JP3237137B2 - High chromium ferritic heat-resistant steel with small decrease in strength of weld heat affected zone - Google Patents

High chromium ferritic heat-resistant steel with small decrease in strength of weld heat affected zone

Info

Publication number
JP3237137B2
JP3237137B2 JP20164491A JP20164491A JP3237137B2 JP 3237137 B2 JP3237137 B2 JP 3237137B2 JP 20164491 A JP20164491 A JP 20164491A JP 20164491 A JP20164491 A JP 20164491A JP 3237137 B2 JP3237137 B2 JP 3237137B2
Authority
JP
Japan
Prior art keywords
steel
strength
heat
content
resistant steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20164491A
Other languages
Japanese (ja)
Other versions
JPH0543986A (en
Inventor
敦朗 伊勢田
義淳 椹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20164491A priority Critical patent/JP3237137B2/en
Publication of JPH0543986A publication Critical patent/JPH0543986A/en
Application granted granted Critical
Publication of JP3237137B2 publication Critical patent/JP3237137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は高温強度が高く、耐酸
化性および溶接性に優れ、ボイラー、原子力、化学工業
などの分野で高温耐圧部材として使用される例えば鋼
管、鋼板鍛造材に供される鋼であって、特に溶接継手の
熱影響部における強度低下の小さい高クロムフェライト
系耐熱鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to, for example, steel pipes and steel sheet forgings which have high strength at high temperatures, have excellent oxidation resistance and weldability, and are used as high-temperature pressure-resistant members in fields such as boilers, nuclear power and chemical industries. High-chromium ferritic heat-resistant steel having a small decrease in strength in the heat-affected zone of a welded joint.

【0002】[0002]

【従来の技術】ボイラー、原子力、化学工業用等の高温
耐熱耐圧部材に使用される耐熱鋼は、高温強度、耐食
性、耐酸化性および靱性とともに、加工性、溶接性、経
済性に優れていることが要求される。従来、上記のよう
な用途に用いられる材料としては、SUS321H 、SUS347
H 鋼などのオーステナイトステンレス鋼、 2・ 1/4 C
r−1Mo鋼などの低合金鋼、9〜12Cr系の高Crフェラ
イト鋼がある。中でもの高Crフェライト鋼は、500 〜
650 ℃の温度において強度、耐食性の点での低合金鋼
より優れ、またのオーステナイトステンレス鋼に比べ
て熱伝導度が高く、熱膨張係数が小さいことから耐熱疲
労特性に優れるとともにスケールの剥離をおこしにくい
こと、応力腐食割れをおこさないことが利点である。
2. Description of the Related Art Heat-resistant steel used for high-temperature heat-resistant and pressure-resistant members for boilers, nuclear power, chemical industry, etc. has excellent workability, weldability, and economic efficiency, as well as high-temperature strength, corrosion resistance, oxidation resistance, and toughness. Is required. Conventionally, materials used for the above applications include SUS321H, SUS347
Austenitic stainless steel such as H steel, 2.1 / 4 C
There are low alloy steels such as r-1Mo steel and high Cr ferrite steels of 9-12Cr series. Among them, high-Cr ferritic steel is 500-
At a temperature of 650 ° C, it is superior to low alloy steel in strength and corrosion resistance, and has higher thermal conductivity and lower thermal expansion coefficient than austenitic stainless steel. It is advantageous that it is difficult to cause stress corrosion cracking.

【0003】高Crフェライト鋼としては、9Cr−1Mo鋼
(STBA26) 、改良9Cr−1Mo鋼(ASTM SA213 T91)、12Cr
−1Mo鋼(DIN X20CrMoV121)などが著名である。さらに
高温強度を改善することを目的にMo、W、V、Nb、N等
を複合添加した鋼として特公昭62−8502号、同62−1230
4 号、特開昭62−297435号、特開平2−310340号の公報
に開示される鋼がある。
As high Cr ferritic steels, 9Cr-1Mo steel (STBA26), improved 9Cr-1Mo steel (ASTM SA213 T91), 12Cr
-1Mo steel (DIN X20CrMoV121) and the like are famous. In order to further improve the high-temperature strength, steels to which Mo, W, V, Nb, N, etc. are added in combination are disclosed in JP-B-62-8502 and JP-B-6-1230.
No. 4, JP-A-62-297435, and JP-A-2-310340.

【0004】本発明者らは 600℃以上の高温耐酸化性を
高めることを目的として耐熱材料の組成等に関する研究
を重ねてきた。その成果は、Cu添加鋼として特開平2−
232345号、同3−97832 号の公報に提案したとおりであ
る。このCu添加は 600℃以上の耐酸化性改善に加え、高
Crフェライト鋼に生成しやすいδ−フェライトの抑制に
効果があり、高価なNiの節約になる。また、C、Niに比
べてAc1 変態温度を下げにくいことも特徴で、製造時の
熱処理条件選定の上で有利である。なお、Cu添加鋼は特
開平2−294452公報にも提案されており、同公報にはCu
の添加が溶接継手の靱性、特に長時間加熱後の溶接部の
靱性維持に有効であると記載されている。
[0004] The present inventors have repeatedly studied the composition of heat-resistant materials for the purpose of increasing the high-temperature oxidation resistance at 600 ° C or higher. The result is that as disclosed in
As proposed in the gazettes of 232345 and 3-97832. This addition of Cu improves oxidation resistance above 600 ° C and
This is effective in suppressing δ-ferrite, which is easily formed in Cr ferritic steel, and saves expensive Ni. Further, it is characterized in that it is difficult to lower the Ac 1 transformation temperature as compared with C and Ni, which is advantageous in selecting heat treatment conditions during production. Incidentally, Cu-added steel is also proposed in Japanese Patent Application Laid-Open No. 2-294452.
It is described that the addition of is effective in maintaining the toughness of a welded joint, particularly the toughness of a weld after long-time heating.

【0005】高Cr鋼にCuを添加する試みは従来からなさ
れている。例えば特公昭46−15210号公報には1〜
4%のCuが焼入れ性、靱性の向上に効果があることが
示されており、同じく特開昭60−155649号公報には1%
以下のCuは靱性の改善に効果があることが示されてい
る。さらに前掲の特公昭62−12304 号公報や、特開昭59
−211553号公報にもCuを添加した高Cr鋼が開示されてい
る。
[0005] Attempts have been made to add Cu to high Cr steels. For example, Japanese Patent Publication No. 46-15210 discloses
It has been shown that 4% of Cu is effective in improving hardenability and toughness, and 1% of Cu is also disclosed in JP-A-60-155649.
The following Cu has been shown to be effective in improving toughness. Further, Japanese Patent Publication No. Sho 62-12304 described above and
JP-A-211553 also discloses a high Cr steel to which Cu is added.

【0006】しかしながら、これまでに提案された高Cr
フェライト鋼には、溶接継手の熱影響部(以下HAZと
いう)の軟化が大きくクリープ強度が低下するという共
通の問題がある。前述のような従来の高Crフェライト鋼
は、母材の高温クリープ強度の改善を重視している反
面、母材に比較して溶接継手部の強度低下が大きいとい
う問題点についての検討は殆どなされていない。上記の
多くの特許公報に開示されている発明も、すべて母材特
性を重視した組成の発明で、溶接継手のHAZの組織変
化とこれに伴うHAZの強度低下に対する配慮は何らな
されていない。
[0006] However, the high Cr
Ferrite steels have a common problem in that the heat-affected zone (hereinafter, referred to as HAZ) of the welded joint is greatly softened and creep strength is reduced. While the conventional high-Cr ferritic steels mentioned above emphasize improvement in the high-temperature creep strength of the base metal, studies on the problem that the strength of the welded joint is greatly reduced compared to the base metal have been made. Not. The inventions disclosed in the above-mentioned many patent publications are all inventions of compositions in which the characteristics of the base material are emphasized, and no consideration is given to the change in the HAZ structure of the welded joint and the accompanying decrease in the strength of the HAZ.

【0007】以上要するに高強度高Crフェライト鋼の溶
接継手の軟化層に起因するクリープ強度低下が、この種
の鋼を高温耐圧部材として使用するに当たり大きな障害
となってきた。
[0007] In short, the decrease in creep strength caused by the softened layer of the welded joint of high-strength high-Cr ferritic steel has been a major obstacle in using this kind of steel as a high-temperature pressure-resistant member.

【0008】[0008]

【発明が解決しようとする課題】高Crフェライト耐熱鋼
における溶接継手部の強度低下は、HAZに生成する不
安定な軟化層(これをHAZ軟化層という)に起因する
ものと考えられるが、これを防ぐ根本的な対策について
の報告はない。例えば、既存の改良9Cr−1Moの鋼の溶
接継手では 600〜650 ℃クリープ強度が10h以上の長
時間側で母材に比べ15〜20%低下する。このようなクリ
ープ強度の低下は、高W系の高Crフェライト鋼でも同じ
である。なお、HAZの組織は一般に溶接金属の側から
粗粒域、混粒域、細粒域に分類されるが、上記のHAZ
軟化層は細粒域に対応するものであり、硬さが最も低
く、従って、強度が最も低い領域である。高Crフェライ
ト耐熱鋼のように、母材が硬い焼戻しマルテンサイト組
織の場合、HAZの細粒域は変態点の直上に加熱される
部分であり、組織の回復軟化に伴って硬さの著しく低下
した領域になる。
The decrease in the strength of the welded joint in the high Cr ferritic heat-resistant steel is considered to be caused by an unstable softened layer generated in the HAZ (this is called a HAZ softened layer). There are no reports of fundamental measures to prevent this. For example, 600 to 650 ° C. creep strength in the welded joint of the steel existing improved 9Cr-1Mo drops 15-20% compared with the base material at 10 4 h or more long side. Such a decrease in creep strength is the same even in a high W ferritic steel of high W type. The structure of HAZ is generally from the side of the weld metal.
It is classified into a coarse grain area, a mixed grain area, and a fine grain area.
The softened layer corresponds to the fine grain area and has the lowest hardness.
And therefore the region with the lowest intensity. High Cr ferrai
As in heat-resistant steel, the base material is a tempered martensite
In the case of weaving, the fine grain area of the HAZ is heated just above the transformation point
This is a part, and the hardness decreases significantly as the tissue recovers and softens
Area.

【0009】本発明の課題は、高温強度、加工性、溶接
性等の基本性質は従来鋼と同等以上であって、特に溶接
継手部の軟化が小さく、高温クリープ強度の低下がな
く、しかも安価な高Crフェライト系耐熱鋼を提供するこ
とにある。
An object of the present invention is to provide basic properties such as high-temperature strength, workability, weldability, etc., which are equal to or higher than those of conventional steel, and in particular, softening of a welded joint is small, there is no decrease in high-temperature creep strength, and the cost is low. It is to provide a high-Cr ferritic heat-resistant steel.

【0010】[0010]

【課題を解決するための手段】溶接継手部のクリープ強
度の低下は、HAZ部の軟化層の形成によっておこる延
性の低い剪断的な破壊(Type IV のクラッキングと呼
ぶ) を伴うのが特徴である。一方、高強度化の観点から
Wを多量添加した鋼では、継手部のクリープ強度の低下
が母材強度に比べてきわめて大きい。また、多量のWの
添加は材料コストを上げるという難点もある。
The creep strength of the welded joint is reduced by the formation of a softened layer in the HAZ, which is accompanied by low ductile shear fracture (referred to as Type IV cracking). . On the other hand, in the case of steel to which a large amount of W is added from the viewpoint of increasing the strength, the creep strength of the joint is greatly reduced compared to the base metal. Further, there is also a problem that addition of a large amount of W increases material cost.

【0011】本発明は、高Crフェライト鋼に関する多数
の研究結果から得られた下記の知見を基礎としてなされ
たものである。
The present invention has been made based on the following findings obtained from the results of numerous studies on high Cr ferritic steels.

【0012】Cuの添加によりHAZの組織安定性が高
まり、溶接継手部の軟化が防止できる。この作用は、δ
−フェライトの抑制、靱性の改善等のこれまでに知られ
た作用とは異なるもので、後述する特定の化学組成範囲
においてのみ得られるものである。
[0012] The addition of Cu increases the structural stability of the HAZ and can prevent softening of the weld joint. This effect is δ
-It is different from previously known effects such as suppression of ferrite and improvement of toughness, and can be obtained only in a specific chemical composition range described later.

【0013】Wを多く添加した高Crフェライト鋼は母
材の強度が高まる反面、継手強度が大きく低下する。W
を添加せず、またはその添加量を最小限に抑えて、母材
の強度を多少落としても、Cuの添加により継手のクリー
プ強度を向上させることにより部材は高応力下での使用
が可能になる。
[0013] The high Cr ferritic steel to which a large amount of W is added increases the strength of the base material, but greatly reduces the joint strength. W
Even if the strength of the base material is slightly reduced without adding or minimizing the amount of addition, the addition of Cu improves the creep strength of the joint, allowing the member to be used under high stress. Become.

【0014】上記およびの効果を得るには、鋼に
Alを添加して十分な脱酸をすることが必須である。Alの
添加量が少ないと継手強度は大きく低下する。一方、Al
の過剰添加は母材を含めて強度低下を招く。
In order to obtain the above effects, the steel
It is essential to add Al to perform sufficient deoxidation. If the addition amount of Al is small, the joint strength is greatly reduced. On the other hand, Al
Excessive addition of iron causes a decrease in strength including the base material.

【0015】本発明は、主に上記の知見を基にしてなさ
れたもので、その要旨は下記の高Crフェライト耐熱鋼に
ある。
The present invention has been made mainly on the basis of the above findings, and its gist lies in the following high Cr ferrite heat-resistant steel.

【0016】(1) 重量%で、C:0.03〜0.15%、Si:0.
7%以下、Mn:0.1〜1.5 %、Ni:0.05〜1.0%、Cr:8
〜14%、Mo:0.01〜3%、V: 0.1〜0.3%、Nb:0.01
〜0.2%、N:0.001〜0.1%、Al:0.001〜0.05%、Cu:
0.4〜3.5 %を含み、かつCu/Niが4.5以下であり、残部
は鉄および不可避的不純物からなり、不純物としてのO
(固溶酸素) が0.015%以下である溶接熱影響部の強度低
下の小さい高クロムフェライト耐熱鋼。
(1) By weight%, C: 0.03 to 0.15%, Si: 0.
7% or less, Mn: 0.1-1.5%, Ni: 0.05-1.0%, Cr: 8
-14%, Mo: 0.01-3%, V: 0.1-0.3%, Nb: 0.01
~ 0.2%, N: 0.001 ~ 0.1%, Al: 0.001 ~ 0.05%, Cu:
0.4-3.5%, Cu / Ni is 4.5 or less, and the balance consists of iron and unavoidable impurities.
A high chromium ferrite heat-resistant steel with a small decrease in the strength of the weld heat-affected zone having a solid solution oxygen content of 0.015% or less.

【0017】(2) 合金成分として上記(1) 記載の成分の
外に更に、下記の (イ)〜 (ニ)群の一つ以上の群から選ん
だ1種以上の成分を含有する高クロムフェライト耐熱
鋼。
(2) A high chromium alloy containing, as an alloy component, one or more components selected from one or more of the following groups (a) to (d) in addition to the components described in the above (1): Ferrite heat resistant steel.

【0018】 (イ)群・・・0.0001〜0.02重量%のB (ロ)群・・・0.5 重量%未満のW、但しW含有量はMo含
有量よりも少ない (ハ)群・・・0.0001〜0.1 %のMg (ニ)群・・・それぞれ0.01〜0.2 重量%のLa、Ce、Ca、Z
r、Ti、YおよびTa 上記本発明鋼は、後述するように多数の合金成分を適正
な量でバランスよく含有することによって耐熱鋼として
総合的特性の極めて優れたものである。特に本発明鋼
は、適量のAl添加により十分脱酸し、W量を低減または
無添加としてCu添加し、HAZ軟化によるTypeIVクラ
ックを防止できることが大きな特徴である。
Group (a): 0.0001 to 0.02% by weight of B (B) Group: W of less than 0.5% by weight, provided that the W content contains Mo.
Less than Yuryou (c) group ... from 0.0001 to 0.1 percent of Mg (d) group ... respectively 0.01 to 0.2 wt% of La, Ce, Ca, Z
r, Ti, Y and Ta The steel of the present invention has excellent overall properties as a heat-resistant steel by containing a number of alloy components in appropriate amounts in a well-balanced manner as described later. In particular, the present invention steel, sufficiently deoxidized by addition a suitable amount of Al, Cu is added to W amount as reduced or no addition, a significant feature that prevents the TypeIV cracks due HAZ softening.

【0019】W量の少ないもしくはWを添加しない高Cr
フェライト鋼であっても十分なクリープ破断強度が得ら
れる。
High Cr with low W content or no W added
Sufficient creep rupture strength can be obtained even with ferritic steel.

【0020】[0020]

【作用】以下、本発明鋼の合金成分の作用効果とその含
有量の限定理由を説明する。なお、合金成分の含有量に
ついての%は全て重量%である C:CはCr、Fe、W、VおよびNbと結合して炭化物を形
成し、高温強度に寄与するとともにそれ自身がオーステ
ナイト安定化元素として組織を安定化する。0.03%未満
では炭化物の析出量が少なく、δ−フェライトの多量生
成を招き強度と靱性が低下する。また0.15%を超える場
合には、鋼が著しく硬化して溶接性、加工性が悪くな
る。即ち、Cの適正含有量は0.03〜0.15%である。一層
好ましい範囲は0.06〜0.13%である。
The effects of the alloy components of the steel of the present invention and the reasons for limiting the contents will be described below. All the percentages of the contents of the alloy components are% by weight. C: C combines with Cr, Fe, W, V and Nb to form carbides and contributes to high-temperature strength and stabilizes austenite itself. Stabilizes the structure as an element. If it is less than 0.03%, the amount of carbide precipitation is small, and a large amount of δ-ferrite is formed, and strength and toughness are reduced. If it exceeds 0.15%, the steel is extremely hardened, and the weldability and workability deteriorate. That is, the appropriate content of C is 0.03 to 0.15%. A more preferred range is from 0.06 to 0.13%.

【0021】Si:Siは脱酸剤として働き、また鋼の耐水
蒸気酸化特性を高める元素である。しかし、Siが 0.7%
を超えると鋼の靱性が著しく低下し、クリープ強度に対
しても有害である。特に肉厚材料では長時間加熱による
脆化を避けるためにも低く抑えるのが望ましいから上限
を 0.7%とする。
Si: Si acts as a deoxidizing agent and is an element that enhances the steam oxidation resistance of steel. However, Si is 0.7%
If it exceeds, the toughness of the steel is significantly reduced, and is harmful to the creep strength. Especially for thick materials, it is desirable to keep the thickness low to avoid embrittlement due to prolonged heating, so the upper limit is set to 0.7%.

【0022】Mn: Mnは熱間加工性を改善し、組織の安定化に有効で
が、0.1 %未満では十分な効果が得られず、1.5%を超
えると鋼を硬化させ、加工性、溶接性を損なう。よって
Mnの含有量は 0.1〜1.5 %とする。
[0022] Mn: Mn improves the hot workability, but Ru Oh effective in stabilizing the tissue, sufficient effect can not be obtained is less than 0.1%, to cure the steel exceeds 1.5%, workability Impairs weldability. Therefore
The content of Mn is 0.1 to 1.5%.

【0023】Ni:Niはオーステナイト安定化元素として
δ−フェライトの生成を抑制し、焼もどしマルテンサイ
ト組織を安定にする。また、Cu添加鋼の熱間加工性改善
の点からもCuの含有量に見合った適量のNiを添加する必
要がある。Ni0.05%未満では上記の効果は得られず、1.
0 %を超えるとクリープ強度が低下し、また経済性を損
なう。従って、Niの含有量は0.05〜1.0 %とする。望ま
しい範囲は0.1〜0.8 %である。さらに好ましいのは重
量%比でCu/Ni= 2.5〜4.5 とすることである。このCu
/Ni比は、Cu含有鋼に特有の熱間加工時の割れを防止す
る対策としての条件である。
Ni: Ni suppresses the formation of δ-ferrite as an austenite stabilizing element and stabilizes the tempered martensite structure. Also, from the viewpoint of improving the hot workability of the Cu-added steel, it is necessary to add an appropriate amount of Ni corresponding to the Cu content. If the Ni content is less than 0.05%, the above effects cannot be obtained, and 1.
If it exceeds 0%, the creep strength is reduced and the economy is impaired. Therefore, the content of Ni is set to 0.05 to 1.0%. The preferred range is 0.1-0.8%. More preferably, Cu / Ni = 2.5-4.5 in weight% ratio. This Cu
The / Ni ratio is a condition as a measure to prevent cracking during hot working that is specific to Cu-containing steel.

【0024】Cr:Crは鋼の耐酸化性、高温耐食性を確保
するために不可欠な元素であり、その含有量が8%未満
では高Cr鋼としての前記のような用途に十分な耐酸化
性、高温耐食性が得られない。Crが8%未満の鋼では焼
ならしでベイナイトが多く生成し、本発明の対象とする
焼もどしマルテンサイト型の材料とは異なる材料とな
る。一方、Crが14%を超えるとδ−フェライト量の増加
により、強度、加工性、靱性が損なわれる。したがっ
て、Cr量は8〜14%が適正範囲であり、好ましいのは
8.5〜12%である。
Cr: Cr is an element indispensable for securing the oxidation resistance and high-temperature corrosion resistance of the steel. If its content is less than 8%, the oxidation resistance is sufficient for the above-mentioned applications as a high Cr steel. , High temperature corrosion resistance cannot be obtained. In steel with less than 8% Cr, much bainite is formed by normalizing, which is a material different from the tempered martensitic type material targeted by the present invention. On the other hand, when Cr exceeds 14%, the strength, workability, and toughness are impaired due to the increase in the amount of δ-ferrite. Therefore, the Cr content is in a proper range of 8 to 14%, and is preferably
8.5 to 12%.

【0025】Mo:Moは本発明鋼の重要基本成分の一つ
で、固溶強化および微細炭窒化物の析出強化元素として
クリープ強度の向上に有効である。Moはδ−フェライト
を生成しやすいものの、Wに比べ安価であるという利点
がある。また、Wに比べ母材のクリープ強度への寄与は
やや小さいが、Mo含有鋼は溶接継手のクリープ強度低下
が小さい。これらの理由で、WよりもMoを積極的に利用
することが本発明の大きな特徴の一つである。
Mo: Mo is one of the important basic components of the steel of the present invention, and is effective for improving the creep strength as a solid solution strengthening element and a precipitation strengthening element for fine carbonitrides. Mo easily produces δ-ferrite, but has the advantage of being cheaper than W. Further, although the contribution of the base metal to the creep strength is slightly smaller than that of W, the decrease in the creep strength of the welded joint of the Mo-containing steel is small. For these reasons, the active use of Mo over W is one of the major features of the present invention.

【0026】特にMo含有鋼の継手HAZの軟化層のクリ
ープ中の組織安定性は、後述の適正なAl脱酸とCu添加に
より著しく改善されることがわかった。これは、継手H
AZの軟化層へのクリープひずみの集中を抑制する結果
にもつながっている。しかし、このような効果は0.01%
未満のMoでは得られない。一方、Moが3%を超えるとδ
−フェライトが多量に生成するとともに鋼が硬化して靱
性、加工性が損なわれる。よって、Moの含有量は、0.01
〜3%の範囲とするのがよい。さらに好ましい範囲は
0.8〜2.2 %である。
In particular, it has been found that the microstructure stability during creep of the softened layer of the joint HAZ of the Mo-containing steel is significantly improved by appropriate Al deoxidation and Cu addition described later. This is the joint H
This also results in suppressing the concentration of creep strain on the softened layer of AZ. However, such an effect is 0.01%
It cannot be obtained with less than Mo. On the other hand, when Mo exceeds 3%, δ
-A large amount of ferrite is formed and the steel is hardened, resulting in impaired toughness and workability. Therefore, the content of Mo is 0.01
It is better to be in the range of 3%. A more preferred range is
0.8 to 2.2%.

【0027】V:VはC、Nと結合してV(C、N)の
微細析出物を形成する。この析出物は高温、長時間の加
熱でも安定で長時間側のクリープ強度の向上に大きく寄
与する。
V: V combines with C and N to form a fine precipitate of V (C, N). These precipitates are stable even at high temperatures and for a long time, and greatly contribute to the improvement of the creep strength on the long-time side.

【0028】V含有量が 0.1%未満では上記の効果が十
分に得られず、0.3 %を超える場合には固溶Vが増加し
てかえって強度を損なう。したがってVの含有量は 0.1
〜0.3%とする。
If the V content is less than 0.1%, the above effects cannot be sufficiently obtained. If the V content is more than 0.3%, the solid solution V increases and the strength is impaired. Therefore, the content of V is 0.1
To 0.3%.

【0029】Nb:NbはVと同様C、Nと結合してNb
(C、N)の微細析出物を形成し、クリープ強度の向上
に寄与する。この析出物は短時間クリープ強度の向上に
有効で、さらに結晶粒を微細化し靱性改善にも有効であ
る。Nb含有量が0.01%未満では上記効果は得られない。
一方、0.2 %を超える場合は、焼ならし処理で未固溶Nb
Cが増え、強度と溶接性を損なう。したがってNbの含有
量は0.01〜0.2 %とする。
Nb: Nb is bonded to C and N in the same manner as V to form Nb
A fine precipitate of (C, N) is formed, which contributes to improvement in creep strength. These precipitates are effective for improving short-time creep strength, and are also effective for refining crystal grains and improving toughness. If the Nb content is less than 0.01%, the above effects cannot be obtained.
On the other hand, if it exceeds 0.2%, the undissolved Nb
C is increased and strength and weldability are impaired. Therefore, the content of Nb is set to 0.01 to 0.2%.

【0030】N:NはV、Nbと結合して炭窒化物を形成
してクリープ強度の向上に寄与するが、0.001 %未満で
はその効果がない。一方、0.1 %を超える場合は溶接
性、加工性を損なう。よってNの含有量は 0.001〜0.1
%とした。好ましいのは0.02〜0.07%である。
N: N combines with V and Nb to form a carbonitride and contributes to the improvement of creep strength, but less than 0.001% has no effect. On the other hand, if it exceeds 0.1%, weldability and workability are impaired. Therefore, the content of N is 0.001-0.1
%. Preferred is 0.02-0.07%.

【0031】Al:Alは、脱酸剤として添加されるが、後
述するように固溶酸素を低減してCuの作用効果を発揮さ
せるためにはAlによる脱酸を十分に行わなければならな
い。Alの含有量が 0.001%未満では十分な脱酸効果が得
られず、靱性、強度を損なう。一方、0.05%を超える場
合はクリープ強度を損なうことから、Al含有量は 0.001
〜0.05%とする。
Al: Al is added as a deoxidizing agent, but as described below, in order to reduce the dissolved oxygen and exert the effect of Cu, deoxidation with Al must be sufficiently performed. If the Al content is less than 0.001%, a sufficient deoxidizing effect cannot be obtained, and the toughness and strength are impaired. On the other hand, if it exceeds 0.05%, the creep strength is impaired, so the Al content is 0.001%.
To 0.05%.

【0032】Cu:Cuは本発明鋼の重要な添加元素の一つ
で、本発明の成分系の鋼を対象とした場合、次のような
作用効果をもつ。 溶接部に形成するHAZ軟化層の組織 (主に焼もど
しマルテンサイト組織でδ−フェライトを含むこともあ
る) の溶接および使用中の転位の回復、再結晶を抑制す
る。従って、軟化層ができても使用中の変化が小さく組
織が安定である。
Cu: Cu is one of the important addition elements of the steel of the present invention. When the steel of the component system of the present invention is targeted, it has the following effects. Suppresses recovery of dislocation and recrystallization during welding and use of the structure of the HAZ softening layer (mainly tempered martensite structure which may contain δ-ferrite) formed in the welded portion. Therefore, even when a softened layer is formed, the change during use is small and the structure is stable.

【0033】 HAZ軟化層を固溶強化する。従っ
て、クリープ中の強度の低い部分 (軟化層) へのひずみ
集中を軽減し、クリープ抵抗を高める。
The HAZ softening layer is solid-solution strengthened. Therefore, strain concentration on a low strength portion (softened layer) during creep is reduced, and creep resistance is increased.

【0034】 クリープ中の軟化層での局部変形破壊
はTypeIVクラッキングと呼ばれるが、とも関連してこ
の局部変形が少なくなる。TypeIVクラッキングは継手部
の低延性破壊であるが、Cuの添加は継手部の延性向上に
も寄与し、この破壊を防止する。
[0034] Local deformation fracture in the softened layer during creep is called Type IV cracking, but in conjunction therewith, this local deformation is reduced. Type IV cracking is a low ductility fracture of the joint, but the addition of Cu also contributes to improving the ductility of the joint and prevents this fracture.

【0035】これらのCuの作用効果は本発明者が新たに
見いだしたものであるが、その外に更に、溶接部のδ−
フェライトの抑制、靱性改善、焼入れ性改善、耐酸化性
向上にも有効である。ただし、Cu単独添加では、Cu相の
析出により脆化しやすく熱間加工性、クリープ延性を損
なうから、前記のNiと複合添加して用いる。そこでCuの
含有量が 0.4%未満では上記の効果が十分でなく、一
方、3.5 %を超えるとかえって加工性、延性を損なうば
かりか、残留オーステナイト相が増加しクリープ強度が
損なわれる。従って、Cuの含有量は 0.4〜3.5 %が適正
である。なお好ましい含有量は 0.8〜2.2 %である。
These effects of Cu are newly found by the present inventor.
It is also effective in suppressing ferrite, improving toughness, improving hardenability, and improving oxidation resistance. However, when Cu alone is added, it tends to become brittle due to the precipitation of the Cu phase and impairs hot workability and creep ductility. Therefore, it is used in combination with Ni as described above. Therefore, if the Cu content is less than 0.4%, the above effect is not sufficient. On the other hand, if it exceeds 3.5%, not only the workability and ductility are impaired, but also the retained austenite phase is increased and the creep strength is impaired. Therefore, the proper content of Cu is 0.4 to 3.5%. The preferred content is 0.8 to 2.2%.

【0036】O (固溶酸素):Oは不純物である。本発
明では、十分脱酸を行う目安として残存する固溶酸素量
を 0.015%以下と規定する。O量が 0.015%を超えると
長時間クリープ強度と溶接継手部の靱性を損なう。特に
継手部のHAZにおいて固溶酸素の低減が使用中の組織
の回復、軟化を抑制するのに重要である。また、Cuの固
溶強化の作用を生かすのにも酸素の低減は有効である。
O (Solute O): O is an impurity. In the present invention, the amount of remaining solid-dissolved oxygen is specified as 0.015% or less as a guide for performing sufficient deoxidation. If the O content exceeds 0.015%, the long-term creep strength and the toughness of the welded joint are impaired. Particularly in the HAZ of the joint portion, the reduction of dissolved oxygen is important for suppressing the recovery and softening of the tissue during use. Further, the reduction of oxygen is also effective in making use of the effect of solid solution strengthening of Cu.

【0037】本発明鋼は、上記各成分の他に、前述の
(イ)〜 (ニ)群の成分を必要に応じて含有することができ
る。
The steel of the present invention has the above-mentioned components and
Components (a) to (d) can be contained as necessary.

【0038】(イ)群 (B) :Bは微量添加により炭化物
を分散、安定化させる効果がある。0.0001%未満ではそ
の効果が小さく、0.02%を超えると溶接性と加工性を損
なうから、Bを添加する場合はその含有量を0.0001〜0.
02%の範囲にするのがよい。
(A) Group (B): B has an effect of dispersing and stabilizing carbides by adding a small amount. If the content is less than 0.0001%, the effect is small, and if it exceeds 0.02%, the weldability and workability are impaired. Therefore, when B is added, the content is 0.0001 to 0.1%.
It is better to be in the range of 02%.

【0039】(ロ)群 (W) :WはMoと同様に、固溶強化
および微細炭化物析出強化元素としてクリープ強度の向
上に有効である。通常、Moの2倍(重量比)添加すると
高温側のクリープ強度に有効であるが、母材強度が高く
なる反面、溶接継手部の軟化、強度低下が相対的に大き
くなる。また、Wは、クリープ延性および靱性の点でも
Moより不利である。本発明は、溶接継手の強度低下を小
さくすることが目的であるから、Wは使用しないか、す
るとしてもその含有量は低く抑えることとした。Wの含
有量が0.5%以上の場合は、HAZ軟化が大きく継手の
クリープ強度を損なう。従って、Wを添加する場合でも
その含有量は 0.5%より低く抑えるべきである。
(B) Group (W): W, like Mo, is effective for improving the creep strength as a solid solution strengthening element and a fine carbide precipitation strengthening element. Normally, the addition of twice the weight (molar ratio) of Mo is effective for the creep strength on the high temperature side. W also has a creep ductility and toughness.
Disadvantage than Mo. Since the object of the present invention is to reduce the decrease in the strength of the welded joint, W is not used, or the content thereof is suppressed to a low level. When the content of W is 0.5% or more, HAZ softening is large and the creep strength of the joint is impaired. Therefore, even when W is added, its content should be kept below 0.5%.

【0040】(ハ)群 (Mg) :Mgは鋼の熱間加工性の改善
に有効で、かつ不純物のS、Oとの結合力が高く、これ
らの元素の害を除くのにも寄与する。0.0001%未満では
上記の効果が得られず、0.1 %を超える含有量になると
強度、靱性を著しく損なうため、Mgを使用刷る場合は、
その含有量は0.0001〜0.1 %とする。
(C) Group (Mg): Mg is effective for improving the hot workability of steel, and has a high bonding force with S and O as impurities, and contributes to eliminating harm of these elements. . If the content is less than 0.0001%, the above effects cannot be obtained. If the content exceeds 0.1%, the strength and toughness are significantly impaired.
Its content is 0.0001-0.1%.

【0041】(ニ)群 (La、Ce、Ca、Zr、Ti、Y、Ta) :
これらの元素は、鋼中のP、S、Oなどの不純物と結合
させ、これらの析出物(介在物)の形態抑制を行わせる
ために必要に応じて添加する。これらの元素のうち少な
くとも1種をそれぞれの元素について0.01%以上添加す
ることによって上記不純物元素を安定かつ無害な析出物
として固定し、強度と靱性を向上させることができる。
しかし、それぞれ 0.2%を超えると介在物が増加しかえ
って強度、靱性を損なうので、それぞれの含有量は0.01
〜0.2 %とする。
(D) Group (La, Ce, Ca, Zr, Ti, Y, Ta):
These elements are added as necessary to combine with impurities such as P, S, and O in steel and to suppress the form of these precipitates (inclusions). By adding at least one of these elements to each element in an amount of 0.01% or more, the impurity element can be fixed as a stable and harmless precipitate, and the strength and toughness can be improved.
However, if each content exceeds 0.2%, inclusions increase and the strength and toughness are impaired.
To 0.2%.

【0042】本発明鋼は前述の成分のほか、残部はFeと
不可避不純物からなる。鋼の不純物として代表的なもの
はPとSである。Pは 0.025%以下、Sは 0.015%以下
に抑えるべきである。これらはいずれも靱性、加工性、
溶接性に有害な元素であるので、上記の許容上限値以下
でもできるだけ少ない方がよい。
The steel of the present invention contains Fe and inevitable impurities in addition to the above-mentioned components. Representative examples of steel impurities are P and S. P should be kept below 0.025% and S should be kept below 0.015%. These are all toughness, workability,
Since it is an element harmful to weldability, it is preferable that the amount is as small as possible even at or below the allowable upper limit.

【0043】本発明鋼は焼もどしマルテンサイト組織と
して使用する。この焼もどしマルテンサイト組織中のδ
−フェライト量は、溶接継手部の靱性を向上させるため
にはできるだけ低い方が望ましい。HAZの延性改善に
はδ−フェライトは30%未満に抑えるのがよく、靱性、
クリープ強度を重視すればδ−フェライト量は5%未満
がよい。
The steel of the present invention is used as a tempered martensite structure. Δ in this tempered martensitic structure
-The ferrite content is preferably as low as possible in order to improve the toughness of the welded joint. To improve the ductility of HAZ, δ-ferrite should be suppressed to less than 30%.
If emphasis is placed on creep strength, the amount of δ-ferrite is preferably less than 5%.

【0044】本発明鋼の標準的な熱処理は焼ならし−焼
もどし処理である。焼ならし処理温度は、前の加工で生
じる粗大析出物を十分固溶させるとともに鋳造偏析等に
よる固溶合金元素の偏析を均一化する目的で、 Ac3変態
点以上とする。上限はδ−フェライトの多量析出抑制の
ため1150℃までとする。望ましい温度範囲は1000〜1100
℃である。
The standard heat treatment of the steel according to the invention is a normalizing-tempering treatment. The normalizing treatment temperature is set to the Ac 3 transformation point or higher for the purpose of sufficiently dissolving the coarse precipitates generated in the previous processing and uniformizing the segregation of the solid solution alloy element by casting segregation or the like. The upper limit is set to 1150 ° C to suppress the precipitation of a large amount of δ-ferrite. Desirable temperature range is 1000-1100
° C.

【0045】焼ならし後は焼もどし処理を行う。この焼
もどし処理は、高温クリープ強度の安定化のためにマル
テンサイト中の転位密度を低くする必要から、使用温度
よりも 150〜200 ℃以上高く、かつAc1 変態点以下の温
度域で行う。具体的には 750〜830 ℃が適当である。な
お焼もどしが不十分な場合は高温長時間側で著しい強度
低下を生ずることがある。これは特に溶接継手部で顕著
であるから、十分な焼もどしを行うように留意する必要
がある。
After the normalizing, a tempering process is performed. This tempering treatment is performed in a temperature range higher than the working temperature by 150 to 200 ° C. and lower than the Ac 1 transformation point because the dislocation density in martensite needs to be lowered to stabilize the high temperature creep strength. Specifically, 750 to 830 ° C is appropriate. If the tempering is insufficient, the strength may be remarkably reduced at a high temperature for a long time. Since this is particularly remarkable in a welded joint portion, care must be taken to perform sufficient tempering.

【0046】[0046]

【実施例】表1に示す化学組成の鋼を150Kg 真空溶解炉
で溶解し、インゴットを1150〜950 ℃で鍛造して厚さ20
mmの板とした。
EXAMPLE A steel having a chemical composition shown in Table 1 was melted in a 150 kg vacuum melting furnace, and an ingot was forged at 1150 to 950 ° C. to a thickness of 20 kg.
mm plate.

【0047】符号A1の鋼はSTBA26、符号A2の鋼は
(火)STBA27 (火力原子力発電協会規格) 、符号A3の
鋼はASTM SA213 T91、符号A4の鋼は DIN X20CrMoWV12
1 で、いずれも既存の代表的な高Crフェライト鋼であ
る。符号A5〜A10の鋼はA3鋼をベースにCuを添加し
た比較鋼、A11、A12鋼は過剰のMoとWを複合添加した
Cu含有の比較鋼である。符号B1〜B25の鋼が本発明鋼
である。
The steel with reference number A1 is STBA26, and the steel with reference number A2 is
(Tue) STBA27 (Thermal Atomic Power Association standard), A3 steel is ASTM SA213 T91, A4 steel is DIN X20CrMoWV12
1 Both are existing representative high Cr ferritic steels. A5 to A10 steels are comparative steels based on A3 steel with Cu added, and A11 and A12 steels are Mo and W combined with excess Mo.
This is a comparative steel containing Cu. Steels denoted by reference numerals B1 to B25 are steels of the present invention.

【0048】符号A1およびA2鋼は通常の熱処理とし
て 950℃×1時間→空冷後、750 ℃×1時間→空冷を行
った。符号A3〜A12および符号B1〜B25の鋼は、10
50℃×1時間→空冷の焼ならしと 780℃×3時間→空冷
の焼もどしを行った。
The steels A1 and A2 were subjected to ordinary heat treatment at 950 ° C. × 1 hour → air cooling and then at 750 ° C. × 1 hour → air cooling. A3 to A12 and B1 to B25 steel are 10
50 ° C x 1 hour → air cooling normalization and 780 ° C x 3 hours → air cooling tempering.

【0049】溶接継手は、厚さ20mmの板をほぼ貫通する
ようにTIG溶接ビードを盛り、その後 740℃×5時間
空冷の後熱処理を行って作製した。
The welded joint was prepared by placing a TIG weld bead so as to substantially penetrate a plate having a thickness of 20 mm, followed by air-cooling at 740 ° C. for 5 hours, followed by heat treatment.

【0050】クリープ試験片はいずれもこのビードに垂
直に肉盛中央部から採取した。母材の常温引張試験片は
φ6mm×GL 30mm とし、継手クリープ試験は同じφ6mm
×GL 30mm の試験片を用い、平行部に溶金、熱影響部お
よび母材が入るように採取した。クリープ試験は 650℃
にて最長 10000時間程度行った。
All creep test pieces were taken from the center of the build-up perpendicular to this bead. Room temperature tensile test specimen of base material is φ6mm × GL30mm, joint creep test is same φ6mm
× GL Using a 30 mm test piece, samples were taken so that the molten metal, the heat-affected zone, and the base metal entered the parallel portion. 650 ° C for creep test
At a maximum of about 10,000 hours.

【0051】650 ℃での最長クリープ破断材について、
溶接熱影響部と母材との界面から剪断的な破壊をした試
験片で、伸びが3%以下の場合をTypeIVクラッキングが
あったものとした。硬さ測定は、母材および後熱処理し
た溶接継手断面についてビッカース10kgf荷重で行っ
た。
For the longest creep rupture material at 650 ° C.,
In a test piece which was shear-destructed from the interface between the weld heat-affected zone and the base material and had an elongation of 3% or less, it was determined that Type IV cracking had occurred. The hardness was measured with a Vickers 10 kgf load on the base metal and the post-heat-treated cross section of the welded joint.

【0052】表2に各測定結果をまとめて示す。なお、
溶接熱影響部の軟化傾向の評価は、溶接熱影響部の最も
軟化した部分の硬さと母材硬さとの差で行った。
Table 2 summarizes the results of each measurement. In addition,
The evaluation of the softening tendency of the weld heat affected zone was made based on the difference between the hardness of the softened portion of the weld heat affected zone and the base metal hardness.

【0053】母材の常温引張特性では、表2に示すよう
に本発明鋼は比較鋼に比べて伸びが20%以上とやや高め
である。
With respect to the room-temperature tensile properties of the base material, as shown in Table 2, the steel of the present invention has a slightly higher elongation of 20% or more than the comparative steel.

【0054】溶接継手の最軟化部と母材の硬さとの差
が、符号A3鋼ではHv45と大きく、Cuを添加した符号
A5〜A12鋼のいずれもがHv50以上の大きな硬さ低下
を示しているのに対し、本発明鋼の符号B1〜B25鋼は
いずれもHv40以下と小さい。
The difference between the softened portion of the welded joint and the hardness of the base metal is as large as Hv45 in the A3 steel, and all of the A5 to A12 steels added with Cu show a large decrease in hardness of Hv50 or more. On the other hand, the reference numerals B1 to B25 of the steels of the present invention are all as small as Hv40 or less.

【0055】すなわち、本発明鋼では溶接熱影響部の軟
化が著しく抑制されている。
That is, in the steel of the present invention, softening of the heat affected zone is significantly suppressed.

【0056】表2の溶接継手の 650℃×104 時間クリー
プ破断強度をみると、符号B1〜B25の本発明鋼は 8.2
〜9.5 kgf/mm2 とすぐれたクリープ破断強度であるのに
対し、符号A3〜A12の比較鋼はいずれも5.2 kgf/mm2
以下と低い。なお、比較鋼の符号A1、A2はV、Nbを
含有せず、母材強度が低くクリープ破断強度もそれぞれ
3.3 kgf/mm2、3.6 kgf/mm2 と低い。
Looking at the creep rupture strength at 650 ° C. × 10 4 hours of the welded joints in Table 2, the steels of the present invention with reference numerals B1 to B25 showed 8.2 strength.
While the creep rupture strength is excellent at ~ 9.5 kgf / mm 2 , the comparative steels A3 to A12 have 5.2 kgf / mm 2 at all.
Below and low. Reference symbols A1 and A2 of the comparative steels do not contain V and Nb, and have low base material strength and low creep rupture strength, respectively.
It is as low as 3.3 kgf / mm 2 and 3.6 kgf / mm 2 .

【0057】さらにクリープ破断材の調査により、本発
明鋼のいずれにもTypeIVクラッキングを生じないことが
明らかとなった。
Further, examination of the creep rupture material revealed that Type IV cracking did not occur in any of the steels of the present invention.

【0058】[0058]

【表1(1)】 [Table 1 (1)]

【0059】[0059]

【表1(2)】 [Table 1 (2)]

【0060】[0060]

【表1(3)】 [Table 1 (3)]

【0061】[0061]

【表2(1)】 [Table 2 (1)]

【0062】[0062]

【表2(2)】 [Table 2 (2)]

【0063】[0063]

【表2(3)】 [Table 2 (3)]

【0064】[0064]

【発明の効果】本発明の高Crフェライト鋼は、溶接継手
の熱影響部の強度低下が小さく、従来鋼より継手のクリ
ープ破断強度に優れ、TypeIVクラッキングの発生もな
い。即ち、本発明鋼は、従来の高Crフェライト耐熱鋼の
難点である溶接継手の熱影響部における強度低下の小さ
い高Crフェライト鋼としてボイラー、化学工業、原子力
などの分野で耐熱耐圧部材として、管、板、鍛造、圧延
材等に広く利用できるものである。
The high Cr ferritic steel of the present invention has a small decrease in the strength of the heat-affected zone of the welded joint, has better creep rupture strength of the joint than conventional steel, and does not cause Type IV cracking. That is, the steel of the present invention is a high Cr ferritic steel having a small strength decrease in the heat-affected zone of a welded joint, which is a drawback of the conventional high Cr ferritic heat resistant steel. , Plate, forging, rolled material, etc.

【0065】[0065]

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−201445(JP,A) 特開 平2−310340(JP,A) 特開 昭62−156256(JP,A) 特開 平2−232345(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-201445 (JP, A) JP-A-2-310340 (JP, A) JP-A-62-156256 (JP, A) JP-A-2- 232345 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/60

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C:0.03〜0.15%、Si:0.7%
以下、Mn:0.1〜1.5%、Ni:0.05〜1.0%、Cr:8〜14
%、Mo:0.01〜3%、V:0.1〜0.3 %、Nb:0.01〜0.2
%、N:0.001〜0.1%、Al:0.001〜0.05%、Cu:0.4〜
3.5%を含み、かつCu/Niが4.5以下であり、残部は鉄お
よび不可避的不純物からなり、不純物としてのO(固溶
酸素) が 0.015%以下である溶接熱影響部の強度低下の
小さい高クロムフェライト耐熱鋼。
(1) C: 0.03 to 0.15%, Si: 0.7% by weight
Hereinafter, Mn: 0.1 to 1.5%, Ni: 0.05 to 1.0%, Cr: 8 to 14
%, Mo: 0.01 to 3%, V: 0.1 to 0.3%, Nb: 0.01 to 0.2
%, N: 0.001 to 0.1%, Al: 0.001 to 0.05%, Cu: 0.4 to
It contains 3.5%, Cu / Ni is 4.5 or less, the balance consists of iron and unavoidable impurities, and O (solid solution oxygen) as impurities is 0.015% or less. Chrome ferrite heat resistant steel.
【請求項2】合金成分として更に、0.0001〜0.02重量%
のBを含有する請求項1の高クロムフェライト耐熱鋼。
(2) 0.0001 to 0.02% by weight as an alloy component.
2. The high chromium ferrite heat-resistant steel according to claim 1, which contains B.
【請求項3】合金成分として更に、0.5重量%未満のW
を含有し、W含有量がMo含有量よりも少ない請求項1ま
たは2の高クロムフェライト耐熱鋼。
3. The alloy according to claim 1, further comprising less than 0.5% by weight of W.
The high chromium ferrite heat-resistant steel according to claim 1 or 2, wherein the content of W is lower than the content of Mo.
【請求項4】合金成分として更に、0.0001〜0.1重量%
のMgを含有する請求項1、2または3の高強度高クロム
フェライト耐熱鋼。
(4) 0.0001 to 0.1% by weight as an alloy component
The high-strength, high-chromium ferrite heat-resistant steel according to claim 1, 2 or 3, which contains Mg.
【請求項5】合金成分として更に、それぞれ0.01〜0.2
重量%のLa、Ce、Ca、Zr、Ti、YおよびTaからなる群か
ら選択した1種以上を含有する請求項1、2、3または
4の高クロムフェライト耐熱鋼。
5. The alloy composition further comprises 0.01 to 0.2 each.
5. The high chromium ferritic heat resistant steel according to claim 1, wherein the steel contains at least one selected from the group consisting of La, Ce, Ca, Zr, Ti, Y and Ta.
JP20164491A 1991-08-12 1991-08-12 High chromium ferritic heat-resistant steel with small decrease in strength of weld heat affected zone Expired - Lifetime JP3237137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20164491A JP3237137B2 (en) 1991-08-12 1991-08-12 High chromium ferritic heat-resistant steel with small decrease in strength of weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20164491A JP3237137B2 (en) 1991-08-12 1991-08-12 High chromium ferritic heat-resistant steel with small decrease in strength of weld heat affected zone

Publications (2)

Publication Number Publication Date
JPH0543986A JPH0543986A (en) 1993-02-23
JP3237137B2 true JP3237137B2 (en) 2001-12-10

Family

ID=16444506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20164491A Expired - Lifetime JP3237137B2 (en) 1991-08-12 1991-08-12 High chromium ferritic heat-resistant steel with small decrease in strength of weld heat affected zone

Country Status (1)

Country Link
JP (1) JP3237137B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200065150A (en) * 2018-11-29 2020-06-09 주식회사 포스코 Chromium-molybdenum steel sheet having excellent creep strength and method of manufacturing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3336573B2 (en) * 1994-11-04 2002-10-21 新日本製鐵株式会社 High-strength ferritic heat-resistant steel and manufacturing method thereof
JP4023106B2 (en) 2001-05-09 2007-12-19 住友金属工業株式会社 Ferritic heat resistant steel with low softening of heat affected zone
JP4188124B2 (en) 2003-03-31 2008-11-26 独立行政法人物質・材料研究機構 Welded joints of tempered martensitic heat-resistant steel
FR2902111B1 (en) 2006-06-09 2009-03-06 V & M France Soc Par Actions S STEEL COMPOSITIONS FOR SPECIAL PURPOSES
JP5326339B2 (en) * 2007-04-25 2013-10-30 新日鐵住金株式会社 Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone
JP5326344B2 (en) * 2007-04-27 2013-10-30 新日鐵住金株式会社 Heat-resistant structure with excellent creep characteristics in heat-affected zone
CN103540859B (en) * 2013-10-31 2015-05-27 万宝力不锈钢制品(东莞)有限公司 High heat-resistant stainless steel coffee pot material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200065150A (en) * 2018-11-29 2020-06-09 주식회사 포스코 Chromium-molybdenum steel sheet having excellent creep strength and method of manufacturing the same
KR102142782B1 (en) 2018-11-29 2020-08-10 주식회사 포스코 Chromium-molybdenum steel sheet having excellent creep strength and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0543986A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
JP3565331B2 (en) High strength low alloy heat resistant steel
JP3334217B2 (en) Low Cr ferritic heat resistant steel with excellent toughness and creep strength
JP2967886B2 (en) Low alloy heat resistant steel with excellent creep strength and toughness
US4331474A (en) Ferritic stainless steel having toughness and weldability
JP4561834B2 (en) Low alloy steel
JP3514182B2 (en) Low Cr ferritic heat resistant steel excellent in high temperature strength and toughness and method for producing the same
JPH0621323B2 (en) High strength and high chrome steel with excellent corrosion resistance and oxidation resistance
EP0703301B1 (en) High chromium ferritic heat-resistant steel
JP3457834B2 (en) Weld metal for low Cr ferritic heat resistant steel with excellent toughness
JP4369612B2 (en) Steel plate for low quenching or normalizing type low alloy boiler steel pipe excellent in toughness, and method of manufacturing steel pipe using the same
JP2017202494A (en) Austenitic heat-resistant steel weld metal and weld joint having the same
EP0525331B1 (en) Heat resisting, ferritic steel with high chromium content and having improved resistance to embrittlement by intergranular precipitation of copper
JP3237137B2 (en) High chromium ferritic heat-resistant steel with small decrease in strength of weld heat affected zone
EP0816523B1 (en) Low-Cr ferritic steels and low-Cr ferritic cast steels having excellent high-temperature strength and weldability
JP2003286543A (en) HIGH-STRENGTH, LOW-Cr FERRITIC STEEL PIPE FOR BOILER SHOWING EXCELLENT LONG-TERM CREEP PROPERTIES AND ITS MANUFACTURING PROCESS
JP2680567B2 (en) High strength low alloy heat resistant steel
JP3355711B2 (en) High Cr ferritic heat resistant steel with excellent high temperature strength and toughness
JP3387145B2 (en) High Cr ferritic steel with excellent high temperature ductility and high temperature strength
JP3572152B2 (en) Low Cr ferritic cast steel with excellent high temperature strength and weldability
JP3938068B2 (en) Ferritic heat resistant steel weld metal
JP3396372B2 (en) Low Cr ferritic steel with excellent high temperature strength and weldability
JP3775371B2 (en) Low alloy steel
JP3392639B2 (en) Low Cr ferritic steel with excellent weldability and high temperature strength
JPH0639659B2 (en) High strength high chromium steel with excellent oxidation resistance and weldability
JPH0825055B2 (en) Welding material for high Cr ferritic steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

EXPY Cancellation because of completion of term