JPH07120704A - Optical isolator and its production - Google Patents

Optical isolator and its production

Info

Publication number
JPH07120704A
JPH07120704A JP27012593A JP27012593A JPH07120704A JP H07120704 A JPH07120704 A JP H07120704A JP 27012593 A JP27012593 A JP 27012593A JP 27012593 A JP27012593 A JP 27012593A JP H07120704 A JPH07120704 A JP H07120704A
Authority
JP
Japan
Prior art keywords
polarizer
analyzer
faraday
transmission polarization
optical isolator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27012593A
Other languages
Japanese (ja)
Inventor
Masato Shintani
真人 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27012593A priority Critical patent/JPH07120704A/en
Publication of JPH07120704A publication Critical patent/JPH07120704A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve mass production by arranging a Faraday rotor, an optically rotatory element (or quarter-wave plate) having reciprocity to rotate the plane of polarization 45 deg. and an analyzer (or polarizer) in this order in such a manner that the planes of transmission polarization of the polarizer and the analyzer are aligned to each other. CONSTITUTION:The absorption type polarizer 1, the Faraday rotor 2 of a YIG crystal, the quartz crystal quarter-wave length plate 3, the absorption type polarizer 4 and a magnet 5 of a cylindrical shape are arranged in prescribed positions and are assembled in an inert gas 6 using gaseous argon or gaseous nitrogen for heat insulation. This magnet 5 impresses saturation magnetization to the Faraday rotor 2. As a result, the Faraday rotor 2 rotates the plane of the transmission polarization 45 deg.. The quartz crystal quarter-wave length plate 3 is so arranged that the light (forward direction) from the Faraday rotor 2 rotates the plane of transmission polarization 45 deg. in a direction opposite from the Faraday rotation. The planes of the transmission polarization of the absorption type polarizer 1 and the Faraday rotor 4 are aligned.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ通信や光デ
ィスク用光ヘッドなどの光アイソレータや光サーキュレ
ータを構成するために使われる偏光素子、および、光フ
ァイバ通信や光ディスク用光ヘッドなどの光源である半
導体レーザへの戻り光を防止するために用いられる光ア
イソレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizing element used for constructing optical isolators and optical circulators for optical fiber communication and optical heads for optical disks, and light sources for optical fiber communication and optical heads for optical disks. The present invention relates to an optical isolator used to prevent light returning to a semiconductor laser.

【0002】[0002]

【従来技術】従来の光アイソレータは、図3に示すよう
に偏光子11、YIG( イットリウム−鉄−ガーネッ
ト) 結晶等で出来たファラデー回転子12、検光子1
4、及び磁石15で構成されており、検光子14には偏
光子11と同一材質の偏光子を用いている。偏光子11
と検光子14とは透過偏光方向が互いに45度傾くよう
にされている。その間に配置したファラデー回転子12
は、飽和磁化で45度のファラデー回転角が得られる厚
さを有している。この飽和磁化を印加するために、十分
な磁場を有する永久磁石15を外部に配置している。
2. Description of the Related Art As shown in FIG. 3, a conventional optical isolator includes a polarizer 11, a Faraday rotator 12 made of YIG (yttrium-iron-garnet) crystal, and an analyzer 1.
4 and a magnet 15, and a polarizer made of the same material as the polarizer 11 is used as the analyzer 14. Polarizer 11
The analyzer 14 and the analyzer 14 are arranged such that the transmission polarization directions thereof are inclined by 45 degrees. Faraday rotator 12 placed between them
Has a thickness such that a Faraday rotation angle of 45 degrees can be obtained by saturation magnetization. A permanent magnet 15 having a sufficient magnetic field is arranged outside in order to apply this saturation magnetization.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
光アイソレータは、偏光子と検光子の透過偏光面が互い
に45度傾くように位置調整せねばならず、量産が困難
であった。また、個々の部品特性は温度に左右され易
く、製造時の障害になっていた。また、完成した光アイ
ソレータの性能は使用環境下の温度の影響を直接受け
る。
However, the conventional optical isolator must be adjusted in position so that the transmission polarization planes of the polarizer and the analyzer are inclined by 45 degrees with each other, which makes mass production difficult. Further, the characteristics of individual parts are easily affected by temperature, which has been an obstacle in manufacturing. Moreover, the performance of the completed optical isolator is directly affected by the temperature under the usage environment.

【0004】本発明の目的は上述の課題を解決するため
に、量産性に優れた光アイソレータを提供することであ
る。
An object of the present invention is to provide an optical isolator excellent in mass productivity in order to solve the above problems.

【0005】[0005]

【課題を解決するための手段】本発明の光アイソレータ
は、第1の偏光子と、飽和磁化により45°のファラデ
ー回転角を得られるYIG( イットリウム−鉄−ガーネ
ット)結晶等の非相反性を有するファラデー回転子と、
偏光面を45°回転させる相反性を有する旋光子(もし
くは4分の1波長板)と、検光子(もしくは第2の偏光
子)とがこの順番に、前記偏光子と検光子の透過偏光面
が互いに一致するように配置された光アイソレータであ
る。
The optical isolator of the present invention has a non-reciprocal property such as a first polarizer and a YIG (yttrium-iron-garnet) crystal capable of obtaining a Faraday rotation angle of 45 ° due to saturation magnetization. A Faraday rotator,
A reciprocal optical rotator (or a quarter-wave plate) that rotates the polarization plane by 45 ° and an analyzer (or a second polarizer) are arranged in this order, and the transmission polarization planes of the polarizer and the analyzer. Are optical isolators arranged so as to coincide with each other.

【0006】さらに本発明の光アイソレータの製造方法
は、第1の偏光子と、飽和磁化により45°のファラデ
ー回転角が得られるYIG( イットリウム−鉄−ガーネ
ット)結晶等の非相反性を有するファラデー回転子と、
偏光面を45°回転させる相反性を有する旋光子(もし
くは4分の1波長板)と、検光子(もしくは第2の偏光
子)とをこの順番で、断熱用不活性ガス内で、前記偏光
子と検光子の透過偏光方向が互いに一致するように配置
するものである。
Further, according to the method of manufacturing an optical isolator of the present invention, the first polarizer and a non-reciprocal Faraday such as YIG (yttrium-iron-garnet) crystal, which can obtain a Faraday rotation angle of 45 ° due to saturation magnetization, are used. A rotor,
A reciprocal optical rotator (or a quarter-wave plate) that rotates the plane of polarization by 45 ° and an analyzer (or a second polarizer) are arranged in this order in a heat-insulating inert gas to produce the polarized light. It is arranged so that the transmitted polarization directions of the probe and the analyzer coincide with each other.

【0007】[0007]

【作用】第1の偏光子へ入射した順方向光である直線偏
光は、第1の偏光子を透過し、ファラデー回転子で偏光
面を45度回転され、旋光子(4分の1波長板)で偏光
面を45度逆方向に回転される。したがって、この光の
透過偏光面は、検光子(第2の偏光子)の透過偏光面に
一致し、検光子(第2の偏光子)を透過して透過光とし
て出射される。
The linearly polarized light, which is the forward light incident on the first polarizer, passes through the first polarizer, and the polarization plane is rotated by 45 degrees by the Faraday rotator. ), The plane of polarization is rotated in the opposite direction by 45 degrees. Therefore, the transmission polarization plane of this light coincides with the transmission polarization plane of the analyzer (second polarizer), passes through the analyzer (second polarizer), and is emitted as transmitted light.

【0008】一方、順方向とは逆方向の戻り光が検光子
(第2の偏光子)に入射すると、検光子(第2の偏光
子)の透過偏光面に一致する成分のみが、検光子(第2
の偏光子)を透過して旋光子(4分の1波長板)で偏光
面を45度回転され、ファラデー回転子ではこの回転と
同方向に45度偏光方向をさらに回転される。ファラデ
ー回転子は非相反性を有するのでこの回転方向は、光の
進行方向(順方向と逆方向)に関係なく一定である。し
たがって、ファラデー回転を受けた戻り光は、第1の偏
光子の透過偏光面に直交する偏光面を有しており、第1
の偏光子を透過できない。
On the other hand, when the return light in the direction opposite to the forward direction is incident on the analyzer (second polarizer), only the component matching the transmission polarization plane of the analyzer (second polarizer) is detected. (Second
After passing through the polarizer (1), the polarization plane is rotated by 45 degrees by the optical rotator (quarter wave plate), and the Faraday rotator further rotates the polarization direction by 45 degrees in the same direction as this rotation. Since the Faraday rotator has non-reciprocity, this rotation direction is constant regardless of the light traveling direction (forward direction and reverse direction). Therefore, the return light that has undergone Faraday rotation has a polarization plane orthogonal to the transmission polarization plane of the first polarizer.
Cannot pass through the polarizer.

【0009】この光アイソレータは断熱用不活性ガス内
で組み立てられるので、外部環境温度に左右されること
がなく、量産性が向上する。
Since this optical isolator is assembled in a heat insulating inert gas, it is not affected by the external environmental temperature and mass productivity is improved.

【0010】また、製造時の断熱用不活性ガスをそのま
ま光アイソレータ内に密閉することにより、製造後にお
いても温度依存性が小さくなる。
Further, by sealing the heat insulating inert gas in the optical isolator as it is at the time of manufacturing, the temperature dependency becomes small even after the manufacturing.

【0011】[0011]

【実施例】以下、図面によって本考案の一実施例の説明
を行う。図1は組み立て時の光アイソレータの断面図で
ある。光アイソレータは、吸収型偏光子1、YIG結晶
のファラデー回転子2、水晶4分の1波長板3、吸収型
偏光子4、円筒型の磁石5が同図のように配置され、断
熱用のアルゴンガスもしくは窒素ガスを用いた不活性ガ
ス6内で組み立てられる。磁石5はファラデー回転子2
に飽和磁化を印加する。これにより、ファラデー回転子
2は、透過偏光面を45°回転する。水晶4分の1波長
板3は、ファラデー回転子2からの光(順方向光)がフ
ァラデー回転とは反対方向に透過偏光面を45°回転す
るように配置されている。吸収型偏光子1と吸収型偏光
子4の透過偏光面は一致させる。この光アイソレータ
は、不活性ガス6内で組み立てられ、そのまま不活性ガ
ス6をアイソレータ内に密閉するものである。密閉は、
吸収型偏光子1、4を蓋にして、磁石5内にファラデー
回転子2、水晶4分の1波長板3を不活性ガス6ととも
に密閉する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of the optical isolator during assembly. In the optical isolator, an absorption polarizer 1, a Faraday rotator 2 of YIG crystal, a crystal quarter wavelength plate 3, an absorption polarizer 4, and a cylindrical magnet 5 are arranged as shown in FIG. It is assembled in an inert gas 6 using argon gas or nitrogen gas. Magnet 5 is Faraday rotator 2
Apply saturation magnetization to. As a result, the Faraday rotator 2 rotates the transmitted polarization plane by 45 °. The crystal quarter-wave plate 3 is arranged so that the light (forward light) from the Faraday rotator 2 rotates the transmitted polarization plane by 45 ° in the direction opposite to the Faraday rotation. The transmission polarization planes of the absorption polarizer 1 and the absorption polarizer 4 are matched. This optical isolator is assembled in an inert gas 6, and the inert gas 6 is sealed in the isolator as it is. The seal is
The Faraday rotator 2 and the crystal quarter-wave plate 3 are sealed together with the inert gas 6 in the magnet 5 with the absorption polarizers 1 and 4 as lids.

【0012】図2によって、図1に示す光アイソレータ
の動作を説明する。図2(A)は順方向光の偏光面を吸
収型偏光子1側から見た偏光面の変化状態図で、(a)
は吸収型偏光子1の入射前、(b)は吸収型偏光子1か
らの出射後、(c)はファラデー回転子2からの出射
後、(d)は水晶4分の1波長板3からの出射後、
(e)は吸収型偏光子4からの出射後の状態を示すもの
である。
The operation of the optical isolator shown in FIG. 1 will be described with reference to FIG. FIG. 2A is a change state diagram of the polarization plane of the forward direction light as seen from the absorption polarizer 1 side, and FIG.
Is before the incidence of the absorptive polarizer 1, (b) is after the emission from the absorptive polarizer 1, (c) is after the emission from the Faraday rotator 2, and (d) is from the quartz quarter-wave plate 3. After the emission of
(E) shows the state after emission from the absorptive polarizer 4.

【0013】(a)で直交偏光成分を有していた順方向
光は、(b)のように吸収型偏光子1の透過偏光面に一
致する成分のみが吸収型偏光子1を透過できる。ファラ
デー回転子2はこの光を(c)のように45°回転す
る。水晶4分の1波長板3は、このファラデー回転され
た光を(d)のように逆方向に45°回転し、(b)の
状態に戻す。吸収型偏光子1と吸収型偏光子4とは偏光
面が一致させているので、(d)の光は、(e)のよう
に吸収型偏光子4をそのまま透過することができる。
As for the forward light having the orthogonal polarization components in (a), only the component matching the transmission polarization plane of the absorption polarizer 1 can pass through the absorption polarizer 1 as shown in (b). The Faraday rotator 2 rotates this light by 45 ° as shown in (c). The crystal quarter-wave plate 3 rotates the Faraday-rotated light by 45 ° in the opposite direction as shown in (d) and returns it to the state of (b). Since the absorptive polarizer 1 and the absorptive polarizer 4 have the same polarization plane, the light in (d) can be transmitted through the absorptive polarizer 4 as it is as in (e).

【0014】これに対して図2(B)は戻り光の偏光面
を吸収型偏光子1側から見た偏光面の変化状態図で、
(a)は吸収型偏光子1からの出射後、(b)はファラ
デー回転子2からの出射後、(c)は水晶4分の1波長
板3からの出射後、(d)は吸収型偏光子4からの出射
後、(e)は吸収型偏光子4の入射前の状態を示すもの
である。戻り光は吸収型偏光子4側から光アイソレータ
内に入射する逆方向の光なので(e)から説明する。
(e)に示す反射等によって逆方向に伝播される戻り光
のうち、吸収型偏光子4の透過偏光面に一致する成分
は、(d)のように吸収型偏光子4を透過する。この光
は、(c)のように水晶4分の1波長板3で偏光面を4
5°回転させられる。この回転方向は、水晶4分の1波
長板3が相反性を有するため、上述の図2(A)の
(d)に示した順方向光の場合とは異なり、逆回転にな
る。一方、ファラデー回転子2は非相反性を有し、ファ
ラデー回転方向は光の進行方向によらず常に同一方向に
偏光面を回転する。したがって、水晶4分の1波長板3
で偏光面を45°回転させられた光は、ファラデー回転
子2では、(b)のように偏光面を同一方向にさらに4
5°回転されることになる。そのため、ファラデー回転
子2から出射した戻り光の偏光面は吸収型偏光子1の透
過偏光面と直交するので、(a)のように吸収型偏光子
1を透過できない。
On the other hand, FIG. 2 (B) is a change state diagram of the polarization plane of the returning light as seen from the absorption polarizer 1 side.
(A) is after emission from the absorption type polarizer 1, (b) is after emission from the Faraday rotator 2, (c) is after emission from the quartz quarter-wave plate 3, and (d) is absorption type. After being emitted from the polarizer 4, (e) shows the state before the absorption-type polarizer 4 is incident. Since the return light is light in the reverse direction that is incident on the absorption type polarizer 4 side into the optical isolator, it will be described from (e).
Of the return light propagating in the opposite direction due to reflection or the like shown in (e), the component that coincides with the transmission polarization plane of the absorption polarizer 4 passes through the absorption polarizer 4 as shown in (d). As shown in (c), this light has a polarization plane of 4 with a quarter-wave plate 3 of quartz crystal.
It is rotated 5 °. This rotation direction is reverse rotation, unlike the case of forward light shown in (d) of FIG. 2A above, because the quarter-wave plate 3 of crystal has reciprocity. On the other hand, the Faraday rotator 2 has non-reciprocity, and the Faraday rotation direction always rotates the polarization plane in the same direction regardless of the traveling direction of light. Therefore, the crystal quarter-wave plate 3
In the Faraday rotator 2, the light whose polarization plane is rotated by 45 ° is further rotated in the same direction by the polarization plane as shown in (b).
It will be rotated 5 °. Therefore, the polarization plane of the return light emitted from the Faraday rotator 2 is orthogonal to the transmission polarization plane of the absorptive polarizer 1, so that the absorptive polarizer 1 cannot be transmitted as in (a).

【0015】[0015]

【発明の効果】本発明の光アイソレータは、従来のよう
に偏光子と検光子の透過偏光面を互いに45度傾ける位
置調整が不要になり、量産性がよい。また、入出射の透
過偏光面が一致しているので、複数個の光アイソレータ
を重ね合わせた多段型光アイソレータを構成する場合、
各光アイソレータの透過偏光面を容易に一致させること
ができる。
The optical isolator of the present invention does not require the position adjustment for inclining the transmission polarization planes of the polarizer and the analyzer with each other by 45 degrees as in the conventional optical isolator, and has good mass productivity. Further, since the incoming and outgoing transmission polarization planes are the same, when configuring a multi-stage optical isolator in which a plurality of optical isolators are stacked,
It is possible to easily match the transmission polarization planes of the optical isolators.

【0016】また、本発明の光アイソレータの製造方法
によれば、光アイソレータは断熱用不活性ガス内で組み
立てられるので、製造時の外部環境温度に左右されず、
量産性が飛躍的に向上する。しかも、断熱用不活性ガス
をそのまま内部に密閉することにより、使用時において
も外部環境温度に左右されず、常に安定した動作をする
高性能の光アイソレータの製造が容易になる。
Further, according to the method of manufacturing the optical isolator of the present invention, the optical isolator is assembled in the heat insulating inert gas, so that it is not affected by the external environmental temperature during manufacturing.
Mass productivity is dramatically improved. Moreover, by sealing the heat insulating inert gas as it is, it becomes easy to manufacture a high-performance optical isolator that is always stable in operation regardless of the external environment temperature during use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光アイソレータの製造時における断面
図。
FIG. 1 is a sectional view of an optical isolator of the present invention during manufacturing.

【図2】本発明の光アイソレータの偏光面の変化状態図
で、(A)は順方向光時の変化状態図、(B)は戻り光
時の変化状態図。
FIG. 2 is a change state diagram of a polarization plane of the optical isolator of the present invention, (A) is a change state diagram when forward light is emitted, and (B) is a change state diagram when return light is emitted.

【図3】従来の光アイソレータの構造図。FIG. 3 is a structural diagram of a conventional optical isolator.

【符号の説明】[Explanation of symbols]

1,4:吸収型偏光子 2:ファラデー回転子 3:水
晶4分の1波長板 5:磁石 6:不活性ガス
1, 4: Absorption type polarizer 2: Faraday rotator 3: Quartz quarter wave plate 5: Magnet 6: Inert gas

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】第1の偏光子と、飽和磁化で45度のファ
ラデー回転角が得られる非相反性を有するファラデー回
転子と、透過偏光面が45度回転される相反性を有する
旋光子もしくは1/4波長板と、検光子もしくは第2の
偏光子とがこの順番に、前記第1の偏光子と検光子もし
くは第1の偏光子と第2の偏光子の透過偏光面を一致さ
せて配置されたことを特徴とする光アイソレータ。
1. A first polarizer, a non-reciprocal Faraday rotator capable of obtaining a Faraday rotation angle of 45 degrees with saturation magnetization, and a reciprocal rotator having a reciprocal polarization plane rotated by 45 degrees. The quarter-wave plate and the analyzer or the second polarizer are arranged in this order so that the transmission polarization planes of the first polarizer and the analyzer or the first polarizer and the second polarizer are aligned with each other. An optical isolator characterized by being arranged.
【請求項2】第1の偏光子と、飽和磁化で45度のファ
ラデー回転角が得られる非相反性を有するファラデー回
転子と、透過偏光面が45度回転される相反性を有する
旋光子もしくは1/4波長板と、検光子もしくは第2の
偏光子とをこの順番に、断熱用不活性ガス内で前記第1
の偏光子と検光子もしくは第1の偏光子と第2の偏光子
の透過偏光面を一致させて配置することを特徴とする光
アイソレータの製造方法。
2. A first polarizer, a non-reciprocal Faraday rotator capable of obtaining a Faraday rotation angle of 45 degrees by saturation magnetization, and an optical rotator having a reciprocity in which a transmission polarization plane is rotated by 45 degrees. The 1/4 wavelength plate and the analyzer or the second polarizer are arranged in this order in the heat insulating inert gas to form the first
2. A method for manufacturing an optical isolator, wherein the polarizer and the analyzer or the first polarizer and the second polarizer are arranged so that their transmission polarization planes are aligned with each other.
JP27012593A 1993-10-28 1993-10-28 Optical isolator and its production Pending JPH07120704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27012593A JPH07120704A (en) 1993-10-28 1993-10-28 Optical isolator and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27012593A JPH07120704A (en) 1993-10-28 1993-10-28 Optical isolator and its production

Publications (1)

Publication Number Publication Date
JPH07120704A true JPH07120704A (en) 1995-05-12

Family

ID=17481906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27012593A Pending JPH07120704A (en) 1993-10-28 1993-10-28 Optical isolator and its production

Country Status (1)

Country Link
JP (1) JPH07120704A (en)

Similar Documents

Publication Publication Date Title
US4756607A (en) Optical isolator device having two cascaded isolator elements with different light beam rotation angles
CA2011830A1 (en) Quasi-achromatic optical isolators and circulators
JPH04333818A (en) Optical isolator and its manufacture
KR100287596B1 (en) Photo Isolator
JPS589B2 (en) optical isolator
JPH07120704A (en) Optical isolator and its production
JPH0244310A (en) Optical isolator
WO1991014193A1 (en) Optical isolator
JP2567697B2 (en) Faraday rotation device
JPS5850512A (en) Optical isolator
JP2001013379A (en) Optical module
JPH10142558A (en) Optical isolator and its production
JPH0229714A (en) Optical isolator
JPH11223797A (en) Optical isolator and manufacture of the same
JP3260159B2 (en) Manufacturing method of magneto-optical component
JPH0749468A (en) Optical isolator
JPH01219816A (en) Aligning method for axis of polarization of optical isolator element
JPH0720407A (en) Optical isolator
JPH06317763A (en) Optical isolator
JPH04264515A (en) Optical isolator
JPH1114939A (en) Optical non-reciprocity circuit
JPS63106619A (en) Optical isolator
JPS6136725A (en) Optical isolator and its production
JPH0990281A (en) Polarization independent type optical isolator
JPH03135514A (en) Optical isolator