes orthogonal to each other in the plane perpendicular to the optical axis C. For simplicity, the coil 361 and the coil 362 have X = 0, Y
= 0, the directions of the magnetic fields formed by them are opposite to each other and the magnitudes of the magnetic fields are equal to each other, so that equal currents are supplied to the coils 363 and 3 similarly.
The same currents are supplied to 64 so that the directions of the magnetic fields formed by X = 0 and Y = 0 are opposite to each other and the magnitudes of the magnetic fields are equal to each other.

【0015】図4において、アパーチャ34aを通過し
た電子ビームEBは、半導体ウエーハ10上に収束照射
され、半導体ウエーハ10とアースとの間に接続された
電流検出器40により電流Iとして検出される。検出電
流Iは、一方では微分器42を介して信号処理回路44
に供給され、他方では直接に信号処理回路44へ供給さ
れる。また、電子ビームEBの半導体ウエーハ10上で
の照射位置を検出するために、半導体ウエーハ10の上
方に2次電子検出器46が配置され、その出力は、信号
処理回路44に供給される。
In FIG. 4, the electron beam EB which has passed through the aperture 34a is converged and irradiated onto the semiconductor wafer 10 and detected as a current I by a current detector 40 connected between the semiconductor wafer 10 and ground. On the one hand, the detected current I is transmitted through the differentiator 42 to the signal processing circuit
To the signal processing circuit 44 on the other hand. Further, in order to detect the irradiation position of the electron beam EB on the semiconductor wafer 10, a secondary electron detector 46 is arranged above the semiconductor wafer 10, and its output is supplied to the signal processing circuit 44.

【0016】図4中、ブランキング用偏向器47は、電
子ビームEBを振って、角度絞り板34との関係で電子
ビームEBをパルス化するためのものであり、走査用主
偏向器48及び走査用副偏向器49はそれぞれ、電子ビ
ームEBを半導体ウエーハ10上の所定の大領域内及び
小領域内で走査させるためのものである。これら偏向器
47、48及び49は、後述する偏向器26、28、3
0、32、補正器36及び38に供給すべき駆動信号の
調整の際には使用されず、オフにされる。
In FIG. 4, a blanking deflector 47 is for oscillating the electron beam EB and for pulsing the electron beam EB in relation to the angle diaphragm plate 34. The scanning sub-deflectors 49 are for scanning the electron beam EB within a predetermined large area and small area on the semiconductor wafer 10, respectively. These deflectors 47, 48 and 49 are the deflectors 26, 28 and 3 to be described later.
0, 32, they are not used when adjusting the drive signals to be supplied to the correctors 36 and 38 and are turned off.

【0017】偏向器26、28、30、32、補正器3
6及び38に対する駆動信号生成回路を図6に示す。パ
ターン座標メモリ50のアドレス入力端には、ステンシ
ルマスク24上のi番目の通過孔パターンを選択するた
めのパターンコードCiが供給される。パターン座標メ
モリ50のアドレスCiには、このi番目の通過パター
ンの座標(Xi,Yi)が格納されている。パターンコ
ードCiに応答してパターン座標メモリ50から読みだ
された座標(Xi,Yi)は、マスクエリア補正回路5
2に供給されて信号(Xi1,Yi1)に変換される。
マスクエリア補正回路52は、電子ビーム露光装置のX
−Y座標系とステンシルマスク24のX−Y座標系が一
致している場合には、単位マトリックスとして機能し、
Xi1=Xi、Yi1=Yiとなる。
Deflectors 26, 28, 30, 32, corrector 3
The drive signal generation circuit for 6 and 38 is shown in FIG. A pattern code Ci for selecting the i-th through hole pattern on the stencil mask 24 is supplied to the address input end of the pattern coordinate memory 50. The coordinate (Xi, Yi) of the i-th passing pattern is stored in the address Ci of the pattern coordinate memory 50. The coordinates (Xi, Yi) read from the pattern coordinate memory 50 in response to the pattern code Ci are the mask area correction circuit 5
2 and is converted into signals (Xi1, Yi1).
The mask area correction circuit 52 is the X-axis of the electron beam exposure apparatus.
-When the Y coordinate system and the XY coordinate system of the stencil mask 24 match, it functions as a unit matrix,
Xi1 = Xi and Yi1 = Yi.

【0018】信号(Xi1,Yi1)は、変換回路5
4、非点収差補正回路56及び像面湾曲補正回路58の
一対の入力端に供給される。変換回路54は、信号(X
i1,Yi1)に応答して、電子ビームEBをステンシ
ルマスク24のi番目の通過孔パターンに略垂直に通過
させ且つ光軸C上に振り戻すために偏向器28、30及
び32に供給すべき駆動信号に比例した信号(Xi2,
Yi2)、(Xi3,Yi3)及び(Xi4,Yi4)
を出力する。非点収差補正回路56は、信号(Xi1,
Yi1)に応答して、角度絞り板34の位置での電子ビ
ームEBの横断面を円形にするために非点収差補正器3
6に供給すべき駆動信号に比例した信号(SXi,SY
i)を出力する。像面湾曲補正回路58は、信号(Xi
1,Yi1)に応答して、角度絞り板34の位置での電
子ビームEBの横断面直径をアパーチャ34aの直径d
0に略一致させるために像面湾曲補正器38に供給すべ
き駆動信号に比例した信号Fiを出力する。
The signals (Xi1, Yi1) are converted by the conversion circuit 5
4, the astigmatism correction circuit 56 and the field curvature correction circuit 58 are supplied to a pair of input ends. The conversion circuit 54 uses the signal (X
In response to i1, Yi1), the electron beam EB should be supplied to the deflectors 28, 30 and 32 in order to pass the electron beam EB substantially perpendicularly to the i-th through hole pattern of the stencil mask 24 and swing back on the optical axis C. A signal proportional to the drive signal (Xi2,
Yi2), (Xi3, Yi3) and (Xi4, Yi4)
Is output. The astigmatism correction circuit 56 uses the signal (Xi1,
In response to Yi1), the astigmatism corrector 3 is used to make the cross section of the electron beam EB at the position of the angle diaphragm 34 circular.
A signal (SXi, SY) proportional to the drive signal to be supplied to
i) is output. The field curvature correction circuit 58 uses the signal (Xi
1, Yi1), the cross-sectional diameter of the electron beam EB at the position of the angle diaphragm plate 34 is determined by the diameter d of the aperture 34a.
A signal Fi proportional to the drive signal to be supplied to the field curvature corrector 38 in order to substantially match 0 is output.

【0019】信号Xi1、Yi1はそれぞれパワーアン
プ61X及び61Yで増幅され、駆動電圧VXi1及び
VYi1となって偏向器26のX方向部分及びY方向部
分に供給される。信号Xi2、Yi2はそれぞれパワー
アンプ62X及び62Yで増幅され、駆動電圧VXi2
及びVYi2となって偏向器28のX方向部分及びY方
向部分に供給される。信号Xi3、Yi3はそれぞれパ
ワーアンプ63X及び63Yで増幅され、駆動電圧VX
i3及びVYi3となって偏向器30のX方向部分及び
Y方向部分に供給される。信号Xi4、Yi4はそれぞ
れパワーアンプ64X及び64Yで増幅され、駆動電圧
VXi4及びVYi4となって偏向器32のX方向部分
及びY方向部分に供給される。信号SXi、SYiはそ
れぞれパワーアンプ65X及び65Yで増幅され且つ電
流に変換され、駆動電流ISXi及びISYiとなって
非点収差補正器36のX方向部分及びY方向部分に供給
される。信号Fiはパワーアンプ66で増幅され且つ電
流に変換され、駆動電流IFiとなって像面湾曲補正器
38に供給される。
The signals Xi1 and Yi1 are amplified by power amplifiers 61X and 61Y, respectively, and become driving voltages VXi1 and VYi1 which are supplied to the X-direction portion and the Y-direction portion of the deflector 26. The signals Xi2 and Yi2 are amplified by the power amplifiers 62X and 62Y, respectively, and the drive voltage VXi2
And VYi2 are supplied to the X-direction portion and the Y-direction portion of the deflector 28. The signals Xi3 and Yi3 are amplified by the power amplifiers 63X and 63Y, respectively, and the drive voltage VX
i3 and VYi3 are supplied to the X-direction portion and the Y-direction portion of the deflector 30. The signals Xi4 and Yi4 are amplified by power amplifiers 64X and 64Y, respectively, and become driving voltages VXi4 and VYi4, which are supplied to the X-direction portion and the Y-direction portion of the deflector 32. The signals SXi and SYi are amplified by the power amplifiers 65X and 65Y, respectively, and converted into electric currents, and become driving currents ISXi and ISYi which are supplied to the X-direction portion and the Y-direction portion of the astigmatism corrector 36. The signal Fi is amplified by the power amplifier 66 and converted into a current, which is supplied to the field curvature corrector 38 as a drive current IFi.

【0020】変換回路54は、出力(Xi2,Yi2)
を入力(Xi1,Yi1)の3次多項式で近似する。す
なわち、 Xi2=C2(1,1)+C2(1,2)Xi1+C2(1,3)Yi1 +C2(1,4)Xi1Xi1+C2(1,5)Xi1Yi1 +C2(1,6)Yi1Yi1+C2(1,7)Xi1Xi1Xi1 +C2(1,8)Xi1Xi1Yi1 +C2(1,9)Xi1Yi1Yi1 +C2(1,10)Yi1Yi1Yi1 ・・・(1) Yi2=C2(2,1)+C2(2,2)Xi1+C2(2,3)Yi1 +C2(2,4)Xi1Xi1+C2(2,5)Xi1Yi1 +C2(2,6)Yi1Yi1+C2(2,7)Xi1Xi1Xi1 +C2(2,8)Xi1Xi1Yi1 +C2(2,9)Xi1Yi1Yi1 +C2(2,10)Yi1Yi1Yi1 ・・・(2) とする。ここに、20個のC(1,1)〜C(2,1
0)は定数である。式(1)と(2)をまとめて簡単
に、 (Xi2,Yi2)=C2・(Xi1,Yi1) ・・・(3) と表記する。ここに、C2を定数マトリックスであり、
正確には右辺の(Xi1,Yi1)は、(1,Xi1,
Yi1,Xi1Xi1,Xi1Yi1,Yi1Yi1,
Xi1Xi1Xi1,Xi1Xi1Yi1,Xi1Yi
1Yi1,Yi1Yi1Yi1)と表記する必要がある
が、簡単化のためにこれを(Xi1,Yi1)と表記す
る。この点は、以下同様である。
The conversion circuit 54 outputs (Xi2, Yi2).
Is approximated by the cubic polynomial of the input (Xi1, Yi1). That is, Xi2 = C2 (1,1) + C2 (1,2) Xi1 + C2 (1,3) Yi1 + C2 (1,4) Xi1Xi1 + C2 (1,5) Xi1Yi1 + C2 (1,6) Yi1Yi1 + C2 (1,7) Xi1Xi1Xi1 + C2 (1,8) Xi1Xi1Yi1 + C2 (1,9) Xi1Yi1Yi1 + C2 (1,10) Yi1Yi1Yi1 (1) Yi2 = C2 (2,1) + C2 (2,2) Xi1 + C2 (2,3) Yi1 + C2 (2 , 4) Xi1Xi1 + C2 (2,5) Xi1Yi1 + C2 (2,6) Yi1Yi1 + C2 (2,7) Xi1Xi1Xi1 + C2 (2,8) Xi1Xi1Yi1 + C2 (2,9) Xi1Yi1Yi1 + C1 (2,1) Y2,10Y2,1 And Here, 20 C (1,1) to C (2,1)
0) is a constant. The expressions (1) and (2) are collectively expressed simply as (Xi2, Yi2) = C2 · (Xi1, Yi1) (3). Where C2 is a constant matrix,
To be exact, (Xi1, Yi1) on the right side is (1, Xi1,
Yi1, Xi1Xi1, Xi1Yi1, Yi1Yi1,
Xi1Xi1Xi1, Xi1Xi1Yi1, Xi1Yi
1Yi1, Yi1Yi1Yi1), but for simplicity, this is expressed as (Xi1, Yi1). This point is the same below.

【0021】変換回路54の出力(Xi3,Yi3)及
び(Xi4,Yi4)、像面湾曲補正回路54の出力
(SXi,SYi)並びに非点収差補正回路54の出力
Fiをそれぞれ入力(Xi1,Yi1)の3次多項式で
近似し、また、マスクエリア補正回路52の出力(Xi
1,Yi1)を入力(Xi,Yi)の3次多項式で近似
し、これらを簡単に、 (Xi3,Yi3)=C3・(Xi1,Yi1) ・・・(4) (Xi4,Yi4)=C4・(Xi1,Yi1) ・・・(5) (SXi,SYi)=CS・(Xi1,Yi1) ・・・(6) Fi=CF・(Xi1,Yi1) ・・・(7) (Xi1,Yi1)=CM・(Xi,Yi) ・・・(8) と表記する。
The outputs (Xi3, Yi3) and (Xi4, Yi4) of the conversion circuit 54, the output (SXi, SYi) of the field curvature correction circuit 54 and the output Fi of the astigmatism correction circuit 54 are input (Xi1, Yi1). ) And the output of the mask area correction circuit 52 (Xi
1, Yi1) is approximated by a cubic polynomial of the input (Xi, Yi), and these are simply expressed as (Xi3, Yi3) = C3 · (Xi1, Yi1) (4) (Xi4, Yi4) = C4 * (Xi1, Yi1) ... (5) (SXi, SYi) = CS * (Xi1, Yi1) ... (6) Fi = CF * (Xi1, Yi1) ... (7) (Xi1, Yi1) ) = CM · (Xi, Yi) (8)

【0022】マスクエリア補正回路52、変換回路5
4、非点収差補正回路56及び像面湾曲補正回路58
は、上式から明かなように、加算器と、乗算器と、定数
を保持するためのレジスタとを用いて構成することがで
きる。このレジスタには、図4の信号処理回路44によ
り定数が設定される。ある時点(前回)での変換マトリ
ックスCM、C2、C3、C4、CS及びCFの最適値
が既に求まっているとする。その後、電子ビーム露光装
置の周囲温度の変化等により、変換マトリックスCM、
C2、C3、C4、CSを補正する必要が生じた場合の
信号処理回路44による処理を、図2に示す。以下、括
弧内の数値は、図中のステップ識別番号を表す。なお、
ステップ74及び75以外では、ステンシルマスク24
を除いた状態で処理する。
Mask area correction circuit 52, conversion circuit 5
4, astigmatism correction circuit 56 and field curvature correction circuit 58
Can be configured using an adder, a multiplier, and a register for holding a constant, as is clear from the above equation. A constant is set in this register by the signal processing circuit 44 of FIG. It is assumed that the optimum values of the conversion matrices CM, C2, C3, C4, CS and CF at a certain time point (previous time) have already been obtained. After that, the conversion matrix CM,
FIG. 2 shows a process performed by the signal processing circuit 44 when it is necessary to correct C2, C3, C4, and CS. Hereinafter, the numerical value in the parenthesis represents the step identification number in the figure. In addition,
Except for steps 74 and 75, the stencil mask 24
Is processed in the state without.

【0023】(70)最初に、変換マトリックスC2を
補正し、これによりクロスオーバ像CE1が図7(A)
に示す如くなる。変換マトリックスC2の補正は、次の
ようにして行う。変換マトリックスCM、C2、CS及
びCFを前回の適正値のままとし、かつ、C3=C4=
0(偏向器30及び32をオフ)とする。偏向器30及
び32をオフにしても、図4中の2点鎖線から明らかな
ように、磁界レンズ16に対し光軸Cに平行に入射した
電子ビームは、アパーチャ34aを通過する。
(70) First, the conversion matrix C2 is corrected so that the crossover image CE1 is obtained as shown in FIG.
As shown in. The correction of the conversion matrix C2 is performed as follows. The conversion matrices CM, C2, CS, and CF are left as the previous proper values, and C3 = C4 =
0 (deflectors 30 and 32 are turned off). Even if the deflectors 30 and 32 are turned off, as is clear from the chain double-dashed line in FIG. 4, the electron beam incident on the magnetic lens 16 in parallel with the optical axis C passes through the aperture 34a.

【0024】ステンシルマスク24の面内での図9
(A)に示すi=i0の点に対応したパターンコードC
i0をパターン座標メモリ50に供給する。信号処理回
路44は、上式(1)の定数項C2(1,1)を前回の
値の付近で少しずつ例えば5回変化させ、各C2(1,
1)、すなわち各Xi2について、電流検出器40で電
流Iを検出し、Xi2とIのグラフから電流Iが最大と
なるXi2を求める。同様にして、上式(2)の定数項
C2(2,1)を変化させ、各Yi2について電流検出
器40で電流Iを検出し、Yi2とIのグラフから電流
Iが最大となるYi2を求める。
FIG. 9 in the plane of the stencil mask 24.
The pattern code C corresponding to the point of i = i0 shown in (A)
i0 is supplied to the pattern coordinate memory 50. The signal processing circuit 44 changes the constant term C2 (1,1) of the above equation (1) little by little, for example, five times in the vicinity of the previous value, and each C2 (1,1) is changed.
1) That is, for each Xi2, the current I is detected by the current detector 40, and Xi2 that maximizes the current I is obtained from the graph of Xi2 and I. Similarly, the constant term C2 (2,1) of the above equation (2) is changed, the current I is detected by the current detector 40 for each Yi2, and the Yi2 at which the current I becomes maximum is found from the graph of Yi2 and I. Ask.

【0025】このような処理を、例えば図9(A)に示
すi=i0〜i9の10点について行い、(Xi1,Y
i1)に対しIが最大となる(Xi2,Yi2)を10
組求め、これらの値から上式(1)及び(2)の20個
の定数C(1,1)〜C(2,10)、すなわち上式
(3)のC2を決定する。これにより、変換マトリック
スC2の補正が完了する。この時、角度絞り板34の位
置での電子ビームEBの横断面は、図7(A)に示すク
ロスオーバ像CE1のようになる。
Such processing is performed for 10 points of i = i0 to i9 shown in FIG.
i (1) is the maximum I (Xi2, Yi2) is 10
A set is obtained, and from these values, 20 constants C (1,1) to C (2,10) in the above equations (1) and (2), that is, C2 in the above equation (3) are determined. This completes the correction of the conversion matrix C2. At this time, the cross section of the electron beam EB at the position of the angle diaphragm plate 34 becomes a crossover image CE1 shown in FIG. 7 (A).

【0026】(71)変換マトリックスCS及びCF
を、次のようにして補正する。変換マトリックスCM、
CS及びCFを前回の適正値のままとし、変換マトリッ
クスC2を上記のようにして求めた適正値とし、C3=
C4=0とし、ステンシルマスク24の面内での図9
(A)に示すi=i0の点に対応したパターンコードC
i0をパターン座標メモリ50に供給する。そして、図
3に示す処理を行う。
(71) Transformation matrix CS and CF
Is corrected as follows. Conversion matrix CM,
With CS and CF remaining at the previous proper values, the conversion matrix C2 is set to the proper value obtained as described above, and C3 =
FIG. 9 is a view in the plane of the stencil mask 24 with C4 = 0.
The pattern code C corresponding to the point of i = i0 shown in (A)
i0 is supplied to the pattern coordinate memory 50. Then, the processing shown in FIG. 3 is performed.

【0027】(710)以下のループ処理の回数を示す
変数jに初期値0を代入する。 (711)(Xi2,Yi2)を走査させて、ステンシ
ルマスク24の位置での電子ビームEBのクロスオーバ
ー像を測定する。例えば、上式(1)及び(2)の定数
項C2(1,1)及びC2(2、1)をそれぞれ今回値
A0及びB0の付近でラスタスキャンのように連続的に
変化させながら微分器42の出力を読み込むことによ
り、電子ビームEBの断面形状を測定する。すなわち、
B0−D≦C2(2,1)≦B0+Dの範囲内でΔYず
つ変化する各C2(2,1)の値に対し、C2(1,
1)をA0−DからA0+Dまで連続的に変化させ、こ
の際に微分器42からパルスが出力されたときの{C2
(1,1),C2(1,1)}を図8(B)に示すクロ
スオーバ像CE1のエッジ位置として記憶する。そし
て、図8(A)に示す如く1本のX方向走査線cに対し
2つの電流微分パルスの各々に対応したC2(1,1)
の値の差を、クロスオーバ像CE1をX軸方向に横切る
幅wyとして求める。
(710) The initial value 0 is substituted for the variable j indicating the number of times of loop processing below. (711) (Xi2, Yi2) is scanned to measure the crossover image of the electron beam EB at the position of the stencil mask 24. For example, the differentiator while continuously changing the constant terms C2 (1,1) and C2 (2,1) in the above equations (1) and (2) near the current values A0 and B0 as in a raster scan, respectively. By reading the output of 42, the cross-sectional shape of the electron beam EB is measured. That is,
For each value of C2 (2,1) that changes by ΔY within the range of B0−D ≦ C2 (2,1) ≦ B0 + D, C2 (1,
1) is continuously changed from A0-D to A0 + D, and {C2 when a pulse is output from the differentiator 42 at this time
(1,1), C2 (1,1)} is stored as the edge position of the crossover image CE1 shown in FIG. 8 (B). Then, as shown in FIG. 8A, C2 (1,1) corresponding to each of the two current differential pulses with respect to one X-direction scanning line c.
The difference between the values of is obtained as the width wy across the crossover image CE1 in the X-axis direction.

【0028】(712)クロスオーバ像CE1の断面形
状の特徴量を抽出する。クロスオーバ像CE1は一般に
楕円であり、楕円は3つのパラメータで決定されるの
で、この特徴量も3つである。クロスオーバ像CE1の
特徴量は、例えば図8(B)に示すL1、L2及びL3
とする。ここに、L1は、クロスオーバ像CE1をX軸
方向に横切る長さの最大値である。L2は、クロスオー
バ像CE1をX軸方向に横切る長さが設定値Wとなると
きの一対の走査線a及びbのY方向間隔である。また、
L3は、クロスオーバ像CE1を横切る走査線aの線分
の中点とクロスオーバ像CE1を横切る走査線bの線分
の中点との間のY方向距離である。
(712) The feature amount of the cross-sectional shape of the crossover image CE1 is extracted. The crossover image CE1 is generally an ellipse, and since the ellipse is determined by three parameters, this feature amount is also three. The feature amount of the crossover image CE1 is, for example, L1, L2, and L3 shown in FIG.
And Here, L1 is the maximum value of the length that crosses the crossover image CE1 in the X-axis direction. L2 is an interval in the Y direction between the pair of scanning lines a and b when the length across the crossover image CE1 in the X axis direction is the set value W. Also,
L3 is the Y-direction distance between the midpoint of the line segment of the scanning line a that crosses the crossover image CE1 and the midpoint of the line segment of the scanning line b that crosses the crossover image CE1.

【0029】図8(C)はクロスオーバ像CE1の他の
特徴量の抽出方法を示しており、この場合、L1はクロ
スオーバ像CE1の長軸長であり、L2はクロスオーバ
像CE1の短軸長であり、L3はX軸に対するクロスオ
ーバ像CE1の長軸の角度である。(713)j=0の
ときはステップ715へ進み、j≠0のときはステップ
714へ進む。
FIG. 8C shows another method of extracting the feature amount of the crossover image CE1, where L1 is the major axis length of the crossover image CE1 and L2 is the short axis length of the crossover image CE1. It is the axial length, and L3 is the angle of the long axis of the crossover image CE1 with respect to the X axis. (713) When j = 0, the process proceeds to step 715, and when j ≠ 0, the process proceeds to step 714.

【0030】(714)j=0のときの特徴量L1=L
1i0、L2=L2i0及びL3=L3i0に対するこ
れらの変化量ΔL1ij、ΔL2ij及びΔL3ijを
求め、記憶しておく。 (715)i<3であればステップ716へ進み、j=
3であればステップ718へ進む。
(714) Feature quantity L1 = L when j = 0
These change amounts ΔL1ij, ΔL2ij and ΔL3ij for 1i0, L2 = L2i0 and L3 = L3i0 are calculated and stored. (715) If i <3, the process proceeds to step 716, j =
If it is 3, the process proceeds to step 718.

【0031】(716)変数jに1を加算する。 (717)SXi、SYi及びFiを前回の適正値SX
i0、SYi0及びFi0からそれぞれ予め定めた微小
量ΔSXij、ΔSYij及びΔFijだけ変化させ
る。そして、上記ステップ711へ戻る。 (718)ここで、特徴量の変化量(ΔL1i,ΔL2
i,ΔL3i)を、非点収差補正回路56及び像面湾曲
補正回路58の出力の変化量(ΔSXi,ΔSYi,Δ
Fi)で線形近似し、両者の逆の関係式を簡単に、 (ΔSXi,ΔSYi,ΔFi) =Cα・(ΔL1i,ΔL2i,ΔL3i) ・・・(9) と表記する。
(716) 1 is added to the variable j. (717) SXi, SYi, and Fi are set to the previous proper values SX.
The predetermined minute amounts ΔSXij, ΔSYij, and ΔFij are changed from i0, SYi0, and Fi0, respectively. Then, the process returns to step 711. (718) Here, the change amount of the feature amount (ΔL1i, ΔL2
i, ΔL3i) is the change amount (ΔSXi, ΔSYi, Δ) of the output of the astigmatism correction circuit 56 and the field curvature correction circuit 58.
Fi) is linearly approximated, and the inverse relational expression between the two is simply expressed as (ΔSXi, ΔSYi, ΔFi) = Cα · (ΔL1i, ΔL2i, ΔL3i) (9).

【0032】この変換マトリックスCαを、(ΔL1i
j,ΔL2ij,ΔL3ij)と(ΔSXij,ΔSY
ij及びΔFij)のj=1,2,3についての3組の
値から決定する。そして、クロスオーバ像CE1をアパ
ーチャ34aに等しい直径d0の円形のクロスオーバ像
CE2にするための(SXi,SYi,Fi)を、式
(9)を用い、次のようにして求める。
This conversion matrix Cα is given by (ΔL1i
j, ΔL2ij, ΔL3ij) and (ΔSXij, ΔSY
ij and ΔFij) determined from three sets of values for j = 1, 2, 3. Then, (SXi, SYi, Fi) for making the crossover image CE1 into a circular crossover image CE2 having a diameter d0 equal to that of the aperture 34a is obtained using the equation (9) as follows.

【0033】 (SXi,SYi,Fi) =(SXi0,SYi0,Fi0)+(ΔSXi,ΔSYi,ΔFi) =(SXi0,SYi0,Fi0) +Cα・(D0−L1,(D02−W2)1/2−L2,−ΔL3) ・・・(10) 以上のステップ710〜717の処理を、例えば図9
(A)に示すi=i0〜i9の10点について行うこと
により、(Xi1,Yi1)と(SXi,SYi,F
i)を10組求め、これらの値から上式(6)及び
(7)の変換マトリックスCS及びCFを決定する。こ
れにより、変換マトリックスCS及びCFの補正が完了
する。
(SXi, SYi, Fi) = (SXi0, SYi0, Fi0) + (ΔSXi, ΔSYi, ΔFi) = (SXi0, SYi0, Fi0) + Cα · (D0-L1, (D02-W2) 1 / 2- L2, −ΔL3) (10) The above steps 710 to 717 are performed by, for example, FIG.
By performing 10 points of i = i0 to i9 shown in (A), (Xi1, Yi1) and (SXi, SYi, F
10 sets of i) are obtained, and the transformation matrices CS and CF of the above equations (6) and (7) are determined from these values. This completes the correction of the conversion matrices CS and CF.

【0034】本実施例では、アパーチャ34aの位置で
の電子ビームEBの断面形状を測定し、これに基づいて
変換マトリックスCS及びCFを補正しているので、補
正の際の繰り返し処理回数が少なくなり、これにより、
電子ビームEBの断面形状を求めずに電流Iのみに基づ
いて試行錯誤を多数回繰り返す方法よりも比較的短時間
で変換マトリックスCS及びCFを補正することができ
る。
In this embodiment, since the cross-sectional shape of the electron beam EB at the position of the aperture 34a is measured and the conversion matrices CS and CF are corrected based on this, the number of repetitive processings for correction is reduced. , This allows
The conversion matrices CS and CF can be corrected in a relatively short time as compared with a method in which trial and error is repeated many times based on only the current I without obtaining the cross-sectional shape of the electron beam EB.

【0035】また、上式(9)の関係を用いて、電子ビ
ームEBの断面形状をアパーチャ34aに等しい直径d
0の円形にするための(SXi,SYi,Fi)を求め
ているので、周囲温度や各種偏向器及び磁界レンズへの
駆動信号をパラメータとする複雑な実験式を予め与える
必要が無く、簡単かつ正確に(SXi,SYi,Fi)
の最適値を求めることができる。
Further, by using the relation of the above equation (9), the cross-sectional shape of the electron beam EB is set to the diameter d equal to the aperture 34a.
Since (SXi, SYi, Fi) for making a circle of 0 is obtained, it is not necessary to previously give a complicated empirical formula whose parameters are the ambient temperature and the drive signals to various deflectors and magnetic field lenses, and it is easy and Exactly (SXi, SYi, Fi)
The optimum value of can be obtained.

【0036】この補正により、像面湾曲補正器38及び
非点収差補正器36の影響でクロスオーバ像が図7
(B)に示すCE2のようにアパーチャ34aの位置か
ら外れる。 (72)そこで、上記ステップ70と同様にして、変換
マトリックスC2を補正して、クロスオーバ像を図7
(C)に示すCE3のようにアパーチャ34aと一致さ
せる。
With this correction, a crossover image is generated by the influence of the field curvature corrector 38 and the astigmatism corrector 36.
Like CE2 shown in (B), it deviates from the position of the aperture 34a. (72) Then, in the same manner as in step 70, the conversion matrix C2 is corrected to obtain the crossover image as shown in FIG.
It is matched with the aperture 34a like CE3 shown in (C).

【0037】以上のステップ70、71及び72によ
り、互いに関係したC2、CS及びCFの最適値を、効
率よく容易迅速に求めることができる。逆に言えば、も
し、互いに関係したC2、CS及びCFの最適値を同時
的に求めようとすると、処理が極めて複雑になり、か
つ、所要時間が長くなる。 (73)次に、上記ステップ70と同様にして変換マト
リックスC4を補正する。
By the above steps 70, 71 and 72, the optimum values of C2, CS and CF which are related to each other can be efficiently, easily and promptly obtained. Conversely, if the optimum values of C2, CS and CF that are related to each other are to be obtained simultaneously, the processing becomes extremely complicated and the required time becomes long. (73) Next, the conversion matrix C4 is corrected in the same manner as in step 70 above.

【0038】すなわち、変換マトリックスCM、C3、
C4を前回の適正値のままとし、変換マトリックスC
2、変換マトリックスCS及びCFを上記の如く補正し
た値とし、図9(A)に示すi=i0の点に対応したパ
ターンコードCi0をパターン座標メモリ50に供給す
る。上式(5)の右辺定数項を前回の値の付近で少しず
つ例えば5回変化させ、各Xi4及びYi4について、
電流検出器40で電流Iを検出し、Xi4とIのグラフ
から電流Iが最大となるXi4を求め、Yi4とIのグ
ラフから電流Iが最大となるYi4を求める。
That is, the conversion matrices CM, C3,
The conversion matrix C
2. The conversion matrices CS and CF are values corrected as described above, and the pattern code Ci0 corresponding to the point of i = i0 shown in FIG. 9A is supplied to the pattern coordinate memory 50. The constant term on the right side of the above equation (5) is changed little by little, for example, five times in the vicinity of the previous value, and for each Xi4 and Yi4,
The current I is detected by the current detector 40, Xi4 having the maximum current I is obtained from the graph of Xi4 and I, and Yi4 having the maximum current I is obtained from the graph of Yi4 and I.

【0039】このような処理を、例えば図9(A)に示
すi=i0〜i9の10点について行い、(Xi1,Y
i1)に対しIが最大となる(Xi4,Yi4)を10
組求め、これらの値から上式(5)の右辺の20個の定
数を決定する。これにより、変換マトリックスC4の補
正が完了しする。 (74)次に、図4に示す如くステンシルマスク24を
X−Yステージ25に取り付け、上記ステップ70と同
様にして変換マトリックスCMを補正する。
Such processing is performed for 10 points of i = i0 to i9 shown in FIG.
i (1) is the maximum I (10) (Xi4, Yi4)
The set is obtained, and the 20 constants on the right side of the above equation (5) are determined from these values. Thereby, the correction of the conversion matrix C4 is completed. (74) Next, as shown in FIG. 4, the stencil mask 24 is attached to the XY stage 25, and the conversion matrix CM is corrected in the same manner as in step 70.

【0040】すなわち、変換マトリックスCM、C3を
前回の適正値のままとし、変換マトリックスC2、C
4、変換マトリックスCS及びCFを上記の如く補正し
た値とし、X−Yステージ25を駆動して図9(B)に
示すエリアE33の中心を露光装置のX−Y座標原点へ
移動させ、矩形通過孔p0に対応したパターンコードC
iをパターン座標メモリ50に供給する。上式(8)の
右辺定数項を前回の値の付近で少しずつ例えば5回変化
させ、各Xi1及びYi1について、電流検出器40で
電流Iを検出し、Xi1とIのグラフから電流Iが最大
となるXi1を求め、Yi1とIのグラフから電流Iが
最大となるYi1を求める。
That is, the conversion matrices CM and C3 are left at the previous proper values, and the conversion matrices C2 and C3.
4. The conversion matrixes CS and CF are set to the values corrected as described above, the XY stage 25 is driven, and the center of the area E33 shown in FIG. 9B is moved to the XY coordinate origin of the exposure apparatus to form a rectangle. Pattern code C corresponding to passage hole p0
i is supplied to the pattern coordinate memory 50. The constant term on the right side of the above equation (8) is gradually changed, for example, five times in the vicinity of the previous value, the current I is detected by the current detector 40 for each Xi1 and Yi1, and the current I is calculated from the graph of Xi1 and I. The maximum Xi1 is calculated, and the maximum current Ii1 is calculated from the graph of Yi1 and I.

【0041】このような処理を、ステンシルマスク24
上の例えば図9(A)に示す矩形通過孔p0〜p9の1
0点について行い、(Xi,Yi)に対しIが最大とな
る(Xi1,Yi1)を10組求め、これらの値から上
式(8)の右辺の20個の定数を決定する。これによ
り、変換マトリックスCMの補正が完了する。 (75)以上の補正により電子ビームEBは図10に示
す如くアパーチャ34aを通るが、露光位置が一般にず
れる。そこで、2次電子検出器46の検出値に基づき公
知の方法でこのずれを検出し、該ずれが0になるように
変換マトリックスC3を補正する。
Such processing is performed by the stencil mask 24.
For example, 1 of the rectangular passage holes p0 to p9 shown in FIG.
This is performed for 0 points, 10 sets of (Xi1, Yi1) that maximize I with respect to (Xi, Yi) are obtained, and 20 constants on the right side of the above equation (8) are determined from these values. This completes the correction of the conversion matrix CM. (75) With the above correction, the electron beam EB passes through the aperture 34a as shown in FIG. 10, but the exposure position is generally displaced. Therefore, this shift is detected by a known method based on the detection value of the secondary electron detector 46, and the conversion matrix C3 is corrected so that the shift becomes zero.

【0042】すなわち、変換マトリックスCM、C2、
C4、CS及びCFを上記の如く補正した値とし、図9
(A)に示すi=i0の点に対応したパターンコードC
i0をパターン座標メモリ50に供給する。上式(4)
の右辺定数項を前回の適正値付近で少しずつ3回(j=
1〜3)変化させ、(Xi3,Yi3)の前回の適正値
(Xi30,Yi30)からの各ずれ(ΔXi3j,Δ
Yi3j)、j=1〜3について、上記露光位置のずれ
(Δxij,Δyij)を検出する。
That is, the conversion matrices CM, C2,
Assuming that C4, CS and CF are values corrected as described above, FIG.
The pattern code C corresponding to the point of i = i0 shown in (A)
i0 is supplied to the pattern coordinate memory 50. Equation (4)
The constant term on the right side of is gradually incremented three times near the previous appropriate value (j =
1 to 3), and each deviation (ΔXi3j, Δ) from the previous appropriate value (Xi30, Yi30) of (Xi3, Yi3) is changed.
The deviation (Δxij, Δyij) of the exposure position is detected for Yi3j) and j = 1 to 3.

【0043】ここで、(Δxi,Δyi)を(ΔXi
3,ΔYi3)で線形近似し、両者の関係式を簡単に、 (Δxi,Δyi)=Cβ・(ΔXi3,ΔYi3) ・・・(11) と表記する。この変換マトリックスCβを、(ΔXi3
j,ΔYi3j)と(Δxij,Δyij)のj=1,
2,3についての3組の値から決定する。そして、(Δ
xi,Δyi)=(0,0)が成立する(ΔXi3,Δ
Yi3)を求める。
Here, (Δxi, Δyi) is changed to (ΔXi
3, ΔYi3) is linearly approximated, and the relational expression between them is simply expressed as (Δxi, Δyi) = Cβ · (ΔXi3, ΔYi3) (11). This conversion matrix Cβ is given by (ΔXi3
j, ΔYi3j) and (Δxij, Δyij) j = 1,
Determine from three sets of values for a few. And (Δ
xi, Δyi) = (0,0) holds (ΔXi3, Δ
Yi3) is calculated.

【0044】このような処理を、例えば図9(A)に示
すi=i0〜i9の10点について行い、(Xi1,Y
i1)と(Xi30+ΔXi3,Yi30+ΔYi3)
を10組求め、これらの値から上式(4)の右辺の20
個の定数を決定する。これにより、変換マトリックスC
3の補正が完了する。変換マトリックスC3の補正に対
し、変換マトリックスC3と変換マトリックスC4との
関係が保持されるように、すなわち同一の(Xi3,Y
i3)に対し(Xi4,Yi4)が変化しないように、
変換マトリックスC4を変更する。これにより、電子ビ
ームEBのクロスオーバ像の中点をアパーチャ34aの
中点に一致させる。
Such processing is performed for 10 points of i = i0 to i9 shown in FIG.
i1) and (Xi30 + ΔXi3, Yi30 + ΔYi3)
10 sets are obtained, and from these values, 20 on the right side of the above equation (4)
Determine the number of constants. This gives the transformation matrix C
The correction of 3 is completed. For the correction of the conversion matrix C3, the relationship between the conversion matrix C3 and the conversion matrix C4 is maintained, that is, the same (Xi3, Y
In order not to change (Xi4, Yi4) for i3),
Change the transformation matrix C4. As a result, the midpoint of the crossover image of the electron beam EB coincides with the midpoint of the aperture 34a.

【0045】[0045]

【発明の効果】以上説明した如く、本発明に係る、電子
ビーム露光装置の角度絞り用アパーチャの位置での電子
ビーム断面整形方法では、アパーチャの位置での荷電粒
子ビームの断面形状を測定し、これに基づいて、該断面
を円形にしかつ断面直径をアパーチャの直径に略一致さ
せるための第1駆動信号を求めているので、荷電粒子ビ
ームの断面形状を求めずに絞り板又は試料を流れる電流
のみに基づいて試行錯誤を多数回繰り返す方法よりも補
正の際の繰り返し処理回数が比較的少なくなり、これに
より、比較的短時間でアパーチャの位置での荷電粒子ビ
ームの断面を円形かつ設定直径にすることができるとい
う優れた効果を奏し、電子ビーム露光装置のスループッ
ト向上に寄与するところが大きい。
As described above, in the electron beam cross-section shaping method at the position of the aperture for the aperture stop of the electron beam exposure apparatus according to the present invention, the cross-sectional shape of the charged particle beam at the position of the aperture is measured, Based on this, the first drive signal for making the cross-section circular and making the cross-sectional diameter substantially coincide with the diameter of the aperture is obtained, so that the current flowing through the diaphragm or sample without obtaining the cross-sectional shape of the charged particle beam. The number of iterations during correction is comparatively smaller than the method of repeating trial and error many times based on only the result, which makes the cross section of the charged particle beam at the position of the aperture round and the set diameter in a relatively short time. The excellent effect of being able to be achieved is largely contributed to the improvement of the throughput of the electron beam exposure apparatus.

【0046】本発明の第1態様では、第1駆動信号を変
化させて第1駆動信号の変化量と断面形状の特徴量の変
化量との関係を求めているので、周囲温度や各種偏向器
及び磁界レンズへの駆動信号をパラメータとする複雑な
実験式を予め与える必要が無く、簡単かつ正確に第1駆
動信号の最適値を求めることができるという効果を奏す
る。
In the first aspect of the present invention, the first drive signal is changed to obtain the relationship between the change amount of the first drive signal and the change amount of the feature amount of the cross-sectional shape. Also, it is possible to easily and accurately obtain the optimum value of the first drive signal without the need to previously give a complicated empirical formula using the drive signal to the magnetic field lens as a parameter.

【0047】本発明の第2態様によれば、互いに関係し
た第1駆動信号及び第2駆動信号の最適値を、効率よく
容易迅速に求めることができるという効果を奏する。
According to the second aspect of the present invention, the optimum values of the first drive signal and the second drive signal which are related to each other can be efficiently and easily obtained quickly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理構成を示すフローチャートであ
る。
FIG. 1 is a flowchart showing a principle configuration of the present invention.

【図2】偏向変換式補正手順を示す概略フローチャート
である。
FIG. 2 is a schematic flowchart showing a deflection conversion type correction procedure.

【図3】図2のステップ71の要部詳細を示すフローチ
ャートである。
FIG. 3 is a flowchart showing details of a main part of step 71 of FIG.

【図4】電子ビーム露光装置の要部構成図である。FIG. 4 is a configuration diagram of a main part of an electron beam exposure apparatus.

【図5】非点収差補正器及び像面湾曲補正器の原理構成
を示す斜視図である。
FIG. 5 is a perspective view showing a principle configuration of an astigmatism corrector and a field curvature corrector.

【図6】偏向器駆動信号生成回路のブロック図である。FIG. 6 is a block diagram of a deflector drive signal generation circuit.

【図7】図2のステップ70、71及び72の処理後の
電子ビームのクロスオーバ像を示す図である。
7 is a diagram showing a crossover image of an electron beam after the processes of steps 70, 71 and 72 of FIG. 2;

【図8】偏向変換式補正の際に選択される、電子ビーム
のステンシルマスク通過位置の説明図である。
FIG. 8 is an explanatory diagram of a stencil mask passing position of an electron beam, which is selected at the time of deflection conversion type correction.

【図9】電子ビームのクロスオーバ像の特徴量説明図で
ある。
FIG. 9 is a diagram illustrating a feature amount of a crossover image of an electron beam.

【図10】露光位置ずれ説明図である。FIG. 10 is an explanatory diagram of exposure position shift.

【符号の説明】[Explanation of symbols]

10 半導体ウエーハ 12 X−Yステージ 14〜18、20、22 磁界レンズ 24 ステンシルマスク 26、28、30、32 偏向器 34 角度絞り板 34a アパーチャ 36 非点収差補正器 38 像面湾曲補正器 40 電流検出器 42 微分器 44 信号処理回路 46 2次電子検出器 C 光軸 EB 電子ビーム CE1〜CE3 クロスオーバ像 10 semiconductor wafer 12 XY stage 14 to 18, 20, 22 magnetic field lens 24 stencil mask 26, 28, 30, 32 deflector 34 angle diaphragm plate 34a aperture 36 astigmatism corrector 38 field curvature corrector 40 current detection 42 Differentiator 44 Signal processing circuit 46 Secondary electron detector C Optical axis EB Electron beam CE1 to CE3 Crossover image

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 荷電粒子ビーム露光装置の角度絞り用ア
パーチャ(1a)の位置での荷電粒子ビーム断面整形方
法であって、該荷電粒子ビーム露光装置は、ステンシル
マスク(2)上の選択した通過孔パターンに荷電粒子ビ
ーム(EB)を通して該荷電粒子ビームの横断面を成形
し、絞り板(1)に形成された該アパーチャに該荷電粒
子ビームを通して試料(3)上に収束照射させるもので
あり、かつ、該アパーチャの上方に、該荷電粒子ビーム
を偏向させる偏向器(4)と該アパーチャの位置での荷
電粒子ビーム断面を第1駆動信号(S1)に応答して電
界又は磁界により整形するための補正器(5)とが配置
されており、該偏向器に供給する第2駆動信号(S2)
を変化させて該荷電粒子ビームを該絞り板上で走査させ
ながら、該絞り板で遮られ又は該アパーチャを通過する
該荷電粒子ビームの電流(I)を検出することにより、
該荷電粒子ビームの断面形状を測定し(A2)、 該断面形状に基づいて、該断面を円形にしかつ断面直径
を該アパーチャの直径に略一致させるための該第1駆動
信号を求め(A5)、求めた該第1駆動信号を該補正器
に供給する(A6)、 ことを特徴とする、電子ビーム露光装置の角度絞り用ア
パーチャの位置での電子ビーム断面整形方法。
1. A charged particle beam cross-section shaping method at the position of an aperture (1a) for angular aperture of a charged particle beam exposure apparatus, the charged particle beam exposure apparatus comprising a selected passage on a stencil mask (2). A charged particle beam (EB) is passed through a hole pattern to form a cross section of the charged particle beam, and the aperture formed in the diaphragm plate (1) is focused and irradiated onto the sample (3) through the charged particle beam. , And a deflector (4) for deflecting the charged particle beam above the aperture, and the charged particle beam cross section at the position of the aperture is shaped by an electric field or a magnetic field in response to a first drive signal (S1). And a compensator (5) for the second driving signal (S2) to be supplied to the deflector.
By scanning the charged particle beam on the diaphragm plate while changing the value of, to detect the current (I) of the charged particle beam that is blocked by the diaphragm plate or passes through the aperture,
The cross-sectional shape of the charged particle beam is measured (A2), and based on the cross-sectional shape, the first drive signal for making the cross-section circular and making the cross-sectional diameter substantially coincide with the diameter of the aperture is obtained (A5). And supplying the obtained first drive signal to the corrector (A6). An electron beam cross-section shaping method at the position of an aperture for an angle diaphragm of an electron beam exposure apparatus, comprising:
【請求項2】 前記断面形状から該形状の3つの特徴量
(L1、L2、L3)を抽出し(A3)、 前記第1駆動信号(S1)を変化させて該第1駆動信号
の変化量(ΔS1)と該特徴量の変化量(ΔL1、ΔL
2、ΔL3)との関係を求め(A4)、 該断面を円形にしかつ断面直径を該アパーチャ(1a)
の直径に略一致させるための該第1駆動信号を該関係か
ら求める(A5)、 ことを特徴とする請求項1記載の方法。
2. The three feature quantities (L1, L2, L3) of the shape are extracted from the sectional shape (A3), and the first drive signal (S1) is changed to change the first drive signal. (ΔS1) and the amount of change in the feature amount (ΔL1, ΔL
2, ΔL3) is obtained (A4), the cross section is made circular, and the cross section diameter is set to the aperture (1a).
2. The method according to claim 1, wherein the first drive signal for making the diameter substantially match the diameter of the first drive signal is obtained from the relationship (A5).
【請求項3】 前記偏向器(4)は、前記ステンシルマ
スク(2)の上方に配置され、前記荷電粒子ビーム(E
B)を該ステンシルマスクの面に略垂直にして前記選択
した通過孔パターンに通させるためのものであり、 前記アパーチャ(1a)を通る該荷電粒子ビームの量が
極大値になるように該偏向器に供給する前記第2駆動信
号(S2)を調整し(A1)、 次いで請求項1又は2の処理を行い、 次いで該アパーチャを通る該荷電粒子ビームの量が極大
値になるように該偏向器に供給する該第2駆動信号を再
度調整する(A7)、 ことを特徴とする、電子ビーム露光装置の角度絞り用ア
パーチャの位置での電子ビーム断面整形方法。
3. The deflector (4) is arranged above the stencil mask (2), and the charged particle beam (E) is provided.
B) is to pass the stencil mask substantially perpendicular to the plane of the stencil mask and to pass through the selected through hole pattern, and the deflection is performed so that the amount of the charged particle beam passing through the aperture (1a) becomes a maximum value. Adjusting the second drive signal (S2) supplied to the chamber (A1), and then performing the process of claim 1 or 2, and the deflection so that the amount of the charged particle beam passing through the aperture becomes a maximum value. The second drive signal supplied to the apparatus is readjusted (A7), The electron beam cross-section shaping method at the position of the aperture for the angle diaphragm of the electron beam exposure apparatus.
JP27341293A 1993-11-01 1993-11-01 Shaping method for electron beam section at position of aperture for angle stop of electron beam exposure system Pending JPH07130622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27341293A JPH07130622A (en) 1993-11-01 1993-11-01 Shaping method for electron beam section at position of aperture for angle stop of electron beam exposure system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27341293A JPH07130622A (en) 1993-11-01 1993-11-01 Shaping method for electron beam section at position of aperture for angle stop of electron beam exposure system

Publications (1)

Publication Number Publication Date
JPH07130622A true JPH07130622A (en) 1995-05-19

Family

ID=17527536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27341293A Pending JPH07130622A (en) 1993-11-01 1993-11-01 Shaping method for electron beam section at position of aperture for angle stop of electron beam exposure system

Country Status (1)

Country Link
JP (1) JPH07130622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115430A (en) * 2001-10-02 2003-04-18 Nikon Corp Charged particle beam exposure system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115430A (en) * 2001-10-02 2003-04-18 Nikon Corp Charged particle beam exposure system

Similar Documents

Publication Publication Date Title
JP2835097B2 (en) Correction method for charged beam astigmatism
US8563926B2 (en) Method of making axial alignment of charged particle beam and charged particle beam system
US6407398B1 (en) Electron beam exposure apparatus and exposure method
JPH0732111B2 (en) Charged beam projection exposure apparatus
US5831273A (en) Charged particle beam lithography method and apparatus thereof
US5849436A (en) Block mask and charged particle beam exposure method and apparatus using the same
JPH07130622A (en) Shaping method for electron beam section at position of aperture for angle stop of electron beam exposure system
JP2003512699A (en) An array of electro-optic lenses with an axis capable of large dislocations
JP2000195453A (en) Charged particle beam device
JPH03270215A (en) Charged particle beam exposure process and exposure device
US9035550B2 (en) Method of axial alignment of charged particle beam and charged particle beam system
JPH03138842A (en) Electron beam drawing device with beam shape correcting device
JP3550476B2 (en) Charged particle beam processing method and processing apparatus
JP3198187B2 (en) Adjustment method of charged particle beam exposure apparatus
JP2002025489A (en) Doublet having optimum curve axis used for charged particle beam projection system
JPH0547332A (en) Charged particle beam device
JP2988883B2 (en) Beam adjustment method in charged beam writing apparatus
JP3080502B2 (en) Control method of charged particle beam deflection for stencil mask
JPH02236936A (en) Charged beam apparatus
JP2002246303A (en) Method of adjusting focal point and electron beam lithography system
JPH07283101A (en) Charged particle beam exposure method
JPH11224642A (en) Electron beam exposure device and electron beam exposure method
JPS62114219A (en) Matching method for beam axis of charged beam lithography equipment
JPH07335531A (en) Adjusting method of electron beam lithography system
JPH06140309A (en) Method for electron beam expoure

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020709