JP2783263B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2783263B2
JP2783263B2 JP8259219A JP25921996A JP2783263B2 JP 2783263 B2 JP2783263 B2 JP 2783263B2 JP 8259219 A JP8259219 A JP 8259219A JP 25921996 A JP25921996 A JP 25921996A JP 2783263 B2 JP2783263 B2 JP 2783263B2
Authority
JP
Japan
Prior art keywords
wiring
semiconductor device
polishing
manufacturing
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8259219A
Other languages
Japanese (ja)
Other versions
JPH09232262A (en
Inventor
伸裕 遠藤
恒夫 浜口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8259219A priority Critical patent/JP2783263B2/en
Publication of JPH09232262A publication Critical patent/JPH09232262A/en
Application granted granted Critical
Publication of JP2783263B2 publication Critical patent/JP2783263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は半導体装置の製造方
法に関し、特に3層以上の配線を有する半導体装置の製
造方法に関する。 【0002】 【従来の技術】近年の著しいLSI技術の進展に伴い、
集積回路が高密度になってきており、それに対応して素
子寸法が微細化している。しかしこれらの集積回路は配
線に要する面積もチップの30〜50%を占めるので、
配線領域の微小化も同時に進めない限り、高密度化が困
難であった。このため配線の多層化が試みられ、特に二
層アルミニウム配線は実用的に用いられるようになっ
た。 【0003】しかしながら、従来の二層アルミニウム配
線は、第二層アルミニウム配線がすでに凹凸の多い表面
にパターン形成された1μm程度の比較的厚い第一層ア
ルミニウム配線の上の、シリコン酸化膜やシリコン窒化
膜等の層間絶縁膜の上に形成されるため表面段差が極め
て大きくなり、配線の断線が生じ易い欠点があり、歩留
りの低下の原因となっていた。 【0004】そこで、集積回路表面の平坦化を実現する
ために(1)絶縁膜堆積方法を常圧法から低圧法、熱分
解法からプラズマ法へと変える、(2)方向性のエッチ
ングすなわち平行平板型反応性スパッタエッチングを用
いて平坦化を行う、(3)第二層アルミニウム膜を薄く
する、等の改良が成されて来たが、未だ十分な効果を得
るまでに到らなかった。 【0005】図3は従来のMOS集積回路の一部を拡大
したMOS電界効果トランジスタの模式的断面図であ
る。1はP型シリコン基板、2はフィールド酸化膜、3
はチャネルストッパ領域、4はゲート酸化膜、5は多結
晶シリコン、6はソース・ドレイン領域、7および9は
層間絶縁膜、例えばCVD法によるシリコン酸化膜、8
は第一層アルミニウム配線、10は第二層アルミニウム
配線という構成が多用されている。 【0006】 【発明が解決しようとする課題】図中Aは金属配線膜厚
が薄く断線故障を起こし易い箇所を示したもので、これ
は寸法の微細化のために平行平板型プラズマエッチング
法による方向性エッチングを用い、急峻なエッジプロフ
ァイルを実現したこと、通常アルミニウム膜は電子銃型
真空蒸着法によって被着されるので、急峻な段差の側壁
部への被覆状態は悪いことなどに起因する。 【0007】また表面の凹凸は写真蝕刻法におけるレジ
ストの膜厚のむらをも生じ、その結果配線の微細化を困
難としている。 【0008】特に配線が3層、4層…と3層以上となる
と、上層になるほど表面の凹凸がはげしくなり、微細な
配線が形成できなくなる。このため、基板1の素子形成
技術向上による素子の微細化に対し、これら素子を相互
接続するための配線の形成技術がおいつかず、集積密度
の向上が阻害されていた。 【0009】したがって、本発明の目的は、3層以上の
配線を設けることができる半導体装置の製造方法を提供
することにある。 【0010】 【課題を解決するための手段】本発明による半導体装置
の製造方法は、半導体基板上に三層以上の配線を形成す
る半導体装置の製造方法において、各層の配線間を絶縁
する層間絶縁膜のそれぞれに対してメカノケミカルポリ
シングを施して各層間絶縁膜の表面を平坦化することを
特徴としている。 【0011】メカノケミカルポリシングは例えばシリコ
ンウエハに対しては直径約0.01μmのシリカ(Si
O2 )の砥粒を弱アルカリ液に懸濁させた研磨液とポリ
ウレタン系の布を使ってポリシングを行うもので、砥粒
(SiO2 )とシリコンウエハとの磨擦による物理的な
研磨作用と磨擦中の発熱による温度上昇のための弱アル
カリの研磨液へのシリコンの化学的な溶去作用が混在し
たポリシングをいう。またメカノケミカルポリシング
は、シリコンウエハ等の基板を研磨する際の最終工程に
用いられており、ポリシングされた基板表面は平坦な無
歪鏡面である。 【0012】このようなメカノケミカルポリシングをシ
リコンウエハのポリシングに適用する場合には、研磨量
に厳しい制限はないが、本発明で用いられているように
堆積した絶縁膜の凹凸量が数千オングストローム程度
で、しかし研磨すべき膜厚は2μm以下と非常に薄いた
め、研磨方法がかなり大きく制限される。このような制
限のもとで、数千オングストローム程度の凹凸を低減さ
せることはシリコンウエハの加工にみられるような従来
のポリシングに比べて容易でなく、このような凹凸量を
しかも膜厚の小さな絶縁膜をメカノケミカルポリシング
により平坦化することはいまだに行なわれていない。 【0013】本発明者は、種々の実験を試みた結果、従
来に比べポリシング速度を例えば100オングストロー
ム/分と非常に遅くした制御性の良いメカノケミカルポ
リシングを用いることにより、絶縁膜の凹凸を著しく低
減することができ、しかも半導体装置の素子特性を損う
ことなく、平坦な基板表面を得ることを新たに見出し
た。 【0014】 【発明の実施の形態】以下、本発明の実施の形態につき
図面を参照して詳細に説明する。 【0015】図1は本発明の一実施の形態によるMOS
集積回路の配線部分を拡大した工程断面図である。ただ
し、本図面では、2層目までを示しているが、その後は
同様にして形成される。 【0016】P型シリコン基板11に通常の選択酸化法
(LOCOS)を用いてフィールド酸化膜12とチャネ
ルストッパー領域13を形成した後、ゲート酸化膜14
を熱酸化法によって形成すると、図1aが得られる。 【0017】次にゲート電極および配線に用いられるリ
ンをドープした多結晶シリコン15を気相成長法によっ
て堆積し、写真蝕刻技術によってパターン化した後、イ
オン注入等によってヒ素等のn型不純物を導入し、下層
配線層となるソース・ドレイン領域16を形成すると、
図1bを得る。 【0018】気相成長法によってシリコン酸化膜17を
堆積し、写真蝕刻技術によって多結晶シリコン15を接
続させるためのコンタクトホールを開け、第一層アルミ
ニウム18を真空蒸着法によって0.8μm程度被着
し、パターン化すると図1cが得られる。 【0019】続いて同様に気相成長法によってアルミニ
ウム膜厚の約2倍で1.5μm程度の膜厚のシリコン酸
化膜19を堆積すると表面の凹凸はわずかに減少し、図
3dを得る。次に直径100オングストローム以下のシ
リカの微粉末を弱アルカリ液に懸濁した研磨液で圧力1
10g/cm2 で0.5〜0.7μmのポリシングを行
なうと層間絶縁膜の表面はほぼ平坦となり図1eを得
る。 【0020】第一層アルミニウム配線と接続するための
コンタクトホールを開けた後、真空蒸着法によって更に
アルミニウム膜を被着し、同様にパターン化すると、第
二層アルミニウム配線20が形成され、図1fが得られ
る。熱処理によってアロイ化を行うと極めて良好な配線
接続を得ることができる。 【0021】この後同様にして三層以上のアルミニウム
配線が形成される。配線の断線などの故障は特に増える
ことはない。 【0022】図2は本発明の効果を説明するために図3
に対比して示した模式的断面図である。層間絶縁膜19
はメカノケミカルポリシングによってほぼ完全に平坦さ
れるためにアルミニウム配線20は無理なく形成され、
歩留りの著しい向上が成される。 【0023】本実施例はアルミニウム配線について主に
述べたがその他の金属配線を用いてもその効果は変わる
ことがない。 【0024】またこのメカノケミカルポリシング装置は
通常のシリコン基板鏡面ポリシング装置を用いることに
より多量のウエハを同時に処理できるので、従来の半導
体装置製造工程の一部に加えても生産性に関して何の支
障もきたさない。 【0025】 【発明の効果】このように本発明を用いることにより、
極めて良好な金属配線を可能とできる利点がある。また
平坦化された表面上での写真蝕刻技術はレジストを均一
な厚さに塗布できるという効果によって、寸法の微細化
も同時に実現できるため、高密度化集積回路に多大の効
力を発揮するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device having three or more layers of wiring. [0002] With the recent remarkable progress of LSI technology,
2. Description of the Related Art As integrated circuits have become denser, device dimensions have been correspondingly reduced. However, since these integrated circuits also occupy 30 to 50% of the area required for wiring,
Unless the miniaturization of the wiring area is also advanced, it is difficult to increase the density. For this reason, attempts have been made to increase the number of wiring layers, and in particular, double-layer aluminum wiring has come into practical use. [0003] However, the conventional double-layer aluminum wiring is composed of a silicon oxide film and a silicon nitride film on a relatively thick first-layer aluminum wiring of about 1 μm in which the second-layer aluminum wiring is already patterned on a surface having many irregularities. Since it is formed on an interlayer insulating film such as a film, the surface step becomes extremely large, and there is a disadvantage that the wiring is liable to be disconnected, which causes a reduction in yield. Therefore, in order to realize the planarization of the surface of the integrated circuit, (1) the method of depositing the insulating film is changed from a normal pressure method to a low pressure method and from the pyrolysis method to a plasma method, and (2) directional etching, that is, a parallel plate. Improvements have been made such as flattening using mold reactive sputter etching, and (3) making the second layer aluminum film thinner, but have not yet achieved sufficient effects. FIG. 3 is a schematic sectional view of a MOS field effect transistor in which a part of a conventional MOS integrated circuit is enlarged. 1 is a P-type silicon substrate, 2 is a field oxide film, 3
Is a channel stopper region, 4 is a gate oxide film, 5 is polycrystalline silicon, 6 is a source / drain region, 7 and 9 are interlayer insulating films, for example, a silicon oxide film formed by CVD, 8
In many cases, the first layer aluminum wiring and the second layer aluminum wiring 10 are used. FIG. 1A shows a portion where the thickness of the metal wiring is so thin that a disconnection failure is likely to occur. This is done by a parallel plate type plasma etching method for miniaturization of dimensions. This is due to the fact that a steep edge profile is realized by using directional etching, and that the aluminum film is usually deposited by an electron gun type vacuum evaporation method, so that the steep step coverage on the side wall is poor. [0007] In addition, the unevenness of the surface causes unevenness in the thickness of the resist in the photolithography, which makes it difficult to miniaturize the wiring. In particular, when the number of wirings is three, four,..., Three or more, the higher the layer, the more uneven the surface becomes, and it becomes impossible to form fine wirings. For this reason, with the miniaturization of elements due to the improvement of the element formation technique of the substrate 1, the technique of forming wiring for interconnecting these elements has not been established, and the improvement of the integration density has been hindered. Accordingly, it is an object of the present invention to provide a method of manufacturing a semiconductor device in which three or more wiring layers can be provided. According to a method of manufacturing a semiconductor device according to the present invention, there is provided a method of manufacturing a semiconductor device in which three or more layers of wiring are formed on a semiconductor substrate. It is characterized in that each film is subjected to mechanochemical polishing to flatten the surface of each interlayer insulating film. In mechanochemical polishing, for example, silica (Si) having a diameter of about 0.01 μm is
Polishing is performed using a polishing cloth in which abrasive grains of O2) are suspended in a weak alkaline solution and a polyurethane-based cloth. The physical polishing action and the rubbing between the abrasive grains (SiO2) and the silicon wafer are performed. This is polishing in which the action of chemical dissolution of silicon into a weakly alkaline polishing liquid due to a rise in temperature due to heat generation is mixed. In addition, mechanochemical polishing is used in a final step of polishing a substrate such as a silicon wafer, and the surface of the polished substrate is a flat distortion-free mirror surface. When such mechanochemical polishing is applied to polishing of a silicon wafer, there is no strict restriction on the polishing amount, but the amount of irregularities of the insulating film deposited as used in the present invention is several thousand angstroms. However, since the film thickness to be polished is very thin, 2 μm or less, the polishing method is considerably limited. Under such restrictions, it is not easy to reduce irregularities of about several thousand angstroms as compared with conventional polishing such as processing of a silicon wafer. The planarization of an insulating film by mechanochemical polishing has not yet been performed. As a result of various experiments, the present inventor has found that the use of mechanochemical polishing, which has a very low polishing rate of, for example, 100 angstroms / minute and has good controllability, significantly reduces the unevenness of the insulating film. It has been newly found that a flat substrate surface can be obtained without reducing the device characteristics of the semiconductor device. Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a MOS according to an embodiment of the present invention.
FIG. 4 is a process cross-sectional view in which a wiring portion of the integrated circuit is enlarged. However, although the drawing shows only the second layer, it is formed in the same manner thereafter. After a field oxide film 12 and a channel stopper region 13 are formed on a P-type silicon substrate 11 by using a normal selective oxidation method (LOCOS), a gate oxide film 14 is formed.
Is formed by the thermal oxidation method, and FIG. 1A is obtained. Next, phosphorus-doped polycrystalline silicon 15 used for the gate electrode and wiring is deposited by vapor phase epitaxy, patterned by photolithography, and n-type impurities such as arsenic are introduced by ion implantation or the like. Then, when a source / drain region 16 serving as a lower wiring layer is formed,
Figure 1b is obtained. A silicon oxide film 17 is deposited by a vapor deposition method, a contact hole for connecting the polycrystalline silicon 15 is opened by a photolithography technique, and a first layer of aluminum 18 is deposited to a thickness of about 0.8 μm by a vacuum deposition method. Then, when patterned, FIG. 1c is obtained. Subsequently, similarly, when a silicon oxide film 19 having a thickness of about 1.5 μm, which is about twice the thickness of the aluminum film, is deposited by a vapor phase growth method, the surface irregularities are slightly reduced, and FIG. 3D is obtained. Then, a polishing solution prepared by suspending a fine powder of silica having a diameter of 100 Å or less in a weak alkaline solution is applied under a pressure of 1 μm.
When polishing is performed at 10 g / cm @ 2 at 0.5 to 0.7 .mu.m, the surface of the interlayer insulating film becomes almost flat, and FIG. 1e is obtained. After opening a contact hole for connection with the first-layer aluminum wiring, an aluminum film is further deposited by a vacuum evaporation method and similarly patterned to form a second-layer aluminum wiring 20, and FIG. Is obtained. When alloying is performed by heat treatment, extremely good wiring connection can be obtained. Thereafter, three or more layers of aluminum wiring are formed in the same manner. Failures such as disconnection of wiring do not particularly increase. FIG. 2 is a diagram for explaining the effect of the present invention.
FIG. 3 is a schematic cross-sectional view shown in comparison with FIG. Interlayer insulating film 19
Is almost completely flattened by mechanochemical polishing, so that the aluminum wiring 20 is formed without difficulty.
Significant improvement in yield is achieved. Although the present embodiment has mainly described the aluminum wiring, the effect does not change even if other metal wiring is used. Further, this mechanochemical polishing apparatus can simultaneously process a large number of wafers by using a normal mirror polishing apparatus for a silicon substrate. It doesn't come. As described above, by using the present invention,
There is an advantage that extremely good metal wiring can be realized. In addition, photolithography on a flattened surface has the effect that resist can be applied to a uniform thickness, so that the dimensions can be miniaturized at the same time. is there.

【図面の簡単な説明】 【図1】本発明の一実施形態を示す工程断面図。 【図2】本発明の一実施形態による製法によって得られ
た半導体装置の断面図。 【図3】従来例の断面図。 【符号の説明】 17 第一層間絶縁膜 18 第一層金属配線 19 第二層間絶縁膜 20 第二層金属配線
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process sectional view showing one embodiment of the present invention. FIG. 2 is a sectional view of a semiconductor device obtained by a manufacturing method according to one embodiment of the present invention. FIG. 3 is a sectional view of a conventional example. [Description of Reference Numerals] 17 First interlayer insulating film 18 First layer metal wiring 19 Second interlayer insulating film 20 Second layer metal wiring

Claims (1)

(57)【特許請求の範囲】 1.半導体基板上に三層以上の配線を形成する半導体装
置の製造方法において、各層の配線間を絶縁する層間絶
縁膜のそれぞれに対してメカノケミカルポリシングを施
して各層間絶縁膜の表面を平坦化することを特徴とする
半導体装置の製造方法。 2.前記三層以上の配線はいずれも金属配線であること
を特徴とする請求項1記載の半導体装置の製造方法。 3.一層目の金属配線と前記半導体基板との間に半導体
よりなる配線がさらに形成されていることを特徴とする
請求項2記載の半導体装置の製造方法。 4.前記層間絶縁膜のそれぞれはシリコン酸化膜でな
り、前記メカノケミカルポリシングは、シリカ(SiO
2 )の砥粒を用いて行われることを特徴とする請求項
1、2または3記載の半導体装置の製造方法。
(57) [Claims] In a method of manufacturing a semiconductor device in which three or more layers of wiring are formed on a semiconductor substrate, mechanochemical polishing is performed on each of the interlayer insulating films that insulate between the wirings of each layer to flatten the surface of each interlayer insulating film. A method for manufacturing a semiconductor device, comprising: 2. 2. The method according to claim 1, wherein each of the three or more wiring layers is a metal wiring. 3. 3. The method of manufacturing a semiconductor device according to claim 2, wherein a wiring made of a semiconductor is further formed between the first metal wiring and the semiconductor substrate. 4. Each of the interlayer insulating films is formed of a silicon oxide film, and the mechanochemical polishing is performed using silica (SiO 2).
4. The method of manufacturing a semiconductor device according to claim 1, wherein the method is performed by using the abrasive grains of 2).
JP8259219A 1996-09-30 1996-09-30 Method for manufacturing semiconductor device Expired - Lifetime JP2783263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8259219A JP2783263B2 (en) 1996-09-30 1996-09-30 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8259219A JP2783263B2 (en) 1996-09-30 1996-09-30 Method for manufacturing semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1185183A Division JPS59136934A (en) 1983-01-27 1983-01-27 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPH09232262A JPH09232262A (en) 1997-09-05
JP2783263B2 true JP2783263B2 (en) 1998-08-06

Family

ID=17331065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8259219A Expired - Lifetime JP2783263B2 (en) 1996-09-30 1996-09-30 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2783263B2 (en)

Also Published As

Publication number Publication date
JPH09232262A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
US5362669A (en) Method of making integrated circuits
US20020081817A1 (en) Void reduction and increased throughput in trench fill processes
JP3281209B2 (en) Method for manufacturing semiconductor device
JPH10116905A (en) Manufacture of semiconductor device
JP3176017B2 (en) Method for manufacturing semiconductor device
KR100698495B1 (en) A semiconductor device having a reduced signal processing time and a method of fabricating the same
TW202145321A (en) Method of forming semiconductor structure
JPH09223737A (en) Manufacture of semiconductor device
KR100682643B1 (en) Gate electrode stack, circuit device including the gate electrode stack and fabrication method therof
JPH0530052B2 (en)
JPH027451A (en) Manufacture of semiconductor integrated circuit device
JP2783263B2 (en) Method for manufacturing semiconductor device
US20030209805A1 (en) Flourine doped SiO2 film and method of fabrication
JP2783262B2 (en) Method for manufacturing semiconductor device
JPH04211120A (en) Contact forming method and fabrication of semiconductor device
JPH10308395A (en) Flattening of semiconductor structure and filling of gaps between adjacent gate electrodes of semiconductor structure
JP3127983B2 (en) Method for manufacturing semiconductor device
JPH10340952A (en) Method for forming multilayer wiring in integrated circuit
JPH1140669A (en) Multilayered wiring structure and its manufacture
US6060393A (en) Deposition control of stop layer and dielectric layer for use in the formation of local interconnects
JP2702007B2 (en) Method for manufacturing semiconductor device
EP0664559B1 (en) Process for planarizing surface of a semiconductor device
US6489193B1 (en) Process for device isolation
JP3271203B2 (en) Method for manufacturing semiconductor device
JP2002190592A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980421