JPH07126810A - Ferritic heat resistant steel for fusion reactor excellent in weldability and its production - Google Patents

Ferritic heat resistant steel for fusion reactor excellent in weldability and its production

Info

Publication number
JPH07126810A
JPH07126810A JP5271052A JP27105293A JPH07126810A JP H07126810 A JPH07126810 A JP H07126810A JP 5271052 A JP5271052 A JP 5271052A JP 27105293 A JP27105293 A JP 27105293A JP H07126810 A JPH07126810 A JP H07126810A
Authority
JP
Japan
Prior art keywords
toughness
weldability
steel
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5271052A
Other languages
Japanese (ja)
Inventor
Kazushi Hamada
一志 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5271052A priority Critical patent/JPH07126810A/en
Publication of JPH07126810A publication Critical patent/JPH07126810A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a heat resistant steel sheet excellent in low inducing activation, weldability, high temp. creep strength and toughness by subjecting an alloy steel slab having a specified compsn. to heating to a specified temp. or above, subjecting it to hot rolling and thereafter executing normalizing and tempering treatment at a specified temp. CONSTITUTION:A low carbon steel having a compsn. contg., by weight, 0.04 to 0.09% C, 0.08 to 0.25% Si, 0.01 to 0.50% Mn, <0.01% P, <0.007% S, 8 to 10% Cr, 1.5 to 2.2% W, 0.15 to 0.25% V, 0.05 to 0.10% Ta, 0.0005 to 0.0030% B and 0.025 to 0.06% N is heated to a temp. >=T1( deg.C) expressed by the formula and is subjected to hot rolling to form into a hot rolled steel sheet. This steel sheet is subjected to heat treatment of normalizing treatment at 930 to 1080 deg.C, tempering treatment at 750 to 800 deg.C or the like, by which the ferritic heat resistant steel excellent in the balance of high temp. creep fracture strength and toughness both in the base metal and weld heat affected zone as well as weldability at the time of welding and in which low activation is simultaneously realized is developed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低誘導放射化、溶接性
に優れ、且つ高温クリープ強度及び靱性のバランスが母
材、溶接熱影響部のいずれにおいても優れている核融合
炉第一壁等に用いる耐熱鋼板及びその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION The present invention relates to a fusion reactor first wall which has low induction activation, excellent weldability, and excellent balance of high temperature creep strength and toughness in both the base metal and the weld heat affected zone. The present invention relates to a heat-resistant steel sheet used for, for example, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】核融合炉は、実験研究炉として実績があ
り既に臨界プラズマ条件を達成している。現在、その第
一壁材料としてSUS316が用いられている。しか
し、商用炉で想定される中性子照射量ではボイドスエリ
ングの問題からSUS316は使用できない。代わって
SUS316にTiを添加したJPCA鋼や、フェライ
ト系であるためボイドスエリングの少ないHT−9鋼
(12Cr−1Mo−W−V)が開発された。さらに、
「Journal of Nuclear Mater
ials 133&134(1985)149−15
5」に記載されているように、使用中の補修やシャット
ダウン後廃棄処分時の放射能汚染の低減が経済的に著し
く有利であることから、第一壁材料として誘導放射化の
少ない低放射化材料が要求されるようになり、フェライ
ト鋼で且つ誘導放射化の高い元素であるNi,Cu,M
o,Nbなどを極力低減させた鋼が要求されるようにな
った。
2. Description of the Related Art A nuclear fusion reactor has a track record as an experimental research reactor and has already achieved critical plasma conditions. Currently, SUS316 is used as the first wall material. However, SUS316 cannot be used at the neutron irradiation dose expected in a commercial reactor due to the problem of void swelling. Instead, JPCA steel in which Ti is added to SUS316 and HT-9 steel (12Cr-1Mo-W-V), which is a ferrite type and has less void swelling, have been developed. further,
"Journal of Nuclear Mater
als 133 & 134 (1985) 149-15
As described in “5”, it is economically remarkably advantageous to reduce radioactive contamination at the time of repair during use and at the time of disposal after shutdown. As materials are required, Ni, Cu, M, which are ferritic steels and elements with high induction activation,
Steel with a minimum reduction of o, Nb, etc. has been required.

【0003】低放射化鋼としては、「Alloy De
velopment for Irradiation
Performance/Semiannual P
rogress Report For Period
Ending September 30.198
5;U.S.Department of Energ
y,p117−123」に記載されている9Cr−2W
−Ta−V鋼、「耐熱材料第123委員会研究報告Vo
l.27 No.1 pp105−117」に記載され
ている9Cr−2W鋼、及び特公平3−61749号公
報に記載されているような8Cr−2W−Ta−V鋼等
が開発されている。これらの鋼はWの固溶強化に加えて
Ta炭窒化物、V炭窒化物による分散強化によって高温
強度をHT−9並みにしようとするものである。
As the low activation steel, "Alloy De"
velocity for Irradiation
Performance / Semiannual P
Rogless Report For Period
Ending September 30.198
5; U. S. Department of Energ
y, p117-123 ", 9Cr-2W
-Ta-V steel, "Heat-resistant materials 123rd Committee research report Vo
l. 27 No. 1 pp105-117 ”, 9Cr-2W steel, and 8Cr-2W-Ta-V steel as described in Japanese Patent Publication No. 3-61749 have been developed. In addition to solid solution strengthening of W, these steels are intended to have high temperature strength equal to that of HT-9 by dispersion strengthening by Ta carbonitride and V carbonitride.

【0004】低放射化鋼の溶接性に関しては8Cr−2
W−Ta−V鋼においてのみ公知技術がある。C,T
a,V,Wを過剰添加すると溶接高温割れが起こること
が特公平3−61749号公報に記載されている。また
「Journal of Nuclear Mater
ials 179−181(1991)p693−69
6」に8Cr−2W−Ta−V鋼溶接継手の特性が報告
されているが、溶接予熱温度が200〜250℃とHT
9鋼並みの高い予熱温度で施工されている。
Regarding the weldability of low activation steel, 8Cr-2
There is known technology only for W-Ta-V steel. C, T
It is described in Japanese Examined Patent Publication No. 3-61749 that welding hot cracking occurs when a, V and W are excessively added. In addition, "Journal of Nuclear Mater
als 179-181 (1991) p693-69
6 ", the characteristics of the 8Cr-2W-Ta-V steel welded joint are reported, but the welding preheating temperature is 200 to 250 ° C and HT.
It is constructed at a preheating temperature as high as 9 steel.

【0005】また、低放射化鋼の溶接熱影響部(以下H
AZと称す)における高温クリープ強度及び靱性に関し
ては従来開示されている技術がない。
Also, the welding heat affected zone of low activation steel (hereinafter referred to as H
Regarding the high temperature creep strength and toughness in AZ), there is no technology disclosed hitherto.

【0006】[0006]

【発明が解決しようとする課題】9Cr−2W−Ta−
V鋼及び9Cr−2W鋼では高温保持中にWが粗大なF
2 Wとして析出し固溶強化に寄与するW量が減少する
こと、及びHAZにおいてV炭窒化物、Ta炭窒化物が
粗大化し分散強化効果が減少するため、高温クリープ破
断強度が十分ではない。また特公平3−61749号公
報記載の8Cr−2W−Ta−V鋼は靱性確保の点から
Niを添加しているため十分な低放射化材料とは言えず
また9Cr−2W系鋼と同じ理由でHAZの高温クリー
プ破断強度も十分ではない。さらに溶接予熱温度をさら
に低減させ溶接施工コストを低減させる必要がある。
Problems to be Solved by the Invention 9Cr-2W-Ta-
In V steel and 9Cr-2W steel, W is coarse F during holding at high temperature.
The high temperature creep rupture strength is not sufficient because the amount of W that precipitates as e 2 W and contributes to solid solution strengthening decreases, and V carbonitrides and Ta carbonitrides coarsen in the HAZ and the dispersion strengthening effect decreases. . Further, since the 8Cr-2W-Ta-V steel described in Japanese Patent Publication No. 3-61749 is added with Ni from the viewpoint of ensuring toughness, it cannot be said to be a sufficiently low activation material and the same reason as for the 9Cr-2W steel. Therefore, the high temperature creep rupture strength of HAZ is not sufficient. Furthermore, it is necessary to further reduce the welding preheating temperature to reduce the welding construction cost.

【0007】本発明は溶接性及び母材、HAZ共に高温
クリープ破断強度と靱性のバランスに優れ、同時に低放
射化も実現したフェライト系耐熱鋼及びその製造方法を
提供することを目的とする。
It is an object of the present invention to provide a ferritic heat-resistant steel which has excellent weldability and a good balance between high temperature creep rupture strength and toughness for both the base metal and HAZ, and at the same time has achieved low emission, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明は、溶接性を向上
させるためC,Si,V,Ta,B,N量を最適化し
た。また母材、HAZ共にクリープ強度と靱性のバラン
スを良くするためにC,W,V,Ta,B,N量及び圧
延加熱温度、熱処理条件を最適化した。本発明の要旨と
するところは下記のとおりである。
The present invention has optimized the amounts of C, Si, V, Ta, B and N in order to improve weldability. Further, in order to improve the balance between creep strength and toughness of both the base metal and HAZ, the amounts of C, W, V, Ta, B and N, the rolling heating temperature and the heat treatment conditions were optimized. The gist of the present invention is as follows.

【0009】(1)重量基準で C :0.04〜0.09% Si:0.08〜0.25% Mn:0.01〜0.50% P :0.01%以下 S :0.007%以下 Cr:8〜10% W :1.5〜2.2% V :0.15〜0.25% Ta:0.05〜0.10% B :0.0005〜0.0030% N :0.025〜0.06% を含有し、残部Fe及び不可避的不純物からなることを
特徴とする溶接性に優れた核融合炉用フェライト系耐熱
鋼。
(1) C: 0.04 to 0.09% Si: 0.08 to 0.25% Mn: 0.01 to 0.50% P: 0.01% or less S: 0.0. 007% or less Cr: 8 to 10% W: 1.5 to 2.2% V: 0.15 to 0.25% Ta: 0.05 to 0.10% B: 0.0005 to 0.0030% N : Ferrite heat-resistant steel for a fusion reactor having excellent weldability, characterized in that it contains 0.025 to 0.06% and the balance is Fe and inevitable impurities.

【0010】(2)重量基準で C :0.04〜0.09% Si:0.08〜0.25% Mn:0.01〜0.50% P :0.01%以下 S :0.007%以下 Cr:8〜10% W :1.5〜2.2% V :0.15〜0.25% Ta:0.05〜0.10% B :0.0005〜0.0030% N :0.025〜0.06% を含有し、残部Fe及び不可避的不純物からなる鋼を下
記式に示すT1(℃)
(2) C: 0.04 to 0.09% Si: 0.08 to 0.25% Mn: 0.01 to 0.50% P: 0.01% or less S: 0.0. 007% or less Cr: 8 to 10% W: 1.5 to 2.2% V: 0.15 to 0.25% Ta: 0.05 to 0.10% B: 0.0005 to 0.0030% N : Steel containing 0.025 to 0.06% and the balance Fe and inevitable impurities is represented by the following formula: T 1 (° C.)

【0011】[0011]

【数2】 [Equation 2]

【0012】の温度以上に加熱して圧延を行い、且つ 焼きならし温度:930〜1080℃ 焼き戻し温度:750〜800℃ の条件で熱処理をすることを特徴とする溶接性に優れた
核融合炉用フェライト系耐熱鋼の製造方法。
Nuclear fusion excellent in weldability, which is characterized in that it is heated to a temperature of not less than the above temperature and rolled, and heat-treated under the conditions of normalizing temperature: 930 to 1080 ° C. and tempering temperature: 750 to 800 ° C. Method for producing ferritic heat-resistant steel for furnaces.

【0013】[0013]

【作用】以下本発明について詳細に説明する。Cは固溶
強化元素として作用し、また炭化物を生成して高温クリ
ープ強度を向上させる。またδフェライトの生成を抑制
し靱性を向上させる。そのためには0.04%以上必要
である。一方0.09%を超えると溶接性が低下するた
め、0.04〜0.09%に限定した。
The present invention will be described in detail below. C acts as a solid solution strengthening element and also produces carbides to improve the high temperature creep strength. It also suppresses the formation of δ ferrite and improves toughness. For that purpose, 0.04% or more is necessary. On the other hand, if it exceeds 0.09%, the weldability deteriorates, so it was limited to 0.04 to 0.09%.

【0014】Siは溶鋼の粘性を下げ鋳造性及び溶接ビ
ード形状を安定させるため、0.08%以上必要であ
る。一方0.25%を超えると靱性が低下し且つHAZ
硬さが増すため、0.08〜0.25%に限定した。M
nは脱酸剤として0.01%以上添加する必要がある。
一方0.50%を超えるとMn偏析が顕著になり靱性を
低下させるため、0.01〜0.50%に限定した。
Si is required to be 0.08% or more in order to reduce the viscosity of molten steel and stabilize the castability and weld bead shape. On the other hand, if it exceeds 0.25%, the toughness decreases and HAZ
Since the hardness increases, it was limited to 0.08 to 0.25%. M
It is necessary to add 0.01% or more of n as a deoxidizing agent.
On the other hand, when it exceeds 0.50%, Mn segregation becomes remarkable and the toughness is lowered, so the content is limited to 0.01 to 0.50%.

【0015】Pは粒界脆化を招くため0.01%以下に
限定した。できる限り低いほうが望ましい。Sは靱性の
低下を招くため0.007%以下に限定した。できる限
り低いほうが望ましい。Crは高温での耐食性、耐酸化
性を向上させる耐熱鋼には不可欠の元素である。フェラ
イト鋼において中性子照射脆化が最も少ないCr量は8
〜12%である。一方10%を超えると、δフェライト
を生成し靱性を低下させるため、8〜10%に限定し
た。
Since P causes embrittlement at the grain boundary, it is limited to 0.01% or less. It is desirable to be as low as possible. Since S causes deterioration of toughness, it is limited to 0.007% or less. It is desirable to be as low as possible. Cr is an essential element for heat resistant steels that improve corrosion resistance and oxidation resistance at high temperatures. In ferritic steel, the amount of Cr with the smallest neutron irradiation embrittlement is 8
~ 12%. On the other hand, if it exceeds 10%, δ ferrite is formed and the toughness is lowered, so the content is limited to 8 to 10%.

【0016】Wは固溶強化により高温クリープ破断強度
を著しく向上させる。逆に添加量が過剰になると粗大な
金属間化合物(Fe2 W)をつくり靱性を著しく低下さ
せるため、1.5〜2.2%に限定した。V:は固溶強
化及び析出強化によって高温クリープ強度、特にHAZ
の高温クリープ強度を高める。その効果は0.15%以
上で顕著となるが、0.25%を超える添加はδフェラ
イトの生成による靱性低下を招き且つ溶接性を低下させ
るため、0.15〜0.25%に限定した。
W remarkably improves the high temperature creep rupture strength by solid solution strengthening. On the contrary, if the addition amount is excessive, a coarse intermetallic compound (Fe 2 W) is formed and the toughness is remarkably reduced, so the content is limited to 1.5 to 2.2%. V: High temperature creep strength due to solid solution strengthening and precipitation strengthening, especially HAZ
Increases high temperature creep strength. The effect becomes remarkable at 0.15% or more, but addition of more than 0.25% leads to a decrease in toughness due to the formation of δ ferrite and a decrease in weldability. Therefore, the effect was limited to 0.15 to 0.25%. .

【0017】TaはTaN,TaCとしての析出強化に
より高温クリープ強度を向上させる。また固溶している
Taは靱性を向上させる。このためには0.05%以上
必要である。一方0.10%を超えると高温クリープ強
度が逆に低下し、且つ溶接性を低下させるため、0.0
5〜0.10%に限定した。BはHAZの組織を微細化
し、HAZの靱性を向上させる。クリープ強度も若干高
める効果がある。一方過剰な添加は溶接性を低下させる
ため、0.0005〜0.0030%に限定した。
Ta improves the high temperature creep strength by precipitation strengthening as TaN and TaC. Further, Ta in solid solution improves toughness. For this purpose, 0.05% or more is necessary. On the other hand, if it exceeds 0.10%, the high-temperature creep strength decreases conversely and the weldability deteriorates.
It was limited to 5 to 0.10%. B refines the structure of the HAZ and improves the toughness of the HAZ. It also has the effect of slightly increasing creep strength. On the other hand, excessive addition deteriorates the weldability, so the content was limited to 0.0005 to 0.0030%.

【0018】Nはδフェライトの生成を抑制し靱性を高
め、且つTaN,VN等の微細な析出物を形成し高温ク
リープ強度、特にHAZのクリープ強度を高める。その
ためには0.025%以上必要である。一方0.06%
を超える添加は鋳造性、溶接性を低下させるため、0.
025〜0.06%に限定した。圧延加熱温度T1 は、
溶接性を考慮してCを低めにおさえた高Cr系フェライ
ト鋼の強度、靱性を確保するために発見した指標であ
る。T1 以上に加熱し圧延した場合はTa,V,C,N
が十分に固溶し圧延時に導入された転位上に炭窒化物が
微細に析出し高温クリープ強度及び靱性を向上させる。
1 より加熱温度が低い場合は炭窒化物が比較的粗大化
し高温クリープ強度が十分確保できない。そのため圧延
加熱温度は下記式に示すT1(℃)
N suppresses the formation of δ ferrite and enhances toughness, and forms fine precipitates such as TaN and VN to enhance high temperature creep strength, particularly HAZ creep strength. For that purpose, 0.025% or more is necessary. On the other hand, 0.06%
If added in excess of 0, the castability and weldability will be deteriorated.
It was limited to 025 to 0.06%. The rolling heating temperature T 1 is
This is an index discovered to secure the strength and toughness of a high Cr ferritic steel with a low C content in consideration of weldability. Ta, V, C, N when heated to above T 1 and rolled
Is a sufficient solid solution and carbonitrides are finely precipitated on the dislocations introduced during rolling to improve the high temperature creep strength and toughness.
When the heating temperature is lower than T 1, the carbonitrides become relatively coarse and the high temperature creep strength cannot be sufficiently secured. Therefore, the rolling heating temperature is T 1 (° C) shown in the following formula.

【0019】[0019]

【数3】 [Equation 3]

【0020】の温度以上に限定した。焼きならし温度
は、低すぎるとクリープ強度が低下し高すぎると靱性が
劣化する。また1080℃超に加熱した場合、圧延時に
形成された微細な炭窒化物の効果が全くなくなってしま
う。1080℃以下の加熱であると、たとえ炭窒化物が
再固溶しても、再析出した時に圧延後析出した炭窒化物
が微細である傾向を受け継いでいる。よって焼きならし
温度は930〜1080℃に限定した。
The temperature is limited to the temperature above. If the normalizing temperature is too low, the creep strength decreases, and if it is too high, the toughness deteriorates. Further, when heated to more than 1080 ° C., the effect of fine carbonitrides formed during rolling disappears at all. If the heating is performed at 1080 ° C. or less, even if the carbonitride re-dissolves, the carbonitride precipitated after rolling when it is re-precipitated inherits the tendency of being fine. Therefore, the normalizing temperature is limited to 930 to 1080 ° C.

【0021】焼き戻し温度は、750℃未満であると靱
性が低下し、800℃超であると短時間強度が低下する
ため、750〜800℃に限定した。不可避的不純物に
ついては、特にMo,Nb,Ni,Co,Ag,Cuは
実用的にコスト増加を招かない範囲で極力低くすること
が望ましい。
If the tempering temperature is lower than 750 ° C., the toughness decreases, and if it exceeds 800 ° C., the short-time strength decreases. Therefore, the tempering temperature is limited to 750 to 800 ° C. With respect to the unavoidable impurities, it is desirable that Mo, Nb, Ni, Co, Ag, and Cu be made as low as possible within a range that practically does not increase the cost.

【0022】[0022]

【実施例】50kg真空溶解炉において表1に示す化学
成分に調整したインゴットを厚さ25mmに熱間圧延し
空冷後、焼きならし、焼き戻しを行い鋼板を作成した。
板の一部からサブマージアーク溶接によって継手を作成
し740℃/8hの溶接後熱処理を施した。母材、継手
部それぞれから6φ×30GLのクリープ試験片及び2
mmVノッチシャルピー試験片を加工した。継手のクリ
ープ試験片はその平行部にHAZ全域が入るようにし
た。継手のシャルピー試験片はフュージョンラインから
2mmのHAZ部にノッチを入れた。クリープ試験は6
00℃で10,000hの破断強度を、シャルピー試験
は0℃の吸収エネルギーをそれぞれ調査した。また溶接
予熱温度の指標となる、HAZの最高硬さ試験も行い、
溶接性を調査した。一般的に最高硬さが高いほどHAZ
の割れ感受性が高く予熱温度も高くする必要がある。
EXAMPLE A steel sheet was prepared by hot rolling an ingot adjusted to the chemical composition shown in Table 1 to a thickness of 25 mm in a 50 kg vacuum melting furnace, air-cooling, normalizing and tempering.
A joint was prepared from a part of the plate by submerged arc welding and subjected to post-weld heat treatment at 740 ° C / 8h. 6φ × 30GL creep test piece and 2 from each of the base metal and joint
A mmV notch Charpy test piece was processed. The creep test piece of the joint was arranged so that the entire HAZ was included in the parallel portion. The Charpy test piece of the joint had a notch in the HAZ portion 2 mm from the fusion line. Creep test is 6
Breaking strength of 10,000 hours at 00 ° C and absorbed energy of 0 ° C for Charpy test were investigated. In addition, the maximum hardness test of HAZ, which is an index of the welding preheating temperature, is also performed.
Weldability was investigated. Generally, the higher the maximum hardness, the HAZ
The cracking susceptibility is high and the preheating temperature must be high.

【0023】その結果を表2に示す。この表から分かる
ように本発明例である1〜15は母材、HAZともにク
リープ破断強度が高く且つ靱性が良好である。さらに最
高硬さも低く溶接性にも優れている。比較例16はCが
下限未満であるため、固溶強化、析出強化が不足しクリ
ープ強度が低い。またδフェライトが析出し、靱性も低
い。
The results are shown in Table 2. As can be seen from this table, in Examples 1 to 15 of the present invention, both the base metal and HAZ have high creep rupture strength and good toughness. Furthermore, it has a low maximum hardness and excellent weldability. In Comparative Example 16, since C is less than the lower limit, solid solution strengthening and precipitation strengthening are insufficient and the creep strength is low. Further, δ ferrite is precipitated and the toughness is low.

【0024】比較例17はCが上限超であるため、最高
硬さが上昇し溶接性が悪化している。比較例18はSi
が下限未満であるため溶接ビード形状が安定せずHAZ
のクリープ強度及びHAZの靱性が低下している。比較
例19はSiが上限超のため靱性が低下している。また
最高硬さが上昇している。
In Comparative Example 17, C is more than the upper limit, so the maximum hardness is increased and the weldability is deteriorated. Comparative Example 18 is Si
Is less than the lower limit, the weld bead shape is not stable and HAZ
Creep strength and HAZ toughness are deteriorated. In Comparative Example 19, since the Si content exceeds the upper limit, the toughness is reduced. Also, the maximum hardness is increasing.

【0025】比較例20はMnが上限超のため靱性が低
下している。比較例21はPが上限超のため靱性が低下
している。比較例22はSが上限超のため靱性が低下し
ている。比較例23はCrが上限超のため、δフェライ
トが析出し靱性が低下している。また最高硬さが上昇し
ている。
In Comparative Example 20, the toughness is deteriorated because Mn exceeds the upper limit. In Comparative Example 21, P is more than the upper limit, so the toughness is reduced. In Comparative Example 22, the toughness is deteriorated because S exceeds the upper limit. In Comparative Example 23, since Cr exceeds the upper limit, δ ferrite is precipitated and the toughness is reduced. Also, the maximum hardness is increasing.

【0026】比較例24はWが下限未満のため、固溶強
化が十分でなくクリープ強度が低下している。比較例2
5はWが上限超のため、粗大な金属間化合物が析出し靱
性が低下している。また最高硬さが上昇している。比較
例26はVが下限未満のため、固溶強化、析出強化が十
分でなく特にHAZのクリープ強度が低下している。
In Comparative Example 24, since W is less than the lower limit, solid solution strengthening is not sufficient and creep strength is lowered. Comparative example 2
In No. 5, since W exceeds the upper limit, a coarse intermetallic compound precipitates and the toughness decreases. Also, the maximum hardness is increasing. In Comparative Example 26, since V is less than the lower limit, solid solution strengthening and precipitation strengthening are not sufficient, and especially the creep strength of HAZ is lowered.

【0027】比較例27はVが上限超のため、δフェラ
イトが析出し靱性が低下している。また最高硬さが上昇
している。比較例28はTaが下限未満のため、析出強
化が十分でなくクリープ強度が低下している。また靱性
も低い。比較例29はTaが上限超のため、クリープ強
度が低下している。また最高硬さが上昇している。
In Comparative Example 27, since V exceeds the upper limit, δ ferrite is precipitated and the toughness is lowered. Also, the maximum hardness is increasing. In Comparative Example 28, Ta is less than the lower limit, so precipitation strengthening is insufficient and creep strength is reduced. It also has low toughness. In Comparative Example 29, Ta exceeds the upper limit, so the creep strength is reduced. Also, the maximum hardness is increasing.

【0028】比較例30はBが下限未満のため、HAZ
の組織が粗大になりHAZの靱性が低下している。比較
例31はBが上限超のため、最高硬さが上昇している。
比較例32はNが下限未満のため、析出強化が不足しク
リープ強度が低下している。またδフェライトが析出し
靱性が低下している。
In Comparative Example 30, B was less than the lower limit, so HAZ
Of the HAZ becomes coarse and the toughness of HAZ is lowered. In Comparative Example 31, B is more than the upper limit, so the maximum hardness is increased.
In Comparative Example 32, since N is less than the lower limit, precipitation strengthening is insufficient and creep strength is reduced. Further, δ ferrite is precipitated and the toughness is lowered.

【0029】比較例33はNが上限超のため、最高硬さ
が上昇している。比較例34は圧延加熱温度が下限未満
のため、析出物が粗大化しクリープ強度が低下してい
る。比較例35は焼きならし温度が下限未満のためクリ
ープ強度が低下している。比較例36は焼きならし温度
が上限超のため、結晶粒が粗大化し母材の靱性が低下し
ている。
In Comparative Example 33, the maximum hardness is increased because N exceeds the upper limit. In Comparative Example 34, since the rolling heating temperature is less than the lower limit, the precipitates are coarsened and the creep strength is reduced. In Comparative Example 35, the normalizing temperature is less than the lower limit and the creep strength is lowered. In Comparative Example 36, since the normalizing temperature exceeds the upper limit, the crystal grains are coarsened and the toughness of the base material is lowered.

【0030】比較例37は焼き戻し温度が下限未満のた
め母材の靱性が低下している。比較例38は焼き戻し温
度が上限超のため短時間の引張強度が本発明例より10
0MPa程度低下した。
In Comparative Example 37, the tempering temperature is less than the lower limit, so the toughness of the base material is lowered. In Comparative Example 38, the tempering temperature is higher than the upper limit, so that the short-time tensile strength is 10 as compared with the inventive example.
It decreased by about 0 MPa.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】以上に述べたように、本発明に係る高温
強度に優れた核融合炉用フェライト系鋼によれば、例え
ば従来の核融合炉用鋼に比べ高温強度、特に高温クリー
プ破断強度が大幅に改善され、しかも溶接性に優れてい
るため、核融合炉第一壁材料として極めて大きな効果を
奏するものである。
As described above, according to the ferritic steel for a fusion reactor excellent in high temperature strength of the present invention, for example, the high temperature strength, especially the high temperature creep rupture strength as compared with the conventional fusion reactor steel. Is significantly improved and the weldability is excellent, so that it is extremely effective as a first wall material for a fusion reactor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量基準で C :0.04〜0.09% Si:0.08〜0.25% Mn:0.01〜0.50% P :0.01%以下 S :0.007%以下 Cr:8〜10% W :1.5〜2.2% V :0.15〜0.25% Ta:0.05〜0.10% B :0.0005〜0.0030% N :0.025〜0.06% を含有し、残部Fe及び不可避的不純物からなることを
特徴とする溶接性に優れた核融合炉用フェライト系耐熱
鋼。
1. C: 0.04 to 0.09% Si: 0.08 to 0.25% Mn: 0.01 to 0.50% P: 0.01% or less S: 0.007 by weight % Or less Cr: 8 to 10% W: 1.5 to 2.2% V: 0.15 to 0.25% Ta: 0.05 to 0.10% B: 0.0005 to 0.0030% N: A ferritic heat-resistant steel for a fusion reactor having excellent weldability, which contains 0.025 to 0.06% and the balance Fe and inevitable impurities.
【請求項2】 重量基準で C :0.04〜0.09% Si:0.08〜0.25% Mn:0.01〜0.50% P :0.01%以下 S :0.007%以下 Cr:8〜10% W :1.5〜2.2% V :0.15〜0.25% Ta:0.05〜0.10% B :0.0005〜0.0030% N :0.025〜0.06% を含有し、残部Fe及び不可避的不純物からなる鋼を下
記式に示すT1(℃) 【数1】 の温度以上に加熱して圧延を行い、且つ 焼きならし温度:930〜1080℃ 焼き戻し温度:750〜800℃ の条件で熱処理をすることを特徴とする溶接性に優れた
核融合炉用フェライト系耐熱鋼の製造方法。
2. C: 0.04 to 0.09% Si: 0.08 to 0.25% Mn: 0.01 to 0.50% P: 0.01% or less S: 0.007 by weight % Or less Cr: 8 to 10% W: 1.5 to 2.2% V: 0.15 to 0.25% Ta: 0.05 to 0.10% B: 0.0005 to 0.0030% N: A steel containing 0.025 to 0.06% and the balance Fe and unavoidable impurities is represented by the following formula: T 1 (° C.) Of the ferrite for fusion reactors, which is excellent in weldability, characterized in that it is heated to a temperature equal to or higher than the above temperature and rolled, and heat-treated under the conditions of normalizing temperature: 930 to 1080 ° C and tempering temperature: 750 to 800 ° C. -Based heat-resistant steel manufacturing method.
JP5271052A 1993-10-28 1993-10-28 Ferritic heat resistant steel for fusion reactor excellent in weldability and its production Pending JPH07126810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5271052A JPH07126810A (en) 1993-10-28 1993-10-28 Ferritic heat resistant steel for fusion reactor excellent in weldability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5271052A JPH07126810A (en) 1993-10-28 1993-10-28 Ferritic heat resistant steel for fusion reactor excellent in weldability and its production

Publications (1)

Publication Number Publication Date
JPH07126810A true JPH07126810A (en) 1995-05-16

Family

ID=17494739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5271052A Pending JPH07126810A (en) 1993-10-28 1993-10-28 Ferritic heat resistant steel for fusion reactor excellent in weldability and its production

Country Status (1)

Country Link
JP (1) JPH07126810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291360A (en) * 2007-04-25 2008-12-04 Nippon Steel Corp Ferritic heat resistant steel having excellent creep property in welded heat-affected zone, and heat resistant structure
CN109594009A (en) * 2018-12-29 2019-04-09 中国科学院合肥物质科学研究院 A kind of preparation method of the Flouride-resistani acid phesphatase low activation steel of strengthened nano precipitated phase
CN116970875A (en) * 2023-09-25 2023-10-31 上海核工程研究设计院股份有限公司 Tantalum-containing ferrite heat-resistant steel and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291360A (en) * 2007-04-25 2008-12-04 Nippon Steel Corp Ferritic heat resistant steel having excellent creep property in welded heat-affected zone, and heat resistant structure
CN109594009A (en) * 2018-12-29 2019-04-09 中国科学院合肥物质科学研究院 A kind of preparation method of the Flouride-resistani acid phesphatase low activation steel of strengthened nano precipitated phase
CN116970875A (en) * 2023-09-25 2023-10-31 上海核工程研究设计院股份有限公司 Tantalum-containing ferrite heat-resistant steel and manufacturing method thereof
CN116970875B (en) * 2023-09-25 2023-12-15 上海核工程研究设计院股份有限公司 Tantalum-containing ferrite heat-resistant steel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3565331B2 (en) High strength low alloy heat resistant steel
JPS629646B2 (en)
JP6665658B2 (en) High strength steel plate
JP4237904B2 (en) Ferritic heat resistant steel sheet with excellent creep strength and toughness of base metal and welded joint and method for producing the same
JP2021195603A (en) Low-alloy heat-resistant steel, method for producing low-alloy heat-resistant steel
JP2021105204A (en) Austenitic heat-resistant steel
JP3237137B2 (en) High chromium ferritic heat-resistant steel with small decrease in strength of weld heat affected zone
JPH05171341A (en) Production of thick steel plate excellent in toughness in welding heat-affected zone
JP2831051B2 (en) Austenitic stainless steel welding wire
JP3319222B2 (en) Manufacturing method of high chromium ferritic steel with excellent creep characteristics of welded joint
JPH07126810A (en) Ferritic heat resistant steel for fusion reactor excellent in weldability and its production
JPH10310820A (en) Production of steel for fusion reactor excellent in low temperature toughness and creep strength
JP3819848B2 (en) Heat resistant steel and manufacturing method thereof
JPS62170459A (en) High tension steel plate for high heat input welding
US3574605A (en) Weldable,nonmagnetic austenitic manganese steel
JP2624224B2 (en) Steam turbine
JP3387145B2 (en) High Cr ferritic steel with excellent high temperature ductility and high temperature strength
JP2594265B2 (en) TIG welding wire for 9Cr-Mo steel
JPS59211553A (en) High cr steel with superior toughness and superior strength at high temperature
JP2000226633A (en) Steel for electron beam welding excellent in toughness
JPH11106860A (en) Ferritic heat resistant steel excellent in creep characteristic in heat-affected zone
JP2020164919A (en) Austenitic heat-resistant steel
JP3687315B2 (en) B-containing stainless steel and method for producing hot rolled sheet thereof
JP2002146481A (en) Oxide dispersion strengthened ferritic steel for electric resistance welded boiler having excellent electric resistance weldability and steel tube thereof
JP7334771B2 (en) Steel for the shell of the container for the melt, the shell of the container for containing the melt, and the container for containing the melt