JPH07122557A - Fabrication of semiconductor device - Google Patents

Fabrication of semiconductor device

Info

Publication number
JPH07122557A
JPH07122557A JP26858693A JP26858693A JPH07122557A JP H07122557 A JPH07122557 A JP H07122557A JP 26858693 A JP26858693 A JP 26858693A JP 26858693 A JP26858693 A JP 26858693A JP H07122557 A JPH07122557 A JP H07122557A
Authority
JP
Japan
Prior art keywords
substrate
wiring layer
polishing
film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26858693A
Other languages
Japanese (ja)
Inventor
Kikuo Kusukawa
喜久雄 楠川
Yoshio Honma
喜夫 本間
Shigeo Moriyama
茂夫 森山
Masayuki Nagasawa
正幸 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26858693A priority Critical patent/JPH07122557A/en
Publication of JPH07122557A publication Critical patent/JPH07122557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent short circuit or open circuit of wiring by covering the wiring layer on a substrate with an insulation film thicker than the wiring layer, mirror polishing the rear of the substrate and polishing the surface of the insulation film. CONSTITUTION:An Al film is vacuum deposited by about 800nm, as a first wiring layer 3, on the surface of a substrate. Subsequently, a wiring pattern is formed and a photoresist pattern is removed by conventional photoresist pattern forming step and dry etching step. Furthermore, a plasma oxide 4 is deposited by about 1mum on the Al film. The plasma oxide has surface level difference of about 600nm. Finally, the single crystal silicon substrate 1 is polished on the rear side thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絶縁膜の表面を平坦化
研磨して、半導体装置を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device by flattening and polishing the surface of an insulating film.

【0002】[0002]

【従来の技術】従来は、プロシーディング 第8回イン
ターナショナル アイ・イー・イー・イー 1991年ブ
イ・エム・アイ・シー コンファレンス第20頁から26
頁(Proceedings of the 8th International IEEE VMIC
Conference, pp.20-26)に記載されているように、基板
1(図1(a))上の熱酸化膜2上に第1の配線層3を
形成し、この第1の配線層上にプラズマCVD−SiO
2膜4を形成し(b)、この絶縁膜を平坦化研磨し
(c)、次に絶縁膜4に接続孔5を設け、この接続孔5
及び絶縁膜4上に第2の配線層を形成して(d)、半導
体装置を製造していた。
2. Description of the Related Art Conventionally, Proceeding, 8th International I.E.E.E., 1991 V.M.I.C. Conference, pp. 20-26
Page (Proceedings of the 8th International IEEE VMIC
As described in Conference, pp.20-26), a first wiring layer 3 is formed on a thermal oxide film 2 on a substrate 1 (FIG. 1A), and the first wiring layer 3 is formed. Plasma CVD-SiO
2 a film 4 is formed (b), the insulating film is flattened and polished (c), and then a connection hole 5 is provided in the insulating film 4.
Then, the second wiring layer is formed on the insulating film 4 (d) to manufacture the semiconductor device.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記のような
多層配線構造とした場合、接続孔の加工が困難なため
に、配線のショートや断線が生じていまい良好な歩留ま
りが得られないという問題が生じていた。
However, in the case of the multi-layer wiring structure as described above, it is difficult to process the connection hole, so that a short circuit or disconnection of the wiring may occur and a good yield cannot be obtained. Was occurring.

【0004】本発明の目的は、前記配線のショートや断
線の生じない信頼性の高い半導体装置の製造方法を提供
することにある。
It is an object of the present invention to provide a highly reliable method of manufacturing a semiconductor device in which the short circuit or the disconnection of the wiring does not occur.

【0005】[0005]

【課題を解決するための手段】基板表面上にパターニン
グされた配線層を形成した後、この基板上に前記配線層
の厚さよりも厚い絶縁膜を前記配線層を覆って形成す
る。次に前記基板の裏面を鏡面に研磨し、さらに前記絶
縁膜表面を研磨することにより達成される。または、前
述した絶縁膜を形成する工程と基板の裏面を鏡面に研磨
する工程の順序を入れ替えても良い。
After forming a patterned wiring layer on the surface of a substrate, an insulating film thicker than the thickness of the wiring layer is formed on the substrate so as to cover the wiring layer. This is accomplished by polishing the back surface of the substrate to a mirror surface and then polishing the surface of the insulating film. Alternatively, the order of the step of forming the insulating film and the step of polishing the back surface of the substrate to a mirror surface may be exchanged.

【0006】[0006]

【作用】基板上に形成する配線の厚さは約0.9μmで
あり、この基板上に絶縁膜を形成すると、絶縁膜表面の
段差は0.3〜0.4μmとなる。この基板の裏面を平
坦な試料台に装着し、荷重を加えて絶縁膜表面を研磨す
ると基板裏面のうねりや粗さが基板表面に影響をおよぼ
す。これは、基板表面に生じた段差よりも大きいうねり
(0.4μm程度)や粗さ(0.5μm程度)があるた
めである。この基板裏面のうねりや粗さの影響により、
基板表面を研磨しても十分に平坦化されないため、絶縁
膜の所望の箇所に接続孔を形成することは困難であり、
その結果配線のショートや断線が生じていた。
The thickness of the wiring formed on the substrate is about 0.9 μm. When the insulating film is formed on this substrate, the step difference on the surface of the insulating film becomes 0.3 to 0.4 μm. When the back surface of this substrate is mounted on a flat sample stage and a load is applied to polish the surface of the insulating film, the waviness and roughness of the back surface of the substrate affect the surface of the substrate. This is because there are undulations (about 0.4 μm) and roughness (about 0.5 μm) larger than the steps generated on the substrate surface. Due to the influence of undulations and roughness on the back surface of this substrate,
Even if the substrate surface is polished, it is not sufficiently flattened, so it is difficult to form a connection hole at a desired portion of the insulating film.
As a result, the wiring was short-circuited or broken.

【0007】しかし、基板裏面を鏡面に研磨することに
より、基板表面上の絶縁膜を良好な平坦度に研磨できる
ことがわかった。この実験を図2及び図3に示す。ま
ず、単結晶シリコン基板21上に約0.5μm厚のプラ
ズマ酸化膜22を形成した。次に、前記単結晶シリコン
基板21の裏面を水酸化カリウム水溶液中に混入させた
研磨液を用いて研磨した(図2(a))。次に、プラズマ
酸化膜22の表面を研磨した(図2(b))。この時、基
板の裏面の研磨時間を変化させて、プラズマ酸化膜表面
の研磨分布の評価を行なった。研磨分布の評価は、試料
表面の特定位置の研磨量バラツキの偏差を平均研磨量で
割った値で比較した。図3は、研磨分布の基板の裏面の
研磨時間依存性を調べた結果である。図から、裏面研磨
時間が長くなるにしたがって、試料表面のプラズマ酸化
膜22の研磨分布が良くなることが分かる。
However, it has been found that by polishing the back surface of the substrate to a mirror surface, the insulating film on the front surface of the substrate can be polished to a good flatness. This experiment is shown in FIGS. First, a plasma oxide film 22 having a thickness of about 0.5 μm was formed on the single crystal silicon substrate 21. Next, the back surface of the single crystal silicon substrate 21 was polished using a polishing liquid mixed in a potassium hydroxide aqueous solution (FIG. 2A). Next, the surface of the plasma oxide film 22 was polished (FIG. 2B). At this time, the polishing distribution on the surface of the plasma oxide film was evaluated by changing the polishing time on the back surface of the substrate. The polishing distribution was evaluated by comparing the deviation of the polishing amount variation at a specific position on the sample surface by the average polishing amount. FIG. 3 shows the results of examining the polishing time dependence of the polishing distribution on the back surface of the substrate. From the figure, it can be seen that the polishing distribution of the plasma oxide film 22 on the sample surface improves as the back surface polishing time increases.

【0008】実際、基板上に配線パターンを形成し、そ
の上に絶縁膜を形成した場合には、上記のように絶縁膜
表面には段差がややあるが、表面はうねりが小さいため
に試料台に均一に装着できる。この際、基板裏面を研磨
することによって、粗さは無論のことうねりを大幅に減
少させることができるので、その後に行なう絶縁膜の研
磨では平坦性の良好な研磨面を得ることができるのであ
る。
In fact, when a wiring pattern is formed on a substrate and an insulating film is formed on the wiring pattern, the insulating film surface has a slight step as described above, but the surface has a small undulation, so that the sample stand Can be installed evenly. At this time, by polishing the back surface of the substrate, of course, the roughness can significantly reduce the waviness, so that the subsequent polishing of the insulating film can provide a polished surface with good flatness. .

【0009】[0009]

【実施例】<実施例1>実施例1を図4に示す。単結晶
シリコン基板1を1000℃の酸素雰囲気中で処理する
ことによって約500nmの熱酸化膜2を形成した。こ
の熱酸化膜2は、基板1の表面に形成した素子上の層間
絶縁膜の代用として形成したものである。次に、基板表
面に真空中蒸着により第1の配線層3として約800n
m厚のAl膜を堆積した。このAl膜を通常のホトレジ
ストパターン形成とドライエッチング工程によって、配
線パターンを形成した後、ホトレジストパターンの除去
を行なった(図4(a))。さらに、Al膜上に1μm厚
のプラズマ酸化膜4を形成した。このプラズマ酸化膜の
表面段差は約600nmであった(図4(b))。さら
に、単結晶シリコン基板1の裏面を研磨した。次に、図
5に示したように、基板を研磨機のステージ7上のバッ
キングパット8を用いて保持し、研磨クロス9上にコロ
イダルシリカ(粒径:20nm)をアンモニア水溶液中に
混入させた研磨液10を滴下しながらプラズマ酸化膜の
表面を研磨した(図4(c))。
EXAMPLE 1 Example 1 is shown in FIG. The single crystal silicon substrate 1 was processed in an oxygen atmosphere at 1000 ° C. to form a thermal oxide film 2 having a thickness of about 500 nm. The thermal oxide film 2 is formed as a substitute for the interlayer insulating film on the element formed on the surface of the substrate 1. Next, the first wiring layer 3 of about 800 n is formed on the surface of the substrate by vacuum evaporation.
An m-thick Al film was deposited. A wiring pattern was formed on the Al film by the usual photoresist pattern formation and dry etching steps, and then the photoresist pattern was removed (FIG. 4A). Further, a 1 μm thick plasma oxide film 4 was formed on the Al film. The surface step of this plasma oxide film was about 600 nm (FIG. 4B). Further, the back surface of the single crystal silicon substrate 1 was polished. Next, as shown in FIG. 5, the substrate was held using the backing pad 8 on the stage 7 of the polishing machine, and colloidal silica (particle size: 20 nm) was mixed on the polishing cloth 9 in the aqueous ammonia solution. The surface of the plasma oxide film was polished while dropping the polishing liquid 10 (FIG. 4C).

【0010】ついで、通常のコンタクトホール形成工程
を用いてプラズマ酸化膜に接続孔5を形成し、接続孔及
び前記プラズマ酸化膜上に第2の配線層6としてAl配
線を形成した(図4(d))。この第2のAl配線層の形
成は、プラズマ酸化膜4の研磨工程後の平坦な試料表面
上に堆積したAl膜をパターニングして形成するので、
微細Al配線のショートや断線の歩留まりにおいても良
好な結果が得られる。
Next, a contact hole 5 is formed in the plasma oxide film by using a normal contact hole forming process, and an Al wiring is formed as a second wiring layer 6 on the connection hole and the plasma oxide film (see FIG. 4 ( d)). Since the second Al wiring layer is formed by patterning the Al film deposited on the flat sample surface after the polishing step of the plasma oxide film 4,
Good results can be obtained even in the yield of short-circuiting or disconnection of fine Al wiring.

【0011】なお、本実施例では、プラズマ酸化膜4を
形成した後、単結晶シリコン基板1の裏面を研磨した
が、製造工程を入れ替えて、単結晶シリコン基板1の裏
面を研磨した後、プラズマ酸化膜4を形成してもよい。
In this embodiment, the back surface of the single crystal silicon substrate 1 is polished after the plasma oxide film 4 is formed. However, the manufacturing process is changed to polish the back surface of the single crystal silicon substrate 1, and then the plasma is removed. The oxide film 4 may be formed.

【0012】<実施例2>実施例2を図6に示す。単結
晶シリコン基板11を1000℃の酸素雰囲気中で処理
することによって約500nmの熱酸化膜12を形成し
た。次に、基板表面に真空中蒸着により約800nm厚
のAl膜13を堆積した。このAl膜を通常のホトレジ
ストパターン形成とドライエッチング工程によって、配
線パターンを形成した後、ホトレジストパターンの除去
を行なった(図6(a))。
<Embodiment 2> Embodiment 2 is shown in FIG. The single crystal silicon substrate 11 was processed in an oxygen atmosphere at 1000 ° C. to form a thermal oxide film 12 of about 500 nm. Next, an Al film 13 having a thickness of about 800 nm was deposited on the surface of the substrate by vacuum evaporation. A wiring pattern was formed on the Al film by the usual photoresist pattern formation and dry etching steps, and then the photoresist pattern was removed (FIG. 6A).

【0013】次にこの試料の表面に300nm厚のプラ
ズマ酸化膜14を形成し、更に塗布ガラスの回転塗布、
熱処理(450℃、30min)を行なった。この塗布ガ
ラス膜15は、平坦部で約800nm厚となるように膜
形成しており、この時のAlパターン上とAlパターン
間部での表面段差は約300nmであった(図6
(b))。
Next, a plasma oxide film 14 having a thickness of 300 nm is formed on the surface of this sample, and the coated glass is spin coated.
Heat treatment (450 ° C., 30 min) was performed. The coated glass film 15 was formed so as to have a thickness of about 800 nm in the flat portion, and the surface step between the Al pattern and the portion between the Al patterns at this time was about 300 nm (FIG. 6).
(B)).

【0014】続いて、単結晶シリコン基板11の裏面を
研磨し、更に塗布ガラス膜表面の研磨処理を行なった。
この研磨処理によって塗布ガラス膜の凸部が研磨され、
プラズマ酸化膜14が現れた(図6(c))。この時、A
l配線13がプラズマ酸化膜で被覆され、配線パターン
間の溝部には塗布ガラス膜15が埋め込まれた形状にな
り、表面は平坦になった。
Then, the back surface of the single crystal silicon substrate 11 was polished, and the surface of the coated glass film was further polished.
The convex portion of the coated glass film is polished by this polishing treatment,
The plasma oxide film 14 appeared (FIG. 6C). At this time, A
The 1 wiring 13 was covered with the plasma oxide film, and the coated glass film 15 was embedded in the groove between the wiring patterns, and the surface became flat.

【0015】次に、この表面上に約200nm厚のプラ
ズマ酸化膜16を堆積し、通常のコンタクトホール形成
工程を用いて接続孔17を形成し、更に接続孔及びプラ
ズマ酸化膜上に第2のAl配線層18を堆積し、通常の
ホトレジストパターン形成及びドライエッチング工程に
よって所定の形状とした(図6(d))。実施例1と同様
に、この第2のAl配線層の形成は、塗布ガラス膜の研
磨工程後の平坦な試料表面上に堆積したAl膜をパター
ニングして形成するので、微細Al配線のショートや断
線の歩留まりにおいても良好な結果が得られる。
Next, a plasma oxide film 16 having a thickness of about 200 nm is deposited on this surface, a contact hole 17 is formed by using a normal contact hole forming process, and a second hole is formed on the contact hole and the plasma oxide film. An Al wiring layer 18 was deposited and formed into a predetermined shape by the usual photoresist pattern formation and dry etching process (FIG. 6D). Similar to the first embodiment, since the second Al wiring layer is formed by patterning the Al film deposited on the flat sample surface after the step of polishing the coated glass film, short-circuiting of fine Al wiring and Good results are also obtained in the yield of disconnection.

【0016】なお、本実施例では第1のAl配線層と第
2のAl配線層の間の層間絶縁膜に、プラズマ酸化膜/
塗布ガラス/プラズマ酸化膜の3層膜を用いた。塗布ガ
ラスは表面段差を低減する効果が大きいので表面がより
平坦になった結果、基板の裏面の研磨により裏面の平坦
性がより良くなり、そのため後の工程においても表面の
平坦性が向上するという効果がある。
In this embodiment, a plasma oxide film / an oxide film is formed on the interlayer insulating film between the first Al wiring layer and the second Al wiring layer.
A three-layer film of coated glass / plasma oxide film was used. Since the coated glass has a large effect of reducing the surface step, the surface becomes flatter. As a result, the back surface of the substrate is polished to improve the flatness of the back surface, and thus the flatness of the surface is improved also in the subsequent steps. effective.

【0017】<実施例3>実施例3を図7〜図11に示
す。単結晶シリコン基板31上に約0.5μm厚の熱酸
化膜32を形成し、更にその上に第1のAl配線層33
を形成した。次に、高周波プラズマによりプラズマ酸化
膜34を堆積し、塗布ガラス35の塗布、熱処理を行っ
た。その後、研磨を用いて裏面、表面を順次平坦化した
(図7)。
<Embodiment 3> Embodiment 3 is shown in FIGS. A thermal oxide film 32 having a thickness of about 0.5 μm is formed on a single crystal silicon substrate 31, and a first Al wiring layer 33 is further formed thereon.
Was formed. Next, a plasma oxide film 34 was deposited by high frequency plasma, coating glass 35 was coated, and heat treatment was performed. After that, the back surface and the front surface were sequentially flattened by polishing.
(Figure 7).

【0018】次にこの試料表面に高周波プラズマにより
約200nm厚のプラズマ酸化膜36を堆積し、通常の
コンタクトホール形成工程を用いてプラズマ酸化膜36
に接続孔37を形成した。また、第1のAl配線層33
と接続すべき第3のAl配線層との接続部にも接続孔3
8を設けた(図8)。
Next, a plasma oxide film 36 having a thickness of about 200 nm is deposited on the surface of the sample by high frequency plasma, and the plasma oxide film 36 is formed by using a normal contact hole forming process.
The connection hole 37 was formed in the. In addition, the first Al wiring layer 33
To the third Al wiring layer to be connected with the connection hole 3
8 were provided (FIG. 8).

【0019】さらに、Al膜を堆積、通常のホトレジス
トパターン形成及びドライエッチング工程によって第2
のAl配線層39を形成した(図9)。また、第2のAl
配線層と接続されるべき第3のAl配線層との接続のた
めのコンタクト用Alパターン40も同時に形成した。
実施例1、2と同様に、この第2のAl配線層の形成
は、塗布ガラス35を研磨した工程の後の平坦な試料表
面上に形成できるので、微細Al配線のショートや断線
等の信頼性が高い。
Further, an Al film is deposited, a second photoresist pattern is formed, and a second etching process is performed.
The Al wiring layer 39 was formed (FIG. 9). In addition, the second Al
The contact Al pattern 40 for connection to the third Al wiring layer to be connected to the wiring layer was also formed at the same time.
Similar to the first and second embodiments, the second Al wiring layer can be formed on the flat sample surface after the step of polishing the coated glass 35, so that the reliability of the short circuit or disconnection of the fine Al wiring can be obtained. It is highly likely.

【0020】その後、プラズマ酸化膜41の堆積、塗布
ガラス42の形成、及び平坦化研磨による試料表面の平
坦化、更にプラズマ酸化膜43の堆積、層間配線接続孔
44の形成を行なった(図10)。
After that, the plasma oxide film 41 was deposited, the coating glass 42 was formed, the sample surface was flattened by flattening polishing, the plasma oxide film 43 was deposited, and the interlayer wiring connection hole 44 was formed (FIG. 10). ).

【0021】次に、第3のAl配線層45を形成した
(図11)。この第3のAl配線層は、第1のAl配線層
33と直接接続する際、第2のAl配線40を形成し、
これを介して接続する(A-A')。このように多層配線を
形成する際に、プラズマ酸化膜34、36を形成するこ
とによって、塗布ガラスが配線に接触することを防ぐこ
とができる。また、接続孔38、44のドライエッチン
グによる加工が同一の深さでできるので加工が容易であ
る。
Next, a third Al wiring layer 45 was formed.
(Figure 11). When the third Al wiring layer is directly connected to the first Al wiring layer 33, the second Al wiring 40 is formed,
Connect via this (AA '). By forming the plasma oxide films 34 and 36 when forming the multilayer wiring as described above, it is possible to prevent the coated glass from coming into contact with the wiring. Further, since the processing of the connection holes 38 and 44 by dry etching can be performed at the same depth, the processing is easy.

【0022】本実施例ではプラズマ酸化膜を形成する
際、高周波プラズマにより形成したが、マイクロ波EC
R(Electron Cycrotron Resonance)プラズマにより形成
しても良い。また、基板の裏面を研磨せずに始めから両
面ミラー基板を用いて多層配線を形成しても、表面の平
坦性が良好な半導体装置が得られる。さらに、本実施例
では多層配線の製造工程の例を示したが、多層配線を形
成せず、基板表面の段差部を平坦化するために、基板裏
面を研磨しても良い。
In this embodiment, when the plasma oxide film was formed, high frequency plasma was used.
It may be formed by R (Electron Cycrotron Resonance) plasma. Further, even if the double-sided mirror substrate is used to form the multilayer wiring from the beginning without polishing the back surface of the substrate, a semiconductor device having good surface flatness can be obtained. Furthermore, although the example of the manufacturing process of the multilayer wiring is shown in the present embodiment, the back surface of the substrate may be polished in order to flatten the stepped portion on the surface of the substrate without forming the multilayer wiring.

【0023】なお、このようにして形成された半導体装
置は、CMOS、DRAM、SRAM等の高集積メモリ
ー及び集積半導体装置への適用が可能である。
The semiconductor device thus formed can be applied to highly integrated memories such as CMOS, DRAM, SRAM and the like and integrated semiconductor devices.

【0024】[0024]

【発明の効果】本発明によれば、配線のショートや断線
のない半導体装置を得ることができる。
According to the present invention, it is possible to obtain a semiconductor device which is free from short circuit and disconnection of wiring.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の半導体装置の製造工程を示す図である。FIG. 1 is a diagram showing a manufacturing process of a conventional semiconductor device.

【図2】本発明の実験に用いた装置の断面図である。FIG. 2 is a cross-sectional view of an apparatus used in an experiment of the present invention.

【図3】試料表面研磨分布の裏面研磨時間依存性を示す
図である。
FIG. 3 is a diagram showing the back surface polishing time dependence of the sample front surface polishing distribution.

【図4】本発明の実施例1を示す半導体装置の製造工程
断面図である。
FIG. 4 is a sectional view of a semiconductor device manufacturing process showing the first embodiment of the present invention.

【図5】本発明の実施例1の試料表面を研磨する方法を
示す図である。
FIG. 5 is a diagram showing a method for polishing the sample surface of Example 1 of the present invention.

【図6】本発明の実施例2を示す半導体装置の製造工程
断面図である。
FIG. 6 is a sectional view of a semiconductor device manufacturing process showing a second embodiment of the present invention.

【図7】本発明の実施例3を示す半導体装置の製造工程
断面図である。
FIG. 7 is a sectional view of a semiconductor device manufacturing process showing a third embodiment of the present invention.

【図8】本発明の実施例3を示す半導体装置の製造工程
断面図である。
FIG. 8 is a sectional view of a semiconductor device manufacturing process showing the third embodiment of the present invention.

【図9】本発明の実施例3を示す半導体装置の製造工程
断面図である。
FIG. 9 is a sectional view of a semiconductor device manufacturing process showing the third embodiment of the present invention.

【図10】本発明の実施例3を示す半導体装置の製造工
程断面図である。
FIG. 10 is a sectional view of a semiconductor device manufacturing process showing the third embodiment of the present invention.

【図11】本発明の実施例3を示す半導体装置の製造工
程断面図である。
FIG. 11 is a sectional view of a semiconductor device manufacturing process showing the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、11、21、31…単結晶シリコン基板、2、1
2、32…熱酸化膜、3…第1の配線層、4、22…プ
ラズマ酸化膜、5、17、37、38、44……接続
孔、6…第2の配線層、7…研磨機のステージ、8…バ
ッキングパット、9…研磨クロス、10…研磨液、1
3、33…第1のAl配線層、14、16、34、3
6、41、43…プラズマ酸化膜、15、35、42…
塗布ガラス、18、39…第2のAl配線層、40…層
間接続用Alパターン、45…第3のAl配線層。
1, 11, 21, 31 ... Single crystal silicon substrate, 2, 1
2, 32 ... Thermal oxide film, 3 ... First wiring layer, 4, 22 ... Plasma oxide film, 5, 17, 37, 38, 44 ... Connection hole, 6 ... Second wiring layer, 7 ... Polishing machine Stage, 8 ... backing pad, 9 ... polishing cloth, 10 ... polishing liquid, 1
3, 33 ... First Al wiring layer, 14, 16, 34, 3
6, 41, 43 ... Plasma oxide film, 15, 35, 42 ...
Coated glass, 18, 39 ... Second Al wiring layer, 40 ... Al pattern for interlayer connection, 45 ... Third Al wiring layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長澤 正幸 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masayuki Nagasawa 1-280, Higashi Koigokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基板上に所望の形状を有する第1の配線層
を形成する工程と、前記基板上に前記第1の配線層を覆
って、前記配線層の形成されていない箇所における厚さ
が前記第1の配線層の厚さよりも厚い絶縁膜を形成する
工程と、前記基板の前記第1の配線層を形成した面と反
対の面を研磨する工程と、前記絶縁膜の表面を研磨する
工程とを有することを特徴とする半導体装置の製造方
法。
1. A step of forming a first wiring layer having a desired shape on a substrate, and a thickness at a portion where the wiring layer is not formed so as to cover the first wiring layer on the substrate. Forming an insulating film thicker than the thickness of the first wiring layer, polishing the surface of the substrate opposite to the surface on which the first wiring layer is formed, and polishing the surface of the insulating film. A method of manufacturing a semiconductor device, comprising:
【請求項2】請求項1記載の半導体装置の製造方法にお
いて、前記絶縁膜はプラズマ酸化膜であることを特徴と
する半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the insulating film is a plasma oxide film.
【請求項3】請求項1記載の半導体装置の製造方法にお
いて、前記絶縁膜を形成する工程は、第1のプラズマ酸
化膜を形成する工程と、前記第1のプラズマ酸化膜上に
塗布ガラス膜を形成する工程と、前記塗布ガラス膜上に
第2のプラズマ酸化膜を形成する工程からなることを特
徴とする半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the step of forming the insulating film includes a step of forming a first plasma oxide film, and a coating glass film on the first plasma oxide film. And a step of forming a second plasma oxide film on the coated glass film.
【請求項4】請求項1記載の半導体装置の製造方法にお
いて、前記絶縁膜の表面を研磨する工程の後に、前記第
1の配線層上の前記絶縁膜に接続孔を形成する工程と、
前記接続孔及び前記絶縁膜上に第2の配線層を形成する
工程を有することを特徴とする半導体装置の製造方法。
4. The method for manufacturing a semiconductor device according to claim 1, wherein after the step of polishing the surface of the insulating film, a step of forming a connection hole in the insulating film on the first wiring layer is performed.
A method of manufacturing a semiconductor device, comprising the step of forming a second wiring layer on the connection hole and the insulating film.
【請求項5】基板上に絶縁膜を形成する工程と、前記基
板の前記絶縁膜を形成した面と反対の面を研磨する工程
と、前記絶縁膜の表面を研磨する工程とを有することを
特徴とする絶縁膜の平坦化方法。
5. A method comprising: forming an insulating film on a substrate; polishing a surface of the substrate opposite to the surface on which the insulating film is formed; and polishing a surface of the insulating film. A method for planarizing a characteristic insulating film.
JP26858693A 1993-10-27 1993-10-27 Fabrication of semiconductor device Pending JPH07122557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26858693A JPH07122557A (en) 1993-10-27 1993-10-27 Fabrication of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26858693A JPH07122557A (en) 1993-10-27 1993-10-27 Fabrication of semiconductor device

Publications (1)

Publication Number Publication Date
JPH07122557A true JPH07122557A (en) 1995-05-12

Family

ID=17460592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26858693A Pending JPH07122557A (en) 1993-10-27 1993-10-27 Fabrication of semiconductor device

Country Status (1)

Country Link
JP (1) JPH07122557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005438A (en) * 2005-06-22 2007-01-11 Toshiba Corp Manufacturing method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005438A (en) * 2005-06-22 2007-01-11 Toshiba Corp Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JP3152788B2 (en) Method for manufacturing semiconductor device
JPS5893255A (en) Manufacture of semiconductor device
JP3047343B2 (en) Method for manufacturing semiconductor device
JPH08222630A (en) Multilayer interconnection forming method
JPH07122557A (en) Fabrication of semiconductor device
JPH0766200A (en) Fabrication of semiconductor device
JPH0530052B2 (en)
JP3127983B2 (en) Method for manufacturing semiconductor device
US20050020046A1 (en) Planarization for integrated circuits
JP2643793B2 (en) Semiconductor device and manufacturing method thereof
JPH08162431A (en) Flattening method of semiconductor device
TW296464B (en) Method of manufacturing chess board scribed line of integrated circuit
JPS61206242A (en) Manufacture of semiconductor device
JP2943291B2 (en) Polishing method of resist
JPH0265256A (en) Manufacture of semiconductor device
JPS62118539A (en) Formation of multilayer interconnection
JPH04264728A (en) Semiconductor device and production thereof
JP2783262B2 (en) Method for manufacturing semiconductor device
JPH0220141B2 (en)
JP2783263B2 (en) Method for manufacturing semiconductor device
JPH065597A (en) Manufacture of semiconductor device
JPH11317405A (en) Wiring structure for semiconductor device and manufacture of the same
JPH09191048A (en) Semiconductor integrated circuit device and manufacture thereof
JPS6315457A (en) Manufacture of semiconductor device
JPS63226041A (en) Manufacture of semiconductor integrated circuit device