JPH07335531A - Adjusting method of electron beam lithography system - Google Patents

Adjusting method of electron beam lithography system

Info

Publication number
JPH07335531A
JPH07335531A JP6129087A JP12908794A JPH07335531A JP H07335531 A JPH07335531 A JP H07335531A JP 6129087 A JP6129087 A JP 6129087A JP 12908794 A JP12908794 A JP 12908794A JP H07335531 A JPH07335531 A JP H07335531A
Authority
JP
Japan
Prior art keywords
electron
aperture
positions
electron beam
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6129087A
Other languages
Japanese (ja)
Other versions
JP3357181B2 (en
Inventor
Yasunari Hayata
康成 早田
Yasuhiro Someta
恭宏 染田
Hidetoshi Sato
秀寿 佐藤
Hiroyuki Ito
博之 伊藤
Shinichi Kato
慎一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12908794A priority Critical patent/JP3357181B2/en
Publication of JPH07335531A publication Critical patent/JPH07335531A/en
Application granted granted Critical
Publication of JP3357181B2 publication Critical patent/JP3357181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To optically adjust an electron beam lithography system with high accuracy without using any objective aperture by measuring a plurality of positions in a pattern formed on a sample by a beam containing the pattern under different focus conditions and adjusting an electron optical system in the direction in which each variation, etc., becomes smaller. CONSTITUTION:A plurality of positions in a pattern formed on a sample by a beam containing the pattern are measured under different focus conditions. Then an electron optical system is adjusted in the direction in which each variation, relative variation between the positions, or both of each variation and relative variation becomes smaller. The adjustment of the electron optical system is performed against the correcting amount of the astigmatism associated with the selection of the pattern, correcting amount of the focal point associated with the selection of the pattern, intensity of the aligner of an electron$ mirror, positions of apertures 13 and 14, etc. For example, a correcting device 15 which corrects such abberation as the astigmatism, curvature of field, etc., which occurs in a transferring lens section 16 is corrected by installing the correcting section 15 to the lens section 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一括図形照射法を用い
る電子線描画装置の調整方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam drawing apparatus adjusting method using a collective figure irradiation method.

【0002】[0002]

【従来の技術】一括図形照射法を用いた電子線描画装置
における、図形選択時に収差がない場合の電子軌道を図
2に示す。すなわち、図2では図形選択に伴う離軸によ
る転写レンズ3での収差が発生しないことを仮定してい
る。離軸は縮小レンズ6によって縮小されるため、縮小
レンズ6や対物レンズ8内での収差量は小さい。これに
対し図3では、図形選択に伴って後段に設けた転写レン
ズ3により、中心から外側に偏向された電子ビームに収
差を発生した場合の電子軌道を示している。点線で示す
のは収差を考慮した場合の電子軌道を示す。第2アパー
チャー5の像面は第2アパーチャーの位置と選択した図
形とによって決るため、転写レンズ部における収差の影
響は直接には受けない。したがって、像面の離軸は図2
に示した場合と同じである。しかし、上記転写レンズ部
での収差は電子ビームの第2アパーチャーへの入射角を
変化させ、レンズ(特に対物レンズ)の中心部における
離軸を大きくする。すなわち、クロスオーバーに大きく
収差が現われることになる。そのため、転写レンズ部の
収差は、それに伴う電子軌道の変化により、下段のレン
ズ部において離軸収差を発生させやすくしている。ま
た、図3で注意すべきことは、第2アパーチャー5上の
異なる点に像を形成する電子は、それぞれが異なった量
の離軸による影響を受けることである。すなわち、アパ
ーチャー5の軸上を通る電子は収差の影響を受けにく
く、アパーチャー5の軸外ほど収差の影響を受けること
になる。この結果、アパーチャー5上の各点に到達する
電子の対物レンズ8内での電子軌道が大きく異なること
になる。このために、一括図形内の全ての点からの電子
ビームが、レンズの中心を通過するようにすることが困
難になる。対物レンズ8の軸外を電子ビームが通過する
ことは、描画装置の解像性の低下原因になるため、上記
の状態では一括図形を均一に転写することが不可能にな
る。
2. Description of the Related Art FIG. 2 shows electron trajectories in an electron beam drawing apparatus using the collective figure irradiation method when there is no aberration when selecting a figure. That is, in FIG. 2, it is assumed that no aberration occurs in the transfer lens 3 due to the off axis due to the figure selection. Since the off-axis is reduced by the reduction lens 6, the amount of aberration in the reduction lens 6 and the objective lens 8 is small. On the other hand, FIG. 3 shows electron trajectories when the aberration is generated in the electron beam deflected from the center to the outside by the transfer lens 3 provided in the latter stage in accordance with the figure selection. The dotted line shows the electron orbit when aberration is taken into consideration. Since the image plane of the second aperture 5 is determined by the position of the second aperture and the selected figure, it is not directly affected by the aberration in the transfer lens unit. Therefore, the off-axis of the image plane is shown in FIG.
It is the same as the case shown in. However, the aberration in the transfer lens portion changes the incident angle of the electron beam on the second aperture, and increases the off-axis at the central portion of the lens (particularly the objective lens). That is, a large aberration appears at the crossover. Therefore, as for the aberration of the transfer lens portion, an off-axis aberration is likely to occur in the lower lens portion due to the change of the electron trajectory accompanying it. Also, note in FIG. 3 that the electrons that form images at different points on the second aperture 5 are affected by different amounts of off-axis. That is, the electrons passing on the axis of the aperture 5 are less likely to be affected by the aberration, and are more affected to the off-axis of the aperture 5. As a result, the electron trajectories in the objective lens 8 of the electrons reaching each point on the aperture 5 are greatly different. For this reason, it becomes difficult for the electron beams from all points in the collective figure to pass through the center of the lens. Since the electron beam passing off the axis of the objective lens 8 causes a reduction in the resolution of the drawing apparatus, it is impossible to uniformly transfer a collective figure in the above state.

【0003】従来の一括図形照射法では、竹本等が第4
0回応用物理学関係連合講演会講演予稿集552頁下段
で明らかにしているように、上記図形選択に伴う収差を
対物絞りを透過した試料上の電流量をモニタとし、それ
を最大にすることによって調整している。
In the conventional collective figure irradiation method, Takemoto et al.
As clarified in the lower part of the proceedings of the 0th Joint Lecture Meeting on Applied Physics on page 552, the aberration associated with the above figure selection should be maximized by using the current amount on the sample passing through the objective aperture as a monitor. Is adjusted by.

【0004】[0004]

【発明が解決しようとする課題】上記調整法において
は、対物絞りが大きいと収差に対する感度が低く、微小
な収差までは補正しきれない。また、対物絞りの中心と
レンズの中心とは、製作精度を考慮すると必ずしも一致
しないため、透過電流を最大にすることが光学的に最適
であるとはいえない。
In the above adjusting method, if the objective aperture is large, the sensitivity to aberrations is low, and even minute aberrations cannot be completely corrected. Further, since the center of the objective diaphragm and the center of the lens do not necessarily coincide with each other in consideration of manufacturing accuracy, it cannot be said that maximizing the transmitted current is optically optimal.

【0005】本発明の目的は、上記対物絞りを用いるこ
となく、より高精度な光学調整を実現することにある。
An object of the present invention is to realize more accurate optical adjustment without using the above-mentioned objective diaphragm.

【0006】[0006]

【課題を解決するための手段】上記目的は、一括図形照
射方法が可能な電子線描画装置の調整方法において、試
料上に照射された図形状ビームによる試料上の図形内で
の複数の位置を、異なる焦点条件のもとで測定し、それ
ぞれの変化量または複数の位置の間の相対的変化量、あ
るいはそれら両方を小さくする方向に、図形選択に伴う
非点収差の補正量、図形選択に伴う焦点の補正量、電子
鏡体のアライナの強度、アパーチャーの位置などの電子
光学系の調整を行うことにより達成される。
SUMMARY OF THE INVENTION The above object is to provide a method of adjusting an electron beam drawing apparatus capable of performing a collective figure irradiation method, in which a plurality of positions in a figure on a sample by a figure beam irradiated on the sample are determined. Measured under different focus conditions, the amount of astigmatism correction associated with figure selection, and figure selection in the direction of reducing each variation or the relative variation between multiple positions, or both This is achieved by adjusting the amount of focus correction, the aligner strength of the electron mirror body, the position of the aperture, and the like of the electron optical system.

【0007】上記照射図形内の複数の位置を、照射図形
内の決められた領域の重心によって定義することにより
達成され、また、上記図形状ビームがアパーチャーに設
けた2以上の独立した開口により形成されることにより
達成される。
Achieved by defining a plurality of positions within the illuminated figure by the center of gravity of a defined area within the illuminated figure, and wherein the graphic beam is formed by two or more independent apertures provided in the aperture. It is achieved by

【0008】さらに、上記電子光学系の調整を、静電の
非点補正器または焦点補正器で行い、いずれかの補正器
を図形選択のための偏向器を兼用することによって達成
される。
Further, the above-mentioned electron optical system is adjusted by an electrostatic astigmatism corrector or a focus corrector, and one of the correctors also serves as a deflector for selecting a figure.

【0009】すなわち、まず照射図形内の複数の位置を
測定し、これら複数の位置間の距離は図形選択に伴う収
差が発生すると、焦点変化に伴い変化するため、この焦
点変化による位置の相対的変化量を小さくする方向に電
子光学系の調整を行い、高精度の調整が可能になる。ま
た、絶対的変化量を小さくすることは、照射図形全体の
軸を調整する上で有効である。位置は特定のパターンエ
ッジや特定のパターンの中心等での定義ができるが、決
められた領域の重心より定義する方法が特に有効であ
る。調整する電子光学要素としては、主にクロスオーバ
ーの非点や焦点を補正する補正器、光軸を定めるアナイ
ラあるいはアパーチャーの位置などが考えられる。
That is, first, a plurality of positions in the irradiation figure are measured, and the distances between the plurality of positions change with the focus change when an aberration occurs due to the figure selection. The electron optical system is adjusted in the direction of reducing the amount of change, which enables highly accurate adjustment. Further, reducing the absolute change amount is effective in adjusting the axis of the entire irradiation figure. The position can be defined at a specific pattern edge or the center of a specific pattern, but the method of defining it from the center of gravity of a determined area is particularly effective. As the electro-optical element to be adjusted, a corrector for correcting the astigmatism and focus of the crossover, a position of an anaylor defining the optical axis, or the position of the aperture are mainly considered.

【0010】また、これらの調整を行うために、専用の
開口図形を用いることも有効であって、独立した複数
(2つ以上で多くとも4つ程度の少数がよい)の開口を
もつ図形がよい。4つの開口からなる図形の場合には、
2方向で重なり合わないように配置すると調整が容易に
なる。
In order to make these adjustments, it is also effective to use a dedicated aperture figure, and a figure having a plurality of independent apertures (two or more and at most four, a small number of apertures is good) is used. Good. In the case of a figure with four openings,
If the two directions are arranged so that they do not overlap each other, the adjustment becomes easy.

【0011】[0011]

【作用】転写レンズ部で発生する収差は図1に示すよう
に、転写レンズ部で発生する非点や像面湾曲などの収差
を補正する補正器15を、上記転写レンズ部に設置する
ことにより補正が可能である。なお、これらの補正器は
静電補正器でも電磁補正器でも構わない。これらの補正
器により電子ビームに発生する収差を補正することによ
って、対物レンズ内での離軸を小さくすることが可能に
なる。主にクロスオーバーに影響する収差を補正するの
で、補正器はクロスオーバーより遠い所(マスクおよび
その像面に近い所)に配置することが効果的になる。
As shown in FIG. 1, the aberration generated in the transfer lens section is corrected by installing a corrector 15 in the transfer lens section for correcting aberrations such as astigmatism and field curvature generated in the transfer lens section. Correction is possible. Note that these correctors may be electrostatic correctors or electromagnetic correctors. By correcting the aberration generated in the electron beam by these correctors, it becomes possible to reduce the off-axis in the objective lens. Since the aberration that mainly affects the crossover is corrected, it is effective to dispose the corrector at a position farther from the crossover (close to the mask and its image plane).

【0012】図3に示す試料面(描画するウエハやステ
ージ上の校正用マーク)近傍を拡大した図を図4に示
す。像の位置によって対物レンズ内での軸が異なるた
め、試料面における入射角度が異なり、図4内の2点の
距離は焦点条件によりからのように変化する。この
ため、上記2点間の距離が焦点条件の変化に対して出来
るだけ変化しないように調整することによって、転写レ
ンズ部での非点や像面を補正することができる。これに
より、対物レンズ内での離軸を抑制し、最終的には対物
レンズ内で発生する収差が低減される。また、図4は照
射図形内の軸が異なると、図形の寸法は焦点の誤差によ
り変化しやすいことも同時に示している。さらに、像の
位置の絶対的な位置変化を小さくすることにより、照射
図形の軸をレンズ中心に調整することが可能である。
FIG. 4 shows an enlarged view of the vicinity of the sample surface (the wafer to be drawn or the calibration mark on the stage) shown in FIG. Since the axis in the objective lens is different depending on the position of the image, the incident angle on the sample surface is different, and the distance between the two points in FIG. Therefore, the astigmatism and the image plane in the transfer lens unit can be corrected by adjusting the distance between the two points so as not to change as much as possible with respect to the change in the focus condition. As a result, the off-axis in the objective lens is suppressed, and finally the aberration generated in the objective lens is reduced. Further, FIG. 4 also shows that if the axes in the irradiation figure are different, the dimension of the figure is likely to change due to the error in focus. Furthermore, by reducing the absolute position change of the image position, the axis of the irradiation figure can be adjusted to the lens center.

【0013】上記2点間の距離は特定のパターンエッジ
や特定のパターンの中心等で、位置を定義することによ
り求めることが可能であるが、決められた領域の重心よ
り位置を定義する方法が特に有効である。その理由は、
焦点を変化させると解像度が劣化するために、ビームプ
ロファイルの立上りが緩慢になり、従来用いられていた
エッジ検出などの方法では検出信号のレベル変動などに
より、精度が低下する怖れがある。したがって、パター
ンの重心を求める方法や相関法によるマークの検出方法
などのように、多くの座標から位置を定義する方法が有
効になる。さらに、これらの調整を精度よく行うために
は、描画に用いるデバイスパターンでなく、専用の開口
図形を用いることが有効になる。具体的には独立した複
数(2以上で多くとも4程度の少数がよい)の開口をも
つ図形が、それぞれの開口の位置の測定として簡単であ
り好ましい。またこの時、それぞれの開口がX、Y方向
に重ならなければ、クロスワイヤ上などの1次元走査の
際に、複数の開口を独立に検出することができる。これ
らの開口は検出可能な電流量を得るためにある程度の大
きさが必要であり、これらの観点から5つ以上の開口を
設けることは困難である。
The distance between the two points can be obtained by defining the position at the specific pattern edge, the center of the specific pattern, or the like. However, a method of defining the position from the center of gravity of a determined area is available. Especially effective. The reason is,
Since the resolution deteriorates when the focus is changed, the rise of the beam profile becomes slow, and there is a fear that the accuracy may be deteriorated due to the level fluctuation of the detection signal in the conventionally used methods such as edge detection. Therefore, a method of defining a position from many coordinates is effective, such as a method of obtaining the center of gravity of a pattern or a method of detecting a mark by a correlation method. Further, in order to perform these adjustments with high accuracy, it is effective to use a dedicated aperture figure instead of the device pattern used for drawing. Specifically, a figure having a plurality of independent openings (two or more and a small number of at most about 4 is preferable) is preferable because it is easy to measure the position of each opening. At this time, if the openings do not overlap in the X and Y directions, the plurality of openings can be independently detected during one-dimensional scanning on the cross wire or the like. These openings need to have a certain size to obtain a detectable current amount, and it is difficult to provide five or more openings from these viewpoints.

【0014】上記説明では、後段の転写レンズの軸外収
差を仮定したが、図形選択偏向器4または17の軸外を
通過することによる収差や上記図形選択偏向器の製作誤
差による収差等も存在し、同様に電子軌道に影響を与え
る。これらを低減するためには、上記のように非点と焦
点を補正することが重要であるがアナイラやアパーチャ
ー位置の調整により、電子ビームをできるだけ転写レン
ズ中心を通過させることが、軸外収差の発生自体を低減
するので有効になる。
In the above description, the off-axis aberration of the transfer lens in the latter stage is assumed, but there are also aberrations due to the off-axis passing of the figure selection deflector 4 or 17 and aberrations due to manufacturing errors of the figure selection deflector. And similarly affect the electron orbit. In order to reduce these, it is important to correct the astigmatism and focus as described above, but it is necessary to allow the electron beam to pass through the center of the transfer lens as much as possible by adjusting the anira or aperture position. It is effective because it reduces the occurrence itself.

【0015】[0015]

【実施例】つぎに本発明の実施例を図面とともに説明す
る。図1は一括図形照射を行う電子線描画装置の第1実
施例における電子光学系を示す図、図5は上記第1実施
例のアパーチャーを示す図、図6は上記第1実施例のビ
ームプロファイルを示す図、図7はアパーチャーの位置
依存性を示す図、図8は本発明の第2実施例におけるア
パーチャーを示す図、図9は上記第2実施例のビームプ
ロファイルを示す図、図10は非点補正の効果を示す
図、図11は本発明の第3実施例におけるアパーチャー
を示す図、図12は金ドット像を示す図、図13は本発
明の第4実施例における電子光学系を示す図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a view showing an electron optical system in a first embodiment of an electron beam drawing apparatus for performing collective figure irradiation, FIG. 5 is a view showing an aperture of the first embodiment, and FIG. 6 is a beam profile of the first embodiment. FIG. 7 is a diagram showing the position dependence of the aperture, FIG. 8 is a diagram showing the aperture in the second embodiment of the present invention, FIG. 9 is a diagram showing the beam profile of the second embodiment, and FIG. FIG. 11 is a diagram showing an effect of astigmatism correction, FIG. 11 is a diagram showing an aperture in the third embodiment of the present invention, FIG. 12 is a diagram showing a gold dot image, and FIG. 13 is an electron optical system in the fourth embodiment of the present invention. FIG.

【0016】第1実施例 本発明の第1実施例における電子光学系を示す図1にお
いて、第2アパーチャー20は図5に示す配置にした。
中央に可変成形を配置し周辺に調整用の2点マークを配
したが、2点マークはウエハ面上で1μm角2つを5μ
m角の2つのコーナに配置して形成されている。破線で
区切られた部分がそれぞれ一括図形になる。本実施例で
は1番右上の2点マークを用いて調整を行ったが、図形
の配置場所によらず他の位置のマークを用いても同様の
方法が適用できる。上記2点のマークのそれぞれ1μm
角の中心座標を測定することによって調整を行う。ま
ず、クロスワイヤあるいは軽元素基板上の十字重金属マ
ーク上をX、Y方向にそれぞれ1次元走査し、ビームプ
ロファイルを求める。
First Embodiment In FIG. 1 showing the electron optical system in the first embodiment of the present invention, the second aperture 20 is arranged as shown in FIG.
A variable molding was placed in the center and two adjustment marks were placed on the periphery.
It is formed by arranging in two corners of m-square. The parts separated by broken lines become collective figures. In the present embodiment, the adjustment is performed using the two-point mark at the upper right of the first position, but the same method can be applied by using marks at other positions regardless of the graphic arrangement position. 1 μm for each of the above two marks
The adjustment is made by measuring the center coordinates of the corners. First, a cross wire or a cross heavy metal mark on a light element substrate is one-dimensionally scanned in the X and Y directions to obtain a beam profile.

【0017】図6に2点マークのビームプロファイルを
示す。(a)は励磁を最適化し検出面上に焦点を結んだ
場合を示し、(b)は対物レンズが強励磁の場合を示し
ている。強励磁の場合はビームエッジが緩慢になる。そ
れぞれの開口の重心から各励磁での開口の相対距離がそ
れぞれ求められる。この相対距離の励磁を変化させたと
きの変化を求める。重心は最も簡単な方法として、測定
点の座標と信号強度の積を決められた範囲で積算し、信
号強度の積算で語ることにより求めた。図6では強励磁
の場合の方が距離は短い。他にプロファイルのエッジに
より位置を求めるなど、何らかの位置の定義を行えば本
発明の適用が可能である。
FIG. 6 shows the beam profile of the two-point mark. (A) shows the case where the excitation is optimized and the focus is focused on the detection surface, and (b) shows the case where the objective lens is strongly excited. In the case of strong excitation, the beam edge becomes slow. From the center of gravity of each opening, the relative distance of the opening at each excitation is obtained. The change in excitation of this relative distance is changed. As the simplest method, the center of gravity was calculated by summing the product of the coordinates of the measurement points and the signal strength within a predetermined range and talking by summing the signal strength. In FIG. 6, the distance is shorter in the case of strong excitation. Besides, the present invention can be applied if a position is defined, for example, the position is obtained from the edge of the profile.

【0018】図7に焦点変化による相対距離変化をアパ
ーチャーの機械的な原点位置を変化させて求めた結果を
示す。移動距離300μmでX、Yともに変化量は最低
になる。したがって、移動距離300μmの位置でアパ
ーチャーが電子光学系の中心に位置することになる。こ
のようにアパーチャーの原点位置を転写レンズの中心に
移動させることにより、レンズ中での離軸の影響を低減
することが可能になり、図形内での相対距離の差は低減
される。結果として相対距離の変化を1/3にまで調整
できたことが判る。これにより描画図形の変形を防ぐこ
とが可能になり、ショット接続精度が0.05μmから
0.03μmへと向上した。解像度も0.1μmが得ら
れた。なお、本実施例ではアパーチャーの原点位置にか
かわらず、電子ビームの電流密度は1%の精度で変化し
なかった。
FIG. 7 shows the result of the change in the relative distance due to the change in focus obtained by changing the mechanical origin position of the aperture. The amount of change in both X and Y becomes the minimum when the moving distance is 300 μm. Therefore, the aperture is located at the center of the electron optical system at the position where the moving distance is 300 μm. By moving the origin position of the aperture to the center of the transfer lens in this way, it is possible to reduce the influence of off-axis in the lens and reduce the difference in relative distance in the figure. As a result, it can be seen that the change in relative distance could be adjusted to 1/3. As a result, it is possible to prevent the drawing figure from being deformed, and the shot connection accuracy is improved from 0.05 μm to 0.03 μm. The resolution was 0.1 μm. In this example, the electron beam current density did not change with an accuracy of 1% regardless of the origin position of the aperture.

【0019】第2実施例 アパーチャーの他の配置図を図8に示す。本実施例では
図8に示すようなマークを設けたが、これは0.5μm
角の開口を1μmの間隔で4個並べたものである。これ
により、より正確に図形内の電子軌道の様子を知ること
ができる。ビームプロファイルは図9のようになり、そ
れぞれの重心を求めた。本実施例ではレンズを強励磁に
した際にAとBのX方向の相対距離が短縮され、CとD
のY方向の相対距離が拡大された。これは、転写レンズ
部で非点収差が生じていることを示している。非点収差
は偏向器の製作誤差やレンズの非対称性などにより生じ
る。これに対しては非点補正器30(図13参照)によ
り補正を行った。非点補正器は静電補正器と電磁補正器
の双方で補正できる。本実施例では静電の補正器を用い
た。その結果、図10に示すようにAとBのX方向の相
対距離とCとDのY方向の相対距離の変化が、非点補正
量に従って変化し、最適値で補正前の1/10へと低減
することができた。この結果、第1実施例と同様のショ
ット接続精度の向上を図ることができた。また、非点補
正器はアパーチャー上の各々の点での収差の差を補正す
るために、図形選択偏向の偏向中心に形成される電子源
のクロスオーバー像より第1または第2アパーチャー近
くに設置することが有効である。なお、この4点マーク
は図形ビームの図形歪の計測などにも応用が可能であ
る。これにより調整前に6インチウエハ内で0.05μ
mあった寸法精度の誤差が、0.03μmまで低減でき
た。
Second Embodiment Another layout of the aperture is shown in FIG. In this embodiment, a mark as shown in FIG. 8 is provided, which is 0.5 μm.
Four corner openings are arranged at an interval of 1 μm. This makes it possible to know the state of the electron orbit in the figure more accurately. The beam profile is as shown in FIG. 9, and the center of gravity of each is determined. In this embodiment, when the lens is strongly excited, the relative distance between A and B in the X direction is shortened, and C and D
The relative distance in the Y direction has been expanded. This indicates that astigmatism has occurred in the transfer lens unit. Astigmatism is caused by the manufacturing error of the deflector and the asymmetry of the lens. For this, the astigmatism corrector 30 (see FIG. 13) was used for correction. The astigmatism corrector can be corrected by both the electrostatic corrector and the electromagnetic corrector. In this embodiment, an electrostatic compensator was used. As a result, as shown in FIG. 10, the change in the relative distance between A and B in the X direction and the change in the relative distance between C and D in the Y direction changes according to the astigmatism correction amount, and becomes 1/10 before correction at the optimum value. And could be reduced. As a result, it was possible to improve the shot connection accuracy as in the first embodiment. Further, the astigmatism corrector is installed closer to the first or second aperture than the crossover image of the electron source formed at the deflection center of the figure selective deflection in order to correct the difference in aberration at each point on the aperture. It is effective to do. The four-point mark can be applied to measurement of the figure distortion of the figure beam. As a result, before adjustment, 0.05μ in 6 inch wafer
The dimensional accuracy error, which was m, could be reduced to 0.03 μm.

【0020】第3実施例 本実施例では図11に示す4点マークを用いたが、この
4点マークでは第1実施例および第2実施例のように1
次元のビームプロファイルを求めても、2つのマークが
重なってしまい各マークの重心を求めることができな
い。そこで本実施例では0.2μmの金ドットを用いて
2次元の走査を行うことにより、図12に示す4点マー
クの反射電子2次元像を得た。これにより4つのマーク
の位置情報を独立に得ることが可能になる。反射電子2
次元像でもそれぞれの点の2方向の重心を求めることに
より、相対距離の変化が定量的に求められる。図12で
は全てのマークが等方的に外に向って移動しており、ク
ロスオーバーに像面湾曲を発生していることが考えられ
る。像面湾曲の補正は、転写レンズ内に静電または電磁
の補正器を設けることにより可能になる。2次元情報は
他に微小な孔の上を図形ビームで2次元走査し、上記孔
を透過した電子をモニタすることにより得ることも可能
である。本実施例では焦点補正により接続精度0.07
μmから0.03μmに向上することができた。
Third Embodiment Although the four-point mark shown in FIG. 11 is used in this embodiment, the four-point mark is 1 as in the first and second embodiments.
Even if the three-dimensional beam profile is obtained, the two marks overlap and the center of gravity of each mark cannot be obtained. Therefore, in this example, two-dimensional scanning was performed using 0.2 μm gold dots to obtain a two-dimensional backscattered electron image of the four-point mark shown in FIG. This makes it possible to obtain the position information of the four marks independently. Backscattered electron 2
Even in a three-dimensional image, the change in relative distance can be quantitatively obtained by obtaining the center of gravity of each point in two directions. In FIG. 12, it is conceivable that all the marks are isotropically moved outward and that curvature of field is generated in the crossover. The field curvature can be corrected by providing an electrostatic or electromagnetic corrector in the transfer lens. Alternatively, the two-dimensional information can be obtained by two-dimensionally scanning a fine hole with a graphic beam and monitoring the electrons transmitted through the hole. In this embodiment, the connection accuracy is 0.07 due to the focus correction.
It was possible to improve from μm to 0.03 μm.

【0021】第4実施例 図13は第4実施例の電子光学系を示す図である。転写
偏向部には可変成形用静電偏向器29の上下に図形選択
用の8極静電偏向器30が設けられている上下の偏向器
を連動することにより、偏向中心を可変成形と偏向中心
を一致させている。図形選択偏向に伴う収差は上部の8
極の静電偏向器30に電圧を印加することにより、すな
わち、静電偏向器と静電非点補正器を兼用することによ
り補正を行う。これにより渦電流などの応答遅れの影響
がない静電補正での非点補正を、場所の増加なしに行う
ことができる。収差は選択する図形の位置によって変化
するために、収差の補正は図形選択に連動して動的に行
う必要がある。補正すべき値は上記実施例などの方法に
より予め求めることができるので、その値を設定するた
めの時間を短縮することが重要である。本実施例では静
電補正器による非点補正を行ったために、3μsで補正
が可能であった。また、図形選択による離軸が大きな所
で補正を行うと、補正にともない第1アパーチャー像の
第2アパーチャー上における位置が大きく動き、補正を
行う上で障害になる可能性がある。したがって、非点補
正器30を上段の偏向器と兼用にした方がこの影響を受
けにくいという利点がある。もちろん、下段の偏向器と
兼用しても補正は可能である。同様なことは静電の焦点
補正器で可能であり、偏向器に焦点補正用の電圧を印加
すればよい。
Fourth Embodiment FIG. 13 is a diagram showing the electron optical system of the fourth embodiment. The transfer deflecting unit is provided with an eight-pole electrostatic deflector 30 for selecting a figure above and below the variable shaping electrostatic deflector 29. Are matched. Aberrations associated with figure selective deflection are 8
The correction is performed by applying a voltage to the electrostatic deflector 30 of the pole, that is, by using both the electrostatic deflector and the electrostatic astigmatism corrector. As a result, astigmatism correction by electrostatic correction that is not affected by response delay such as eddy current can be performed without increasing the place. Since the aberration changes depending on the position of the figure to be selected, it is necessary to dynamically correct the aberration in association with the figure selection. Since the value to be corrected can be obtained in advance by the method of the above embodiment or the like, it is important to shorten the time for setting the value. In this embodiment, since the astigmatism correction was performed by the electrostatic compensator, the correction was possible in 3 μs. Further, if the correction is performed in a place where the off-axis due to the figure selection is large, the position of the first aperture image on the second aperture is greatly moved due to the correction, which may be an obstacle to the correction. Therefore, it is advantageous that the astigmatism corrector 30 is also used as the upper deflector because it is less likely to be affected by this. Of course, the correction can be performed even if it is used also as the lower deflector. The same thing can be done with the electrostatic focus corrector, and a voltage for focus correction may be applied to the deflector.

【0022】また、上記各実施例に限らず、電子光学の
調整方法として電子銃の位置や動作条件、アパーチャー
の傾斜なども考えられ、いずれも照射図形の位置変化を
小さくすることにより調整が可能になる。
In addition to the above-mentioned respective embodiments, the position and operating conditions of the electron gun, the inclination of the aperture, etc. can be considered as the electron optics adjusting method, and any of them can be adjusted by reducing the position change of the irradiation figure. become.

【0023】[0023]

【発明の効果】上記のように本発明による電子線描画装
置の調整方法は、一括図形照射法が可能な電子線描画装
置の調整方法において、試料上に照射された図形状ビー
ムによる試料上の図形内での複数の位置を、異なる焦点
条件のもとで測定し、それぞれの変化量または複数の位
置の間の相対的変化量、あるいはそれら両方を小さくす
る方向に、図形選択に伴う非点収差の補正量と図形選択
に伴う焦点の補正量と、電子鏡体のアライナの強度およ
びアパーチャーの位置などの電子光学系の調整を行うこ
とにより、クロスオーバーに発生する収差を計測し、低
減することが可能であり、精度がよい描画を実現するこ
とができる。
As described above, the adjusting method of the electron beam drawing apparatus according to the present invention is the same as the adjusting method of the electron beam drawing apparatus capable of performing the collective figure irradiation method, and the sample shape beam irradiated on the sample is used. Astigmatism associated with figure selection in the direction of measuring multiple positions in a figure under different focus conditions and reducing the amount of change of each, the relative change between multiple positions, or both. By adjusting the amount of aberration correction and the amount of focus correction associated with figure selection, and the electron optical system such as the aligner strength and aperture position of the electron mirror body, the aberration that occurs at the crossover is measured and reduced. It is possible to realize accurate drawing.

【図面の簡単な説明】[Brief description of drawings]

【図1】一括図形照射を行う電子線描画装置における第
1実施例の電子光学系を示す図である。
FIG. 1 is a diagram showing an electron optical system of a first embodiment in an electron beam drawing apparatus that performs collective graphic irradiation.

【図2】収差がない場合の図形選択時における電子軌道
を示す図である。
FIG. 2 is a diagram showing electron trajectories when a figure is selected when there is no aberration.

【図3】収差がある場合の図形選択時における電子軌道
を示す図である。
FIG. 3 is a diagram showing electron trajectories when a figure is selected when there is an aberration.

【図4】試料面近傍における電子軌道を示す図である。FIG. 4 is a diagram showing electron trajectories in the vicinity of the sample surface.

【図5】上記第1実施例のアパーチャーを示す図であ
る。
FIG. 5 is a diagram showing an aperture of the first embodiment.

【図6】上記第1実施例のビームプロファイルを示す図
で、(a)は結像状態の場合を示す図、(b)は強励磁
の場合を示す図である。
6A and 6B are diagrams showing a beam profile of the first embodiment, wherein FIG. 6A is a diagram showing a case of an image formation state, and FIG. 6B is a diagram showing a case of strong excitation.

【図7】アパーチャーの位置依存性を示す図である。FIG. 7 is a diagram showing position dependence of an aperture.

【図8】本発明の第2実施例におけるアパーチャーを示
す図である。
FIG. 8 is a diagram showing an aperture according to a second embodiment of the present invention.

【図9】上記第2実施例のビームプロファイルを示す図
で、(a)は結像状態の場合を示す図、(b)は強励磁
の場合を示す図である。
9A and 9B are diagrams showing a beam profile of the second embodiment, wherein FIG. 9A is a diagram showing a case of an image formation state, and FIG. 9B is a diagram showing a case of strong excitation.

【図10】非点補正の効果を示す図である。FIG. 10 is a diagram showing an effect of astigmatism correction.

【図11】本発明の第3実施例におけるアパーチャーを
示す図である。
FIG. 11 is a diagram showing an aperture according to a third embodiment of the present invention.

【図12】金ドット像を示す図で、(a)は結像状態の
場合を示す図、(b)は強励磁の場合を示す図である。
12A and 12B are diagrams showing a gold dot image, FIG. 12A showing a case of an image formation state, and FIG. 12B showing a case of strong excitation.

【図13】本発明の第4実施例における電子光学系を示
す図である。
FIG. 13 is a diagram showing an electron optical system in a fourth example of the present invention.

【符号の説明】[Explanation of symbols]

9、27 試料面(ウエハ) 13、14、20、21 アパーチャー 15 非点補正器 19、30、31 図形選択偏向器 9, 27 Sample surface (wafer) 13, 14, 20, 21 Aperture 15 Astigmatism corrector 19, 30, 31 Figure selective deflector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01J 37/21 Z 37/305 B 9172−5E (72)発明者 伊藤 博之 茨城県勝田市市毛882番地 株式会社日立 製作所計測器事業部内 (72)発明者 加藤 慎一 茨城県勝田市市毛882番地 株式会社日立 製作所計測器事業部内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location H01J 37/21 Z 37/305 B 9172-5E (72) Inventor Hiroyuki Ito Ichige Katsuta, Katsuta City, Ibaraki Prefecture 882 Address: Hitachi, Ltd., Measurement Instruments Division (72) Inventor: Shinichi Kato, 882, Ige, Katsuta-shi, Ibaraki Hitachi Ltd., Measurement Instruments Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一括図形照射方法が可能な電子線描画装置
の調整方法において、試料上に照射された図形状ビーム
による試料上の図形内での複数の位置を、異なる焦点条
件のもとで測定し、それぞれの変化量または複数の位置
の間の相対的変化量、あるいはそれら両方の変化量を小
さくする方向に、図形選択に伴う非点収差の補正量、図
形選択に伴う焦点の補正量、電子鏡体のアライナの強
度、アパーチャーの位置などの、電子光学系の調整を行
うことを特徴とする電子線描画装置の調整方法。
1. An electron beam drawing apparatus adjusting method capable of performing a collective figure irradiation method, wherein a plurality of positions in a figure on a sample by a figure-shaped beam irradiated on the sample are set under different focus conditions. Astigmatism correction amount due to figure selection, focus correction amount due to figure selection in the direction of decreasing the change amount of each change amount or the relative change amount between a plurality of positions or both of them by measuring. A method for adjusting an electron beam drawing apparatus, which comprises adjusting an electron optical system such as aligner strength of an electron mirror body and position of an aperture.
【請求項2】上記照射図形内の複数の位置は、照射図形
内の決められた領域の重心により定義することを特徴と
する請求項1記載の電子線描画装置の調整方法。
2. The adjusting method for an electron beam drawing apparatus according to claim 1, wherein the plurality of positions in the irradiation figure are defined by the center of gravity of a predetermined area in the irradiation figure.
【請求項3】上記図形状ビームは、アパーチャーに設け
た2つ以上の独立した開口により形成されることを特徴
とする請求項1記載の電子線描画装置の調整方法。
3. The method of adjusting an electron beam drawing apparatus according to claim 1, wherein the figure-shaped beam is formed by two or more independent openings provided in the aperture.
【請求項4】上記電子光学系の調整は、静電の非点また
は焦点補正器で行い、上記いずれかの補正器を図形選択
のための偏向器と兼用することを特徴とする請求項1記
載の電子線描画装置の調整方法。
4. The electronic optical system is adjusted by an electrostatic astigmatism or focus corrector, and any one of the correctors is also used as a deflector for selecting a figure. A method for adjusting the electron beam drawing apparatus described.
JP12908794A 1994-06-10 1994-06-10 Electron beam drawing apparatus and adjustment method thereof Expired - Fee Related JP3357181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12908794A JP3357181B2 (en) 1994-06-10 1994-06-10 Electron beam drawing apparatus and adjustment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12908794A JP3357181B2 (en) 1994-06-10 1994-06-10 Electron beam drawing apparatus and adjustment method thereof

Publications (2)

Publication Number Publication Date
JPH07335531A true JPH07335531A (en) 1995-12-22
JP3357181B2 JP3357181B2 (en) 2002-12-16

Family

ID=15000760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12908794A Expired - Fee Related JP3357181B2 (en) 1994-06-10 1994-06-10 Electron beam drawing apparatus and adjustment method thereof

Country Status (1)

Country Link
JP (1) JP3357181B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100329347B1 (en) * 1998-07-10 2002-03-22 히로시 오우라 Charged-particle beam lithography system of blanking aperture array type
WO2004030056A1 (en) * 2002-09-24 2004-04-08 Nikon Corporation Method for correcting astigmatism, method for determining astigmatic sensitivity and method for exposure in charged particle beam aligner
JP2007188950A (en) * 2006-01-11 2007-07-26 Nuflare Technology Inc Method for computing deflected aberration-compensating voltage, and method for drawing charged particle beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100329347B1 (en) * 1998-07-10 2002-03-22 히로시 오우라 Charged-particle beam lithography system of blanking aperture array type
WO2004030056A1 (en) * 2002-09-24 2004-04-08 Nikon Corporation Method for correcting astigmatism, method for determining astigmatic sensitivity and method for exposure in charged particle beam aligner
JP2007188950A (en) * 2006-01-11 2007-07-26 Nuflare Technology Inc Method for computing deflected aberration-compensating voltage, and method for drawing charged particle beam

Also Published As

Publication number Publication date
JP3357181B2 (en) 2002-12-16

Similar Documents

Publication Publication Date Title
US6137111A (en) Charged particle-beam exposure device and charged-particle-beam exposure method
US6835937B1 (en) Correcting method for correcting exposure data used for a charged particle beam exposure system
US5864142A (en) Electron beam exposure apparatus and method of controlling same
JP3335845B2 (en) Charged beam drawing apparatus and drawing method
JP4652830B2 (en) Aberration adjustment method, device manufacturing method, and charged particle beam exposure apparatus
US5770863A (en) Charged particle beam projection apparatus
US8759797B2 (en) Drawing apparatus, drawing method, and method of manufacturing article
JPH10214779A (en) Electron beam exposure method and fabrication of device using that method
US20030077530A1 (en) Methods and devices for controlling blur resulting from the space-charge effect and geometrical aberration in a charged-partical-beam microlithography apparatus
US5391886A (en) Charged particle beam exposure system and method of exposing a pattern on an object by such a charged particle beam exposure system
US4443703A (en) Method and apparatus of deflection calibration for a charged particle beam exposure apparatus
JPH03108312A (en) Correction of astigmatism of charged particle beam
US20070215812A1 (en) Correction Lens System for a Particle Beam Projection Device
EP1435640B1 (en) Electron beam writing equipment and method
JP3803105B2 (en) Electron beam application equipment
JP3299647B2 (en) Electron beam drawing apparatus and electron beam drawing method
JPS6042825A (en) Exposure device by charged beam
JP3357181B2 (en) Electron beam drawing apparatus and adjustment method thereof
JPH08195345A (en) Electron beam drawing device
JP2006210455A (en) Charged particle exposure apparatus and method of fabricating device using apparatus
US7015482B2 (en) Electron beam writing equipment using plural beams and method
JP4181533B2 (en) Electron beam drawing device
JPS6142132A (en) Charged beam exposure apparatus
JPH0817702A (en) Apparatus and method for charged-particle-beam
TWI843354B (en) Charged particle beam device and inspection method using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131004

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees