JP2002246303A - Method of adjusting focal point and electron beam lithography system - Google Patents

Method of adjusting focal point and electron beam lithography system

Info

Publication number
JP2002246303A
JP2002246303A JP2001045171A JP2001045171A JP2002246303A JP 2002246303 A JP2002246303 A JP 2002246303A JP 2001045171 A JP2001045171 A JP 2001045171A JP 2001045171 A JP2001045171 A JP 2001045171A JP 2002246303 A JP2002246303 A JP 2002246303A
Authority
JP
Japan
Prior art keywords
objective lens
lens
deflector
objective
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001045171A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ito
博之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001045171A priority Critical patent/JP2002246303A/en
Publication of JP2002246303A publication Critical patent/JP2002246303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of adjusting focal point, by which the focal point of a beam including a beam having an arbitrary shape can be adjusted with high accuracy, and to provide an electron beam lithography system which can write a pattern with high accuracy. SOLUTION: The lens value of an objective lens 8 is set in a plurality of stages, by using an objective lens driving circuit 21 or a dynamic focal point corrector 22, and the focal point of the lens 8 is adjusted to the lens value at which positional deviation δr of a mark on the surface 28 of a sample becomes minimal, by scanning the deviation of the axis of the lens 8 using a deflection control circuit 14, while the angle θ of incidence on the lens 8 is changed under different conditions and measuring the positional deviation δr by means of mark position detecting mechanisms 16 and 18.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体製造分野等に
おける電子線描画装置に係わり、特に任意断面形状を有
する電子ビームの焦点調整方法及び電子線描画装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam lithography apparatus in the field of semiconductor manufacturing and the like, and more particularly to a method of adjusting the focus of an electron beam having an arbitrary cross-sectional shape and an electron beam lithography apparatus.

【0002】[0002]

【従来の技術】電子線描画装置は、半導体製造分野では
パターン生成機能により光露光等のマスク原版作成や少
量多品種品の直接描画、特に先端デバイスの試作に適用
され有用性を実証している。電子線描画装置は、電子源
像やビーム成形開口像を試料面に投影、走査して微細パ
ターンを形成していく。特に後者の可変成形方式ではビ
ーム形状を矩形成形開口と成形偏向器で制御し、試料面
に縮小投影して効率的にパターンを形成する。このため
可変成形方式は、電子源像を転写する点ビーム方式に比
べ描画の高速化を実現している。更に、近年は繰り返し
パターンをあらかじめ一括露光開口として形成し転写す
る部分一括露光方法が実用化され飛躍的な描画速度の向
上と高精度化を達成している。
2. Description of the Related Art In the field of semiconductor manufacturing, an electron beam lithography apparatus has been demonstrated to be useful in pattern production functions for mask originals such as light exposure and the like, and for direct drawing of small-quantity multi-products, especially for trial production of advanced devices. . The electron beam lithography apparatus projects and scans an electron source image and a beam shaping aperture image on a sample surface to form a fine pattern. In particular, in the latter variable shaping method, the beam shape is controlled by a rectangular shaping aperture and a shaping deflector, and the pattern is efficiently formed by reducing and projecting the beam onto the sample surface. For this reason, the variable shaping method achieves a higher writing speed than the point beam method for transferring the electron source image. Furthermore, in recent years, a partial batch exposure method for forming and transferring a repetitive pattern as a batch exposure aperture in advance has been put to practical use, and has dramatically improved the drawing speed and achieved higher precision.

【0003】このような状況で半導体デバイスデザイン
ルールが100nm以下に進みつつあり、微細性を安定
に確保するためには焦点(フォーカス)補正の高精度化
が重要である。従来はビームボケをマーク走査し波形の
ボケとして計測していた。例えばガウシアンビームの場
合は走査波形の立ち上がりや微分波形の半値幅、単純な
矩形ビームの場合は1次微分波形の立ち上がりや2次微
分波形の波高値として定量化し、最適な焦点位置を求め
ている。
Under such circumstances, the design rule of semiconductor devices has been reduced to 100 nm or less, and it is important to improve the accuracy of focus correction in order to stably maintain fineness. Conventionally, beam blur has been measured by mark scanning and waveform blur. For example, in the case of a Gaussian beam, the half value width of the scanning waveform or the differential waveform is quantified as the rising edge of the primary differential waveform or the peak value of the secondary differential waveform in the case of a simple rectangular beam, and the optimal focus position is obtained. .

【0004】なお、ダイナミック・フォーカス(動的焦
点調整)については、例えば特開2000−22816
4号公報等に開示がある。
The dynamic focus (dynamic focus adjustment) is described in, for example, JP-A-2000-22816.
No. 4 discloses such a technique.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記し
た微分を用いる方式には以下の問題点があった。第一点
は微分処理等の高度な信号処理が必要であり処理時間が
長く、また微分処理はノイズに弱いことである。第二点
は複雑な形状の一括転写ビームの場合、原理的にビーム
ボケを定量化することに困難がある。例えば円形絞りや
角度図形の場合に、通常のビーム走査波形でビームボケ
を抽出することは困難である。また、ビーム位置決め精
度の観点からは焦点ずれによるビーム結像位置ずれが問
題となる。
However, the above-mentioned system using differentiation has the following problems. The first point is that advanced signal processing such as differential processing is required, processing time is long, and differential processing is weak against noise. Second, in the case of a batch transfer beam having a complicated shape, it is difficult in principle to quantify beam blur. For example, in the case of a circular aperture or an angle figure, it is difficult to extract a beam blur with a normal beam scanning waveform. Further, from the viewpoint of beam positioning accuracy, a beam imaging position shift due to a focus shift becomes a problem.

【0006】本発明の目的は、高精度のビーム焦点(フ
ォーカス)調整を可能とする焦点調整方法又は電子線描
画装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a focus adjusting method or an electron beam writing apparatus which enables highly accurate beam focus adjustment.

【0007】本発明の他の目的は、任意形状ビームを含
む高精度なビーム焦点調整を実現する焦点調整方法又は
高精度なパターン描画を可能とした電子線描画装置を提
供することである。
Another object of the present invention is to provide a focus adjustment method for realizing high-precision beam focus adjustment including a beam having an arbitrary shape or an electron beam lithography apparatus capable of high-precision pattern writing.

【0008】[0008]

【課題を解決するための手段】本発明の第1の特徴とす
るところは、電子線描画装置の焦点調整方法であって、
対物レンズを複数の異なるレンズ値に設定するステップ
と、これらのレンズ値の下で入射角を変化させ校正マー
ク上を走査するステップと、これらの走査における試料
ステージ上でのビーム位置を検知するステップと、入射
角の変化に伴って生じるビーム位置のずれが最小となる
レンズ値を判定するステップと,この判定されたレンズ
値を対物レンズのレンズ値として設定するステップとを
含むことである。
A first feature of the present invention is a method of adjusting the focus of an electron beam drawing apparatus,
Setting the objective lens to a plurality of different lens values; changing the incident angle under these lens values to scan on the calibration mark; and detecting the beam position on the sample stage in these scans And a step of determining a lens value that minimizes a beam position shift caused by a change in the incident angle, and a step of setting the determined lens value as a lens value of the objective lens.

【0009】本発明の第2の特徴とするところは、電子
線描画装置において、対物レンズを複数の異なるレンズ
値に設定する手段と、これらそれぞれの条件の下で,軸
調整偏向手段により入射角を変化させ校正マーク上を走
査して試料ステージ上でのビーム位置を検知する手段
と、入射角の変化に伴って生じるビーム位置のずれが最
小となるレンズ値を対物レンズに設定する手段とを備え
たことである。
A second feature of the present invention is that, in the electron beam lithography apparatus, means for setting the objective lens to a plurality of different lens values, and under each of these conditions, the angle of incidence by the axis adjusting deflecting means. Means for scanning the calibration mark to detect the beam position on the sample stage, and means for setting the objective lens with a lens value that minimizes the displacement of the beam position caused by a change in the incident angle. It is prepared.

【0010】このようにして位置ずれを計測すること
で、複雑な微分処理等を用いずとも所望の最適レンズ値
の設定が可能である。また、任意パターンの位置計測に
より焦点合わせが可能である。更に、多少のビーム軸ず
れがあってもビーム照射位置ずれを最小化できる。
By measuring the displacement in this way, it is possible to set a desired optimum lens value without using complicated differentiation processing or the like. Focusing is possible by measuring the position of an arbitrary pattern. Furthermore, even if there is some beam axis deviation, the beam irradiation position deviation can be minimized.

【0011】本発明のその他の特徴は、以下に述べる実
施例の説明によって明らかにする。
Other features of the present invention will become apparent from the following description of embodiments.

【0012】[0012]

【発明の実施の形態】図1は、本発明の一実施例による
可変成形型電子線描画装置の全体構成を示す図である。
図1において、電子源1より照射された電子ビームは一
般に矩形形状の第一成形開口2を通過し、成形レンズ3
により第二成形開口4に結像される。第二の成形開口4
は矩形開口等が配置され、成形偏向器5により第一の矩
形開口像位置が制御され成形ビーム6が発生される。発
生した成形ビーム6は縮小レンズ7により数十分の1に
縮小され対物レンズ8に入射される。対物レンズ8は、
試料ステージ9上に成形ビーム6の像を形成する。試料
ステージ駆動系10および対物偏向器11は成形ビーム
6を描画位置へ順次移動、偏向照射し描画試料上にLS
Iパターンを描画する。制御計算機12は描画データに
応じて、ビーム形状は成形偏向駆動系(制御回路)1
3、照射位置は対物偏向制御回路14および試料ステー
ジ制御回路15を介して駆動制御する。一括露光方式で
は更に成形偏向駆動系13により所望の形状開口が選択
される。反射電子検出器16は試料ステージ9上に配置
した校正用マーク17から反射する電子を検知する。信
号処理回路18は対物偏向器11でマーク17上をビー
ム走査し、得られた信号波形からビーム位置等を検出す
る。19は軸調整偏向器、20はその駆動回路である。
対物レンズ駆動回路21は、対物レンズ8のレンズ値を
調整し、焦点(フォーカス)を調整する。また、より高
速に、焦点(フォーカス)調整を行うための動的焦点
(ダイナミックフォーカス)補正器22とその駆動回路
23を備えており、本発明による焦点調整においても、
これらのいずれを用いても良い。
FIG. 1 is a diagram showing the overall configuration of a variable-shaped electron beam lithography apparatus according to one embodiment of the present invention.
In FIG. 1, an electron beam emitted from an electron source 1 passes through a first forming aperture 2 having a generally rectangular shape, and a shaped lens 3 is formed.
Thereby, an image is formed on the second forming opening 4. Second forming opening 4
A rectangular aperture or the like is arranged, and the shape of the first rectangular aperture image position is controlled by the shaping deflector 5 to generate a shaping beam 6. The formed shaping beam 6 is reduced to several tenths by a reduction lens 7 and is incident on an objective lens 8. The objective lens 8
An image of the shaped beam 6 is formed on the sample stage 9. The sample stage drive system 10 and the objective deflector 11 sequentially move the shaping beam 6 to the drawing position, irradiate the beam, irradiate the beam, and LS on the drawing sample.
Draw an I pattern. The control computer 12 adjusts the beam shape according to the drawing data by the shaping / deflection drive system (control circuit) 1.
3. The irradiation position is driven and controlled via the objective deflection control circuit 14 and the sample stage control circuit 15. In the batch exposure method, a desired shape opening is further selected by the molding deflection drive system 13. The backscattered electron detector 16 detects electrons reflected from the calibration mark 17 arranged on the sample stage 9. The signal processing circuit 18 performs beam scanning on the mark 17 by the objective deflector 11 and detects a beam position and the like from the obtained signal waveform. 19 is an axis adjusting deflector, and 20 is a drive circuit thereof.
The objective lens drive circuit 21 adjusts the lens value of the objective lens 8 and adjusts the focus. In addition, a dynamic focus corrector 22 for performing focus adjustment at a higher speed and a driving circuit 23 thereof are provided.
Any of these may be used.

【0013】図1では、簡略化のために照射量を制御す
るためのビームブランキング機能、試料ステージ座標計
測機構、試料等は省略されている。また、図1では可変
成形型電子線描画装置について示したが、本発明は、原
理的にガウシアン(点)ビームに対しても適用可能であ
ることは自明であり、その場合は、図1における成形光
学系を省略した光学系となる。
FIG. 1 omits a beam blanking function for controlling the irradiation dose, a sample stage coordinate measuring mechanism, and a sample for simplification. Although FIG. 1 shows a variable-shaped electron beam lithography apparatus, it is obvious that the present invention can also be applied to a Gaussian (point) beam in principle. In that case, in FIG. This is an optical system in which the molding optical system is omitted.

【0014】図2は、図1における構成での対物レンズ
結像関係を模式的に示す本発明の原理図である。座標軸
は対物レンズ8の軸方向にZ軸、Z軸に垂直な面にXY
軸をとる。対物レンズ8内にZ軸上の物点24より入射
した軸上ビーム25は対物レンズ8の作用により軸上の
結像点26に収束する。同じく物点24より離軸入射角
θで傾斜した離軸ビーム27も同様にレンズ作用により
結像点26に収束される。対物レンズ8のレンズ値(レ
ンズ強度)が不足している場合、結像点26は、より遠
くに移動するので、等価的には図2の試料面28を、逆
に、レンズ方向にZ=hだけ近づけ試料面29としたに
等しい。したがって、軸上ビーム25の試料到達点26
に対し、離軸ビーム27の試料到達点はXY座標平面上
でδrだけ、ずれることになる。このずれは、対物レン
ズ駆動回路18又は動的焦点補正器22を用いて、対物
レンズ10のレンズ値を適切に大きくすれば消滅し、1
点に収束させることができる。この焦点合わせを、本発
明においては、次のような方法で実現する。
FIG. 2 is a principle diagram of the present invention, schematically showing the objective lens imaging relationship in the configuration shown in FIG. The coordinate axes are Z axis in the axial direction of the objective lens 8 and XY on a plane perpendicular to the Z axis.
Take the axis. An on-axis beam 25 entering the objective lens 8 from an object point 24 on the Z axis converges on an on-axis imaging point 26 by the action of the objective lens 8. Similarly, the off-axis beam 27 inclined at an off-axis incident angle θ from the object point 24 is also converged on the image point 26 by the lens action. If the lens value (lens strength) of the objective lens 8 is insufficient, the imaging point 26 moves farther. Therefore, equivalently, the sample surface 28 in FIG. It is equal to approaching the sample surface 29 by h. Therefore, the sample arrival point 26 of the on-axis beam 25
On the other hand, the sample arrival point of the off-axis beam 27 is shifted by δr on the XY coordinate plane. This shift disappears when the lens value of the objective lens 10 is appropriately increased by using the objective lens drive circuit 18 or the dynamic focus corrector 22, and 1
Can converge to a point. In the present invention, this focusing is realized by the following method.

【0015】すなわち、軸調整偏向器19を用いてビー
ム入射角θを変化させながら、対物偏向器11を用いた
走査により試料到達点を検出し、軸上ビームの到達点2
6からのずれδrが最小となる対物レンズ8のレンズ値
を、対物レンズ駆動回路18の出力又は動的焦点補正器
22による補正値として求める。このようにして求めら
れた条件が最適レンズ値となる。ビーム位置ずれδr
は、反射電子検出器16と信号処理回路19による通常
のマーク位置検出機能により測定できる。
That is, while changing the beam incident angle θ using the axis adjusting deflector 19, the sample arrival point is detected by scanning using the objective deflector 11, and the on-axis beam arrival point 2 is detected.
The lens value of the objective lens 8 that minimizes the deviation δr from 6 is obtained as the output of the objective lens driving circuit 18 or the correction value by the dynamic focus corrector 22. The conditions obtained in this way are the optimum lens values. Beam displacement δr
Can be measured by a normal mark position detection function using the backscattered electron detector 16 and the signal processing circuit 19.

【0016】以上が本発明の一実施例の基本原理であ
る。具体的に説明すると、まず、図2で対物レンズ物点
24を通過した軸上ビーム25は、対物レンズ8により
試料結像点26に収束される。対物レンズ8のレンズ値
が適切であれば、対物レンズ物点24に支点を有する軸
調整偏向器19を用いて角度θだけ偏向した軸ずれビー
ム27の場合も、やはり対物レンズ8のレンズ作用によ
り試料結像点26に収束されるはずである。したがっ
て、軸調整偏向器19により、入射角θを予定の複数段
階に変更して走査し、このときのビーム25,27等の
試料面28への到達点を図1に示す反射電子検出器16
で検出すれば、試料到達点のずれδrが最小となる対物
レンズ8のレンズ値、つまり対物レンズ駆動回路18の
出力又は動的焦点補正器22へ与えるべき補正制御回路
23の出力値を求めることができる。
The above is the basic principle of one embodiment of the present invention. More specifically, first, the on-axis beam 25 that has passed through the object point 24 of the objective lens in FIG. If the lens value of the objective lens 8 is appropriate, also in the case of the off-axis beam 27 deflected by the angle θ using the axis adjusting deflector 19 having the fulcrum at the objective lens object point 24, the lens action of the objective lens 8 also causes It should converge to the sample imaging point 26. Therefore, the axis adjusting deflector 19 scans while changing the incident angle θ in a predetermined plurality of stages, and determines the arrival points of the beams 25 and 27 on the sample surface 28 at this time by the reflected electron detector 16 shown in FIG.
If it is detected by the above, the lens value of the objective lens 8 that minimizes the deviation δr of the sample arrival point, that is, the output value of the objective lens drive circuit 18 or the output value of the correction control circuit 23 to be given to the dynamic focus corrector 22 is obtained. Can be.

【0017】一般に電子光学的に、入射角θが小さく近
軸仮定が成立する範囲であれば物点24を通過する電子
は結像点26に収束する。入射角θを大きくとると収束
角の3乗に比例する球面収差等の影響で結像点26でも
ビーム軌道の変化や、ボケ等の変化が大きくなる。この
ため、通常は軸上ビーム25の開き角程度にすることが
望ましい。すなわち、対物レンズ8の駆動回路21や動
的焦点補正器22への補正制御回路23の出力値を変化
させ、入射角θ=0とθ=θで位置ずれδrを計測し、
最小となるそれらの出力値を求める。
In general, electrons passing through the object point 24 converge on an image point 26 if the incident angle θ is small and the paraxial assumption is satisfied. If the incident angle θ is increased, a change in the beam trajectory and a change in blur at the image forming point 26 become large due to the influence of spherical aberration and the like proportional to the cube of the convergence angle. For this reason, it is usually desirable that the opening angle of the on-axis beam 25 be about the same. That is, the output value of the correction circuit 23 to the drive circuit 21 of the objective lens 8 and the dynamic focus corrector 22 is changed, and the displacement δr is measured at the incident angles θ = 0 and θ = θ,
Find the minimum output value.

【0018】この実施例の補正精度を保つためには、物
点24の位置を変えずに入射角θを走査する角度偏向機
能が必要である。これは図2に示すように軸調整偏向器
19を用い、出射側からみて偏向器内の軸上を過ぎる偏
向中心点に物点24を一致させることで達成できる。こ
の条件で物点24の位置を変えずに偏向角θを変化させ
ることが可能である。但し、厳密に物点24の位置と軸
調整偏向器19の偏向中心が一致しなくても、複数結像
条件で位置ずれδrを測定し、ばらつきを最小化すれば
焦点補正は可能である。
In order to maintain the correction accuracy of this embodiment, an angle deflecting function for scanning the incident angle θ without changing the position of the object point 24 is required. This can be achieved by using the axis adjusting deflector 19 as shown in FIG. 2 and making the object point 24 coincide with the deflection center point passing on the axis in the deflector as viewed from the emission side. Under this condition, the deflection angle θ can be changed without changing the position of the object point 24. However, even if the position of the object point 24 does not exactly coincide with the deflection center of the axis adjusting deflector 19, focus correction can be performed by measuring the displacement δr under a plurality of imaging conditions and minimizing the variation.

【0019】また、軸調整偏向器19の中心に物点24
を配置することが困難な場合には、物点24側より後段
に軸調整偏向器19を配置し、更に後段に降り戻し偏向
器を追加して2段偏向とすれば、軸調整偏向器19の外
に偏向中心点を移動することが可能である。すなわち、
この場合の軸調整偏向器19は、第一の軸調整偏向器
と、この第一の軸調整偏向器に対して,電子源像または
成形開口像を支点として振り戻し角度偏向される第二の
軸調整偏向器を備えるのである。
The object point 24 is located at the center of the axis adjusting deflector 19.
When it is difficult to dispose the shaft adjusting deflector 19, an axis adjusting deflector 19 is arranged at a stage subsequent to the object point 24 side, and a return deflector is further added at a later stage to perform two-stage deflection. It is possible to move the deflection center point out of the range. That is,
In this case, the axis adjusting deflector 19 includes a first axis adjusting deflector, and a second axis deflector which is deflected back to the first axis adjusting deflector with the electron source image or the formed aperture image as a fulcrum. It has an axis adjusting deflector.

【0020】この実施例によれば、位置ずれを計測する
ことで、複雑な微分処理等を用いずとも、所望の最適レ
ンズ設定が可能である。また、任意パターンの位置計測
より焦点合わせが可能である。更に、多少のビーム軸ず
れがあってもビーム照射位置ずれを最小化できることが
判る。
According to this embodiment, by measuring the displacement, a desired optimum lens can be set without using complicated differentiation processing or the like. In addition, focusing can be performed by measuring the position of an arbitrary pattern. Further, it can be seen that even if there is some beam axis deviation, the beam irradiation position deviation can be minimized.

【0021】図3は、図1における構成での対物レンズ
による結像関係を模式的に示す本発明の第2の実施例に
よる像面湾曲補正の原理図である。図では、ビーム偏向
に伴い結像点がレンズ側にずれるいわゆる像面湾曲の例
を示している。電子線描画装置のように大角度で偏向す
る場合は、像面湾曲により平面である試料投影面28と
の焦点ずれが発生するため、結像位置を焦点補正器22
で修正する必要がある。この像面湾曲補正に対しても図
2と同様の手法が可能である。
FIG. 3 is a principle diagram of field curvature correction according to a second embodiment of the present invention, schematically showing the image forming relationship by the objective lens in the configuration shown in FIG. The figure shows an example of so-called field curvature in which the image forming point shifts to the lens side due to the beam deflection. When the beam is deflected at a large angle as in an electron beam lithography apparatus, since the focal point deviates from the plane of the sample projection plane 28 due to the curvature of field, the image forming position is adjusted by the focus corrector 22.
Need to be fixed. The same method as that of FIG. 2 can be applied to the field curvature correction.

【0022】図3では、対物レンズ8の中心軸上すなわ
ち対物偏向量R=0で正確に焦点合わせがされている。
図中の太い実線25は軸上ビームであり、対物偏向器1
1で偏向され、試料面28において、偏向中心からXY
座標平面上でRだけ偏向された到達点26に着弾する場
合を示している。しかしながら、図2と同様に、軸調整
偏向器19で軸上ビーム25を角度θだけ偏向し破線2
7で示す離軸ビームとした場合、偏向収差である像面湾
曲収差の影響で偏向結像点(像面湾曲店)30は試料面
28よりもδZだけ上方に形成される。したがって、試
料面28では、やはり結像点26からδrだけずれた結
像点31に着弾する。
In FIG. 3, focusing is accurately performed on the central axis of the objective lens 8, that is, with the objective deflection amount R = 0.
A thick solid line 25 in the figure is an on-axis beam, and the objective deflector 1
1 and XY from the center of deflection on the sample surface 28.
A case where the landing point 26 is deflected by R on the coordinate plane is shown. However, similarly to FIG. 2, the on-axis beam 25 is deflected by the angle θ by the
When the off-axis beam is indicated by 7, the deflection image point (field curvature store) 30 is formed above the sample surface 28 by δ Z due to the influence of the field curvature aberration that is the deflection aberration. Therefore, on the sample surface 28, the droplet lands on the imaging point 31 which is also shifted from the imaging point 26 by δr.

【0023】この実施例においても、像面湾曲の補正
は、対物レンズ8の駆動(制御)回路18又は動的焦点
補正器22の電磁場強度を偏向座標(X,Y)に依存し
て変化させる。動的焦点補正器22は特に主レンズの電
気的負荷が大きく高速性操作ができない場合に用いて好
適である。
Also in this embodiment, the field curvature is corrected by changing the electromagnetic field strength of the drive (control) circuit 18 of the objective lens 8 or the dynamic focus corrector 22 depending on the deflection coordinates (X, Y). . The dynamic focus corrector 22 is particularly suitable for use when the electrical load on the main lens is large and high-speed operation is not possible.

【0024】具体的な補正量の測定は偏向領域内の複数
代表点において、図2の場合と同様に、ずれδrが最小
となる値を求める。本実施例により、焦点調整を行った
後の離軸ビームは一点鎖線32で示すように補正され、
試料面28の正しい結像点26に着弾している。測定し
た補正量の偏向依存式すなわち焦点補正式は以下によ
り、X,Yの2次多項式で近似する。
In the concrete measurement of the correction amount, a value that minimizes the deviation δr at a plurality of representative points in the deflection area is obtained as in the case of FIG. According to the present embodiment, the off-axis beam after performing the focus adjustment is corrected as indicated by a dashed line 32,
It has landed on the correct imaging point 26 on the sample surface 28. The deflection-dependent formula of the measured correction amount, that is, the focus correction formula is approximated by a second-order polynomial of X and Y as follows.

【0025】図4は、図3においてX軸方向に軸をずら
した場合の、ずれδrの具体例を試料面28上のXY座
標平面の2次元マップで例示したものである。図中破線
32が理想結像点であり、実線33が像面湾曲による現
実の結像点である。変位量δr(δX,δY)は、 δX=A0+A1X+A2Y+A32+A4XY+A52
・・・ δY=B0+B1X+B2Y+B32+B4XY+B52
・・・ で表わすことができる。図4でδr歪形状はX,Yの2
次曲線となっている。幾何収差論によれば回転対称系の
像面湾曲収差による焦点ずれδZは偏向量Rに対して、 δZ=KcR2=Kc(X2+Y2) の関係がある。また、変位量δZは、微小量であり像面
から試料面までは直線と考えることができる。このため
変位量δZがX,Yの2次式となる場合、変位量δrも
2次式で近似できる。焦点補正感度も直線的と考えられ
るため、変位量δZの補正のための焦点補正器22の出
力は、X,Yの2次多項式で近似できることが分かる。
FIG. 4 illustrates a specific example of the shift δr when the axis is shifted in the X-axis direction in FIG. 3 using a two-dimensional map of an XY coordinate plane on the sample surface 28. In the figure, a broken line 32 is an ideal image formation point, and a solid line 33 is an actual image formation point due to field curvature. The displacement amount δr (δX, δY) is given by δX = A 0 + A 1 X + A 2 Y + A 3 X 2 + A 4 XY + A 5 Y 2 +
··· δY = B 0 + B 1 X + B 2 Y + B 3 X 2 + B 4 XY + B 5 Y 2 +
... can be represented by In FIG. 4, the δr distortion shape is 2 for X and Y.
It has the following curve. According to the theory of geometric aberration, the defocus δZ due to the curvature of field of a rotationally symmetric system has a relationship with the deflection amount R as follows: δZ = KcR 2 = Kc (X 2 + Y 2 ). Further, the displacement amount δZ is a minute amount, and can be considered as a straight line from the image surface to the sample surface. Therefore, when the displacement amount δZ is a quadratic expression of X and Y, the displacement amount δr can be approximated by a quadratic expression. Since the focus correction sensitivity is also considered to be linear, it can be seen that the output of the focus corrector 22 for correcting the displacement amount δZ can be approximated by a second-order X, Y polynomial.

【0026】以上の実施例においては、ビーム像を試料
面28に結像する対物レンズ8と、この対物レンズ8の
焦点を調整する手段21又は22と、対物レンズ8の前
段に配置され対物レンズ8へのビームの入射角θを制御
する軸調整偏向手段19と、ビーム像を試料面28の所
望の位置に偏向させる対物偏向器11と、この対物偏向
器11を制御する対物偏向制御手段14と、描画試料を
搭載する試料ステージ9と、対物偏向器11を用いて試
料ステージ9上の校正マーク17を走査して発生する透
過または反射ビームを検知するビーム検出手段16とを
備えた電子線描画装置において、焦点調整手段21又は
22を用い対物レンズ8を複数の異なるレンズ値に設定
する手段と、これらそれぞれの条件の下で,軸調整偏向
手段19により入射角θを変化させ校正マーク17上を
走査して試料ステージ9上でのビーム位置を検知する手
段16,18と、入射角θの変化に伴って生じるビーム
位置のずれδrが最小となるレンズ値を対物レンズ8に
設定する手段21又は22,23とを備えて構成されて
いる。
In the above embodiment, the objective lens 8 for forming a beam image on the sample surface 28, the means 21 or 22 for adjusting the focal point of the objective lens 8, and the objective lens disposed in front of the objective lens 8 Axis adjusting / deflecting means 19 for controlling the angle of incidence θ of the beam to the beam 8; an objective deflector 11 for deflecting the beam image to a desired position on the sample surface 28; and an objective deflection control means 14 for controlling the objective deflector 11 An electron beam comprising: a sample stage 9 on which a writing sample is mounted; and a beam detecting means 16 for detecting a transmitted or reflected beam generated by scanning the calibration mark 17 on the sample stage 9 using the objective deflector 11. In the drawing apparatus, means for setting the objective lens 8 to a plurality of different lens values by using the focus adjusting means 21 or 22 and input / output by the axis adjusting / deflecting means 19 under these respective conditions. Means 16 and 18 for detecting the beam position on the sample stage 9 by scanning the calibration mark 17 by changing the angle θ, and the lens value for minimizing the beam position shift δr caused by the change of the incident angle θ Is set to the objective lens 8.

【0027】図5は本発明の一実施例による補正処理手
順を示すフローチャートで、図2の場合を示している。
まず、ステップ501において、対物レンズ8の駆動
(制御)回路18又は動的焦点補正器22の補正制御回
路23により、対物レンズ8のレンズ強度(レンズ値)
をOi(i=1〜n)に設定する。この状態でステップ
502では、軸調整偏向器19への駆動回路20の出力
を変え、入射角θi(i=1〜m)を設定し、次いでス
テップ503でビーム位置δriを測定する。これを予
定のm回、すなわちδr1,…δri,…δrmを測定
し、ステップ504で測定完了を判断すれば、ステップ
505にて分散量σδriを求める。ステップ506で
予定のn個の全レンズ値O1,…Oi,…Onの測定完
了を判断すれば、ステップ507に進んで、次のように
して最適対物レンズ値Ooptを計算する。
FIG. 5 is a flowchart showing a correction processing procedure according to one embodiment of the present invention, and shows the case of FIG.
First, in step 501, the lens strength (lens value) of the objective lens 8 is controlled by the drive (control) circuit 18 of the objective lens 8 or the correction control circuit 23 of the dynamic focus corrector 22.
Is set to Oi (i = 1 to n). In this state, in step 502, the output of the drive circuit 20 to the axis adjusting deflector 19 is changed to set the incident angle θi (i = 1 to m), and then in step 503, the beam position δri is measured. This is measured m times, ie, δr 1 ,... Δri,... Δrm. If it is determined in step 506 that the measurement of all the predetermined n lens values O 1 ,... Oi,... On is completed, the process proceeds to step 507, and the optimum objective lens value Oopt is calculated as follows.

【0028】例えば対物レンズ8のレンズ値をOとする
と、変位量δrは、 δr=K0+K1O+K22+・・・ で近似できる。図2から明らかなように、K2以後はゼ
ロで近似できる。この場合は、複数点で変位量δrを求
め、最小二乗法で係数を求め、最適対物レンズ値Oop
tは、 Oopt=K0/K1 となる。像面湾曲を補正する場合は、更に図3、図4か
ら偏向座標X,Yの2次式で近似する。
For example, assuming that the lens value of the objective lens 8 is O, the displacement amount δr can be approximated by δr = K 0 + K 1 O + K 2 O 2 +. As apparent from FIG. 2, K 2 thereafter can be approximated by zero. In this case, the displacement amount δr is obtained at a plurality of points, the coefficient is obtained by the least square method, and the optimal objective lens value Op
t becomes Oopt = K 0 / K 1 . When correcting the curvature of field, approximations are further approximated by quadratic expressions of deflection coordinates X and Y from FIGS.

【0029】この実施例における電子線描画装置の焦点
調整方法は、対物レンズ8を複数n個の異なるレンズ値
Oi(i=1〜n)に設定するステップと、これらのそ
れぞれの設定条件の下で、入射角変更手段19により入
射角θをθi(i=1〜m)に変化させて対物偏向器1
1を用いて校正マーク17上を走査するステップと、こ
れらの走査における試料ステージ9上でのビーム位置を
検知するステップと、入射角θの変化に伴って生じるビ
ーム位置のずれδrが最小となるレンズ値Ooptを判
定するステップと,この判定されたレンズ値Ooptを
対物レンズ8のレンズ値として設定するステップとを含
んでいる。
The focus adjusting method of the electron beam lithography apparatus according to the present embodiment includes a step of setting the objective lens 8 to a plurality of n different lens values Oi (i = 1 to n), and a step under each of these setting conditions. Then, the incident angle θ is changed to θi (i = 1 to m) by the incident angle changing means 19 so that the objective deflector 1
Scanning the calibration mark 17 using the step 1 and detecting the beam position on the sample stage 9 in these scans, and the deviation δr of the beam position caused by the change in the incident angle θ is minimized. A step of determining the lens value Oopt and a step of setting the determined lens value Oopt as the lens value of the objective lens 8 are included.

【0030】この焦点調整方法によれば、電子線描画装
置の高分解能ビーム焦点調整法を可能とする。ビーム位
置ずれを最小とするように直接焦点補正するため、高精
度位置決めが可能である。ビームボケを解析評価する方
法に比べ高速化が可能であり、任意図形形状ビームを含
む一括セル露光法におけるビーム焦点合わせ法が可能で
ある。
According to this focus adjusting method, a high-resolution beam focus adjusting method for an electron beam lithography apparatus can be realized. Since the focus is directly corrected so as to minimize the beam position shift, high-precision positioning is possible. The speed can be increased as compared with the method of analyzing and evaluating beam blur, and the beam focusing method in the collective cell exposure method including an arbitrary figure shape beam is possible.

【0031】[0031]

【発明の効果】本発明によれば、電子線描画装置の高精
度なビーム焦点調整方法や、高精度なパターン描画を可
能とした電子線描画装置を提供することができる。
According to the present invention, it is possible to provide a highly accurate beam focus adjusting method for an electron beam lithography apparatus and an electron beam lithography apparatus capable of performing a highly accurate pattern writing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の一実施例による可変成形型電子
線描画装置の全体構成を示す。
FIG. 1 shows the overall configuration of a variable-shaped electron beam lithography apparatus according to one embodiment of the present invention.

【図2】図1における構成での対物レンズによる結像関
係を模式的に示す本発明の第1の実施例の原理図であ
る。
FIG. 2 is a principle diagram of a first embodiment of the present invention, schematically showing an image forming relationship by an objective lens in the configuration in FIG.

【図3】図1における構成での対物レンズによる結像関
係を模式的に示す本発明の第2の実施例による像面湾曲
補正の原理図である。
FIG. 3 is a principle diagram of field curvature correction according to a second embodiment of the present invention, schematically showing an image forming relationship by an objective lens in the configuration in FIG. 1;

【図4】像面湾曲ビーム位置ずれの例を示す本発明説明
図である。
FIG. 4 is an explanatory diagram of the present invention showing an example of a position shift of a field curvature beam.

【図5】本発明の一実施例による制御処理フローチャー
トである。
FIG. 5 is a control processing flowchart according to an embodiment of the present invention.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】ビーム像を試料面に結像する対物レンズ
と、この対物レンズの焦点を調整する手段と、前記対物
レンズの前段に配置され対物レンズへのビームの入射角
を制御する手段と、ビーム像を試料面の所望の位置に偏
向させる対物偏向器と、この対物偏向器を制御する手段
と、描画試料を搭載する試料ステージと、前記対物偏向
器を用いて前記試料ステージ上の校正マークを走査して
発生する透過または反射ビームを検知する手段とを備え
た電子線描画装置の焦点調整方法であって、前記対物レ
ンズを複数の異なるレンズ値に設定するステップと、こ
れらのそれぞれの設定条件の下で、前記入射角変更手段
により入射角を変化させて校正マーク上を走査するステ
ップと、これらの走査における試料ステージ上でのビー
ム位置を検知するステップと、前記入射角の変化に伴っ
て生じる前記ビーム位置のずれが最小となるレンズ値を
判定するステップと,この判定されたレンズ値を前記対
物レンズのレンズ値として設定するステップとを含むこ
とを特徴とする電子線描画装置の焦点調整方法。
1. An objective lens for forming a beam image on a sample surface, means for adjusting the focal point of the objective lens, and means for controlling the angle of incidence of the beam on the objective lens, which is disposed before the objective lens. An objective deflector for deflecting a beam image to a desired position on a sample surface, means for controlling the objective deflector, a sample stage on which a writing sample is mounted, and calibration on the sample stage using the objective deflector. Means for detecting a transmitted or reflected beam generated by scanning a mark, comprising the steps of: setting the objective lens to a plurality of different lens values; Scanning the calibration mark by changing the incident angle by the incident angle changing means under setting conditions; and detecting the beam position on the sample stage in these scans. And a step of determining a lens value that minimizes the deviation of the beam position caused by a change in the incident angle, and a step of setting the determined lens value as a lens value of the objective lens. A focus adjusting method for an electron beam writing apparatus.
【請求項2】ビーム像を試料面に結像する対物レンズ
と、この対物レンズの焦点を調整する手段と、前記対物
レンズの前段に配置され対物レンズへのビームの入射角
を制御する軸調整偏向手段と、ビーム像を試料面の所望
の位置に偏向させる対物偏向器と、この対物偏向器を制
御する対物偏向制御手段と、描画試料を搭載する試料ス
テージと、前記対物偏向器を用いて前記試料ステージ上
の校正マークを走査して発生する透過または反射ビーム
を検知するビーム検出手段とを備えた電子線描画装置に
おいて、前記焦点調整手段を用い対物レンズを複数の異
なるレンズ値に設定する手段と、これらそれぞれの条件
の下で,前記軸調整偏向手段により入射角を変化させ校
正マーク上を走査して試料ステージ上でのビーム位置を
検知する手段と、前記入射角の変化に伴って生じる前記
ビーム位置のずれが最小となるレンズ値を前記対物レン
ズに設定する手段とを備えたことを特徴とする電子線描
画装置。
2. An objective lens for forming a beam image on a sample surface, means for adjusting the focal point of the objective lens, and an axis adjustment disposed before the objective lens and controlling an incident angle of the beam to the objective lens Deflection means, an objective deflector for deflecting the beam image to a desired position on the sample surface, an objective deflection control means for controlling the objective deflector, a sample stage on which a writing sample is mounted, and the objective deflector An electron beam lithography apparatus comprising: a beam detection unit that detects a transmitted or reflected beam generated by scanning a calibration mark on the sample stage. The objective lens is set to a plurality of different lens values using the focus adjustment unit. Means for detecting the beam position on the sample stage by changing the angle of incidence by the axis adjusting / deflecting means and scanning the calibration mark under these respective conditions. Electron beam lithography apparatus, wherein a lens value deviation of the beam position caused by the change of the incident angle is minimized and means for setting the objective lens.
【請求項3】請求項2において、前記焦点調整手段は、
対物レンズ駆動回路と、動的焦点補正手段とを含み、前
記レンズ値設定手段を前記動的焦点補正手段を用いて構
成したことを特徴とする電子線描画装置。
3. The apparatus according to claim 2, wherein said focus adjustment means comprises:
An electron beam writing apparatus, comprising: an objective lens driving circuit; and a dynamic focus correction unit, wherein the lens value setting unit is configured using the dynamic focus correction unit.
【請求項4】電子ビームを発生させる電子源像または電
子ビームを成形する成形開口像を試料面に結像する対物
レンズと、この対物レンズの焦点を調整する対物レンズ
駆動回路と、前記対物レンズの前段に配置され対物レン
ズへの入射角を制御する軸調整偏向器と、この軸調整偏
向器を制御する軸調整偏向制御回路と、前記ビーム像を
試料面にて所望の位置に偏向させる対物偏向器と、この
対物偏向器を制御する対物偏向制御回路と、描画試料及
び校正マークを搭載する試料ステージと、この試料ステ
ージを位置決めするステージ制御回路と、前記対物偏向
器で試料ステージ上の校正マークをビーム走査して発生
する透過または反射ビームを検出するビーム検出器とを
備えた電子線描画装置において、前記軸調整偏向器出力
を可変して校正マーク上を走査し,試料面上のビーム位
置ずれを検知する手段と、前記軸調整偏向器出力を可変
したことに基くビーム位置ずれが最小となるレンズ値
に,前記対物レンズのレンズ値を設定する手段を設けた
ことを特徴とする電子線描画装置。
4. An objective lens for forming an electron source image for generating an electron beam or a shaping aperture image for shaping an electron beam on a sample surface, an objective lens driving circuit for adjusting a focus of the objective lens, and the objective lens An axis adjusting deflector that is arranged in front of the lens and controls the angle of incidence on the objective lens; an axis adjusting deflection control circuit that controls the axis adjusting deflector; and an object that deflects the beam image to a desired position on the sample surface. A deflector, an objective deflection control circuit for controlling the objective deflector, a sample stage on which a drawing sample and a calibration mark are mounted, a stage control circuit for positioning the sample stage, and a calibration on the sample stage by the objective deflector. In an electron beam lithography apparatus comprising a beam detector for detecting a transmitted or reflected beam generated by scanning a mark with a beam, the output of the axis adjusting deflector is varied to calibrate the mark. Means for scanning the laser beam to detect a beam position shift on the sample surface, and setting the lens value of the objective lens to a lens value at which the beam position shift based on varying the output of the axis adjustment deflector is minimized. An electron beam lithography apparatus characterized by comprising means for performing.
【請求項5】請求項4において、前記試料面に結像する
電子源または成形開口像位置に、前記ビーム軸調整偏向
器の中心を一致させ配置させたことを特徴とする電子線
描画装置。
5. An electron beam lithography apparatus according to claim 4, wherein the center of said beam axis adjusting deflector is arranged at the position of an electron source or a shaped aperture image formed on said sample surface.
【請求項6】請求項4又は5において、前記軸調整偏向
器は、第一の軸調整偏向器と、この第一の軸調整偏向器
に対して,前記電子源像又は成形開口像を支点として角
度偏向される第二の振り戻し軸調整偏向器を備えたこと
を特徴とする電子線描画装置。
6. An axis adjusting deflector according to claim 4, wherein said axis adjusting deflector supports said electron source image or shaped aperture image with respect to said first axis adjusting deflector. An electron beam lithography apparatus comprising: a second swing-back axis adjusting deflector that is angle-deflected.
【請求項7】請求項4〜6のいずれかにおいて、偏向領
域内の複数代表点で前記軸調整偏向器を可変制御する手
段と、前記複数代表点での位置ずれ量の変化が最小とな
る焦点に前記対物レンズ駆動回路の出力を設定する手段
を備えたことを特徴とする電子線描画装置。
7. A means according to claim 4, wherein said means for variably controlling said axis adjusting deflector at a plurality of representative points in a deflection area, and a change in a displacement amount at said plurality of representative points are minimized. An electron beam lithography apparatus comprising: means for setting an output of the objective lens driving circuit at a focal point.
【請求項8】請求項4〜7のいずれかにおいて、前記対
物レンズ内に配置した動的焦点補正器と、この動的焦点
補正器を制御する焦点補正回路とを備え、前記対物レン
ズのレンズ値を設定する手段は、前記焦点補正回路を用
いて補正することを特徴とする電子線描画装置。
8. The objective lens according to claim 4, further comprising a dynamic focus corrector disposed in said objective lens, and a focus correction circuit for controlling said dynamic focus corrector. An electron beam writing apparatus, wherein the means for setting a value performs correction using the focus correction circuit.
【請求項9】請求項4〜8のいずれかにおいて、位置ず
れ量を複数の焦点補正値に対して計測し、焦点補正出力
の多項式で近似して位置ずれ量が最小となる焦点補正値
を決定する手段を備えたことを特徴とする電子線描画装
置。
9. The focus correction value according to claim 4, wherein the position shift amount is measured with respect to a plurality of focus correction values, and a focus correction value that minimizes the position shift amount is approximated by a polynomial of a focus correction output. An electron beam lithography apparatus comprising means for determining.
【請求項10】請求4〜9のいずれかにおいて、最適焦
点補正量を偏向座標の2次多項式で近似することを特徴
とする電子線描画装置。
10. An electron beam writing apparatus according to claim 4, wherein the optimum focus correction amount is approximated by a second-order polynomial of deflection coordinates.
JP2001045171A 2001-02-21 2001-02-21 Method of adjusting focal point and electron beam lithography system Pending JP2002246303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001045171A JP2002246303A (en) 2001-02-21 2001-02-21 Method of adjusting focal point and electron beam lithography system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001045171A JP2002246303A (en) 2001-02-21 2001-02-21 Method of adjusting focal point and electron beam lithography system

Publications (1)

Publication Number Publication Date
JP2002246303A true JP2002246303A (en) 2002-08-30

Family

ID=18907017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001045171A Pending JP2002246303A (en) 2001-02-21 2001-02-21 Method of adjusting focal point and electron beam lithography system

Country Status (1)

Country Link
JP (1) JP2002246303A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188937A (en) * 2006-01-11 2007-07-26 Jeol Ltd Charged particle beam apparatus
US8193511B2 (en) 2008-01-24 2012-06-05 Jeol Ltd. Method of calibrating beam position in charged-particle beam system
JP2013197289A (en) * 2012-03-19 2013-09-30 Nuflare Technology Inc Multi-charged particle beam lithography apparatus and multi-charged particle beam lithography method
JP2014138175A (en) * 2013-01-18 2014-07-28 Nuflare Technology Inc Charged particle beam drawing apparatus, method for adjusting beam incident angle to sample surface, and charged particle beam drawing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188937A (en) * 2006-01-11 2007-07-26 Jeol Ltd Charged particle beam apparatus
US8193511B2 (en) 2008-01-24 2012-06-05 Jeol Ltd. Method of calibrating beam position in charged-particle beam system
JP2013197289A (en) * 2012-03-19 2013-09-30 Nuflare Technology Inc Multi-charged particle beam lithography apparatus and multi-charged particle beam lithography method
JP2014138175A (en) * 2013-01-18 2014-07-28 Nuflare Technology Inc Charged particle beam drawing apparatus, method for adjusting beam incident angle to sample surface, and charged particle beam drawing method

Similar Documents

Publication Publication Date Title
JP2835097B2 (en) Correction method for charged beam astigmatism
KR102432752B1 (en) Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
JP7400830B2 (en) Multi-charged particle beam adjustment method, multi-charged particle beam irradiation method, and multi-charged particle beam irradiation device
US6407398B1 (en) Electron beam exposure apparatus and exposure method
JP5025964B2 (en) Charged particle beam drawing method and charged particle beam drawing apparatus
JP2001085303A (en) Charged particle beam exposure system and charged particle beam exposure method
JPH09320931A (en) Method for measuring imaging characteristic and transfer device by the method
KR102221957B1 (en) Charged particle beam writing apparatus and charged particle beam writing method
JP3508622B2 (en) Electron beam drawing apparatus and drawing method using electron beam
US8692218B2 (en) Charged particle beam exposure apparatus
JP4157410B2 (en) Electron beam drawing device
JP3299647B2 (en) Electron beam drawing apparatus and electron beam drawing method
JP2006294962A (en) Electron beam lithography system and method therefor
JP2002246303A (en) Method of adjusting focal point and electron beam lithography system
JP2006210455A (en) Charged particle exposure apparatus and method of fabricating device using apparatus
JPH08195345A (en) Electron beam drawing device
US7049611B2 (en) Charged-particle beam lithographic system
JP2009182269A (en) Charged beam lithography apparatus and method
JP3315882B2 (en) Electron beam drawing equipment
JP2786660B2 (en) Charged beam drawing method
JPS6182428A (en) Lens adjusting method of charged beam optical barrel
JPH09293652A (en) Charged particle beam exposure device and method thereof
JP3242122B2 (en) Pattern forming method and semiconductor device manufacturing method
JP2786662B2 (en) Charged beam drawing method
JP4212181B2 (en) Semiconductor exposure method and exposure apparatus