JPH01219816A - Aligning method for axis of polarization of optical isolator element - Google Patents

Aligning method for axis of polarization of optical isolator element

Info

Publication number
JPH01219816A
JPH01219816A JP4448788A JP4448788A JPH01219816A JP H01219816 A JPH01219816 A JP H01219816A JP 4448788 A JP4448788 A JP 4448788A JP 4448788 A JP4448788 A JP 4448788A JP H01219816 A JPH01219816 A JP H01219816A
Authority
JP
Japan
Prior art keywords
polarizer
light
analyzer
polarization
optical isolator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4448788A
Other languages
Japanese (ja)
Inventor
Yuichi Togano
祐一 戸叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP4448788A priority Critical patent/JPH01219816A/en
Publication of JPH01219816A publication Critical patent/JPH01219816A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form the optical isolator element of high quality with stability and productivity by passing the laser light from a laser from the side of an analyzer, and aligning the axes of polarization of a polarizer and the analyzer with each other by rotating the both so that the cutoff rate of ordinary light from the side of the polarizer is minimum. CONSTITUTION:A Faraday rotation element 2 is applied with a saturation magnetic field during an assembling and adhering process, and the laser light from the semiconductor laser device is made incident vertically from the side of the analyzer 3; and the polarizer 1 and analyzer 3 are rotated mutually and the light power intensity of the ordinary light component of the laser light emitted from the side of the polarizer 1 is measured. Then the axes of polarization of the polarizer 1 and analyzer 3 are aligned with each other at the position where the light power intensity is minimum and they are fixed and adhered with an epoxy adhesive. Further, when the position where the light power intensity of return light is found, the laser light is made incident vertically from the side of the analyzer 3, the power intensity of the light passed through the polarizer 1 is measured by a light power meter, and the polarizer 1 is rotated finely and adjusted so that the cutoff rate is optimum. Consequently, the superior performanceis obtained with the good reproducibility.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、光アインレータ素子を製作する際の偏光子、
検光子、及びファラデー回転素子であるガーネット厚膜
板を接着するときの最適な光の減衰量を得るための光ア
イソレータ素子の偏光軸の角度合わせ方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Fields] The present invention relates to a polarizer used in manufacturing an optical inlator element,
The present invention relates to a method of adjusting the angle of the polarization axis of an optical isolator element in order to obtain an optimal amount of light attenuation when bonding an analyzer and a garnet thick film plate that is a Faraday rotation element.

[従来の技術] 第1図は光アイソレータ素子の構造、及び動作の原理を
示す図である。
[Prior Art] FIG. 1 is a diagram showing the structure and operating principle of an optical isolator element.

第1図(、)において、左側から入る入射光4は。In Fig. 1(,), the incident light 4 entering from the left side is.

偏光子1.ファラデー回転索子2.検光子3を通シ右へ
進む。この時、光は、偏光子1の偏光軸11が垂直方向
に作られているため、光は垂直方向の成分が常光として
偏光される。偏光子1で偏光された光42の偏波面は、
光の進む方向と一致する向きに磁場Hが印加されたファ
ラデー回転素子2を通ると、ファラデー回転素子2を通
る間にほぼ45度回転する。一方、検光子3は、その偏
光軸31が偏光子1の偏光軸11に対して45度の角度
をもつように作られている。従って、検光子3を通った
光44は45度に偏光された光のみとなる。
Polarizer 1. Faraday rotator 2. Go through Analyzer 3 to the right. At this time, since the polarization axis 11 of the polarizer 1 is formed in the vertical direction, the vertical component of the light is polarized as ordinary light. The plane of polarization of the light 42 polarized by the polarizer 1 is
When the light passes through the Faraday rotation element 2 to which the magnetic field H is applied in the same direction as the direction in which the light travels, it rotates approximately 45 degrees while passing through the Faraday rotation element 2. On the other hand, the analyzer 3 is made so that its polarization axis 31 has an angle of 45 degrees with respect to the polarization axis 11 of the polarizer 1. Therefore, the light 44 that passes through the analyzer 3 becomes only light that is polarized at 45 degrees.

一方、第1図(b)は、戻)光の動作を示す図である。On the other hand, FIG. 1(b) is a diagram showing the operation of the returning light.

戻り光5の中に光の進行方向に対して、各方向の偏光の
光を含んでいても、45度の方向に偏光軸31を持つ検
光子3を通ると、45度方向の偏波面をもつ光のみが常
光52として検光子3を通シ、これらの光52が戻シ光
と逆方向の磁場が印加されたファラデー回転索子2を通
ると、ファラデー回転素子2はこの常光52の偏波面を
45度回転する。従ってファラデー回転素子2を出た光
53は、その偏波面が偏光子1の偏光軸11に対して直
交しているので偏光子1の中で高い減衰をうけることに
なる。
Even if the returned light 5 contains light polarized in each direction with respect to the direction of travel of the light, when it passes through the analyzer 3 which has the polarization axis 31 in the 45-degree direction, the plane of polarization in the 45-degree direction is Only the light that has this light passes through the analyzer 3 as ordinary light 52, and when these lights 52 pass through the Faraday rotator 2 to which a magnetic field in the opposite direction to that of the returning light is applied, the Faraday rotator 2 changes the polarization of this ordinary light 52. Rotate the wavefront 45 degrees. Therefore, the light 53 exiting the Faraday rotation element 2 is highly attenuated in the polarizer 1 because its plane of polarization is perpendicular to the polarization axis 11 of the polarizer 1.

このように構成された光アインーレータ素子は。The optical inulator element configured in this way is as follows.

現在光通信装置の1.1ギガピット/秒以上の伝送を行
う光発振部分に対して、安定な伝送のために欠かすこと
の出来ない部品となっている。
Currently, it is an indispensable component for stable transmission in the optical oscillation part of optical communication equipment that transmits data at speeds of 1.1 gigapits/second or more.

光アイソレータ素子の製作工程である偏光結晶板(偏光
子1及び検光子3)とガーネット厚膜板(ファラデー回
転素子2)の組立接着は、2枚の偏光結晶板の間にガー
ネット厚膜板を挾んで行う◇この際、偏光子1の偏光軸
11に対して検光子3の偏光軸31が45度の角度を持
った位置となるように2合わせている。
Assembling and adhering the polarizing crystal plates (polarizer 1 and analyzer 3) and garnet thick film plate (Faraday rotation element 2), which is the manufacturing process of the optical isolator element, involves sandwiching the garnet thick film plate between two polarizing crystal plates. ◇At this time, the analyzer 3 is aligned so that the polarization axis 31 of the analyzer 3 is at an angle of 45 degrees with respect to the polarization axis 11 of the polarizer 1.

[発明が解決しようとする課題] しかし、この方法であると、実際に光アイソレータ素子
としたときに、光アイソレータ素子の主特性であるアイ
ソレーションにばらつきが生じてしまう。これは、使用
するファラデー回転素子2の厚みのばらつきによるファ
ラデー回転角の誤差や、偏光結晶板の偏光軸のずれなど
から、戻シ光の遮断率を示すアイソレーションの値ヲ小
サクシてしまう。その結果、光アインレータ素子の性能
が充分に生かされないという欠点があった。
[Problems to be Solved by the Invention] However, with this method, when an optical isolator element is actually used, variations occur in isolation, which is the main characteristic of the optical isolator element. This is due to errors in the Faraday rotation angle due to variations in the thickness of the Faraday rotation element 2 used, deviations in the polarization axis of the polarizing crystal plate, etc., resulting in a small isolation value indicating the blocking rate of the returned light. As a result, there was a drawback that the performance of the optical inlator element could not be fully utilized.

[課題を解決するための手段] 本発明はこれらの欠点を除去するため、偏光子と検光子
を予め固定し、ファラデー回転素子であるガーネット厚
膜を挾み1組立、及び接着作条中にガーネット厚膜板に
磁場をかけ、検光子側から半導体レーデによるレーザ光
を通し、偏光子を出た光の常光成分の光・母ワー強度が
最小となるように、つまシ、製作しようとする素子のア
イソレーションが最良となるように、偏光結晶板(偏光
子及び検光子)を回転させながら、最適のアイソレーシ
ョン特性を示す位置を捜して偏光軸を合わせ。
[Means for Solving the Problems] In order to eliminate these drawbacks, the present invention fixes a polarizer and an analyzer in advance, and sandwiches a garnet thick film, which is a Faraday rotation element, during assembly and bonding. Applying a magnetic field to a garnet thick film plate, passing laser light from a semiconductor radar from the analyzer side, and trying to manufacture a shim so that the light/power intensity of the ordinary light component of the light that exits the polarizer is minimized. To achieve the best isolation of the element, while rotating the polarizing crystal plate (polarizer and analyzer), search for a position that exhibits the optimal isolation characteristics and align the polarization axis.

固定することによシ、高品質で安定生産性のある光アイ
ソレータ素子を提供する。
By fixing, an optical isolator element of high quality and stable productivity is provided.

[作用コ 現在では、ファラデー回転素子であるが−ネット厚膜の
ファラデー回転角を正確に45度にすることは、困難で
ある。このファラデー回転素子のファラデー回転角のば
らつきは、即、光アイソレーションの主特性であるアイ
ンレーショ/に強く効いてくる。
[Operations] At present, although Faraday rotation elements are used, it is difficult to accurately set the Faraday rotation angle of a net thick film to 45 degrees. This variation in the Faraday rotation angle of the Faraday rotation element has a strong effect on the inlation, which is the main characteristic of optical isolation.

この解決方法として、戻り光の偏波面が偏光子の偏光軸
に対して90度となるように、光アイソレータ素子の組
立接着の際に偏光子、検光子を。
As a solution to this problem, a polarizer and an analyzer are used when assembling and bonding the optical isolator element so that the plane of polarization of the returned light is 90 degrees to the polarization axis of the polarizer.

それぞれを回転させて偏光軸の位置合わせを行い。Rotate each to align the polarization axis.

固定する方法を用いることによって、アイソレーション
、即ち順方向の光に対する戻シ光の遮断率をより向上し
、安定した特性を持つ、光アインレータ素子の製造方法
を提供するものである。
By using a fixing method, it is possible to further improve the isolation, that is, the blocking rate of the returning light with respect to the forward light, and to provide a method of manufacturing an optical inulator element having stable characteristics.

[実施例] 本発明の実施例において、光アインレータ素子の材料は
、偏光子1.検光子3として正方形角のルチル偏光結晶
板を、ファラデー回転索子2として液相エピタキシャル
育成法で作った。ガドリニウム・ビスマス・鉄・ガーネ
ットの鉄の一部をアルミニウムとガリウムで直換した。
[Example] In an example of the present invention, the material of the optical inulator element is polarizer 1. A square rutile polarizing crystal plate was made as the analyzer 3, and a Faraday rotator 2 was made by a liquid phase epitaxial growth method. Part of the iron in gadolinium, bismuth, iron, and garnet was directly replaced with aluminum and gallium.

ファラデー効果の大きい材料で大きさが偏光結晶板と同
じ正方形角でファラデー回転角が43.5±0.1度の
ガーネット厚膜を使用し、各材料には無反射コートを施
した。
A thick garnet film, which is a material with a large Faraday effect and has the same square angle as the polarizing crystal plate and a Faraday rotation angle of 43.5±0.1 degrees, was used, and each material was coated with an anti-reflection coating.

まず、比較するための従来方法としては、ファラデー回
転素子2のファラデー回転角が45度と仮定して、偏光
子1.検光子3の偏光軸を45度に合わせて偏光子1.
ファラデー素子2.偏光子3の順にエポキシ系の接着剤
で接着した。
First, as a conventional method for comparison, assuming that the Faraday rotation angle of Faraday rotation element 2 is 45 degrees, polarizer 1. Align the polarization axis of analyzer 3 with 45 degrees and insert polarizer 1.
Faraday element 2. Polarizer 3 was adhered in this order with an epoxy adhesive.

次に2本発明による方法として2組立、接着工程中、フ
ァラデー回転素子2に飽和磁場をかけ。
Next, as a method according to the present invention, a saturation magnetic field is applied to the Faraday rotation element 2 during the assembly and bonding steps.

検光子3側から半導体レーザ装置(図示せず)からレー
デ光を垂直入射し、偏光子1.検光子3を相互に回転さ
せて、偏光子1側から出るレーデ光の常光成分の光パワ
ー強度を測定し、この光パワー強度が最小となる位置に
、偏光子1及び検光子3の偏光軸を合わせ、固定してエ
ポキシ系の接着剤で接着した。
Rede light from a semiconductor laser device (not shown) is vertically incident on the analyzer 3 side, and the polarizer 1. The optical power intensity of the ordinary light component of the Rede light emitted from the polarizer 1 side is measured by rotating the analyzers 3 with respect to each other, and the polarization axes of the polarizer 1 and the analyzer 3 are set at the position where this optical power intensity is the minimum. I fixed them together and glued them together with epoxy adhesive.

なお2本発明の方法では、戻シ光の光・ぞワー強度の最
小の位置を見つけるために、平行光束にした波長1.3
1 ttmの半導体レーザ光を検光子3側から垂直入射
し、偏光子1を通過した光のパワー強度を光パワーメー
タで測定し、遮断率が最適になる様に、偏光子lを微動
回転し、調整した。
In addition, in the method of the present invention, in order to find the minimum position of the light beam intensity of the returned light, the wavelength of 1.3
1 TTM semiconductor laser light is vertically incident from the analyzer 3 side, the power intensity of the light that has passed through the polarizer 1 is measured with an optical power meter, and the polarizer l is slightly rotated so that the blocking rate is optimized. ,It was adjusted.

このように、従来及び本発明による2種類の方法を用い
て製作した光アインレータ素子それぞれについて、挿入
損失と、アイソレーションを測定した。
In this way, the insertion loss and isolation were measured for each of the optical inulator elements manufactured using the two methods according to the conventional method and the method according to the present invention.

その結果、従来の方法を用いて製作した光アイソレータ
素子において、挿入損失が05±0.02dBで、アイ
ソレーションが25.8±0.3dBであったのに対し
て2本発明による方法を用いて製作した光アインレータ
素子においては、挿入損失が0.6±0.02 dBで
あシ、アイソレーションが360±1.0 dBであっ
た。
As a result, in the optical isolator element manufactured using the conventional method, the insertion loss was 05 ± 0.02 dB and the isolation was 25.8 ± 0.3 dB. In the optical inlator element manufactured using the above method, the insertion loss was 0.6±0.02 dB and the isolation was 360±1.0 dB.

[発明の効果コ 以上述べたように2本発明を用いて、接着組立の際に軸
合わせを行った光アイソレータ素子は。
[Effects of the Invention] As described above, two optical isolator elements whose axes were aligned during adhesive assembly using the present invention were obtained.

従来方法によシ製作した光アイソレータ素子に比ンレー
タ素子の製作が可能となるばかシではなく。
It is not just a matter of making it possible to manufacture a compensator element in addition to the optical isolator element manufactured by the conventional method.

再現性も容易に得られるため、製造に携わる人を限定す
ることなく、また、ファラデー回転素子のファラデー回
転角や、偏光結晶板の偏光軸の誤差による特性のばらつ
きがなくなシ9品品質性能の優れた光アインレータ素子
を提供することができるようになった。
Since reproducibility can be easily obtained, there is no need to limit the number of people involved in manufacturing, and there is no variation in characteristics due to errors in the Faraday rotation angle of the Faraday rotation element or the polarization axis of the polarizing crystal plate.9 Product quality performance It is now possible to provide an excellent optical inlator element.

臥′″F弦8臥′″F string 8

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光アイソレータ素子の構成を示す斜視図であっ
て、第1図(、)は入射光に対する偏光子。 ファラデー回転素子、検光子の動作を示し、第1図(b
)は戻シ光に対する偏光子、ファラデー回転素子、検光
子の動作を示す。 1°゛°偏光子、2・・・ファラデー回転素子、3・・
・検光子、4・・・入射光、5・・・戻シ光、21・・
・ファラデー回転素子にかける磁場の方向、41,42
゜43.44・・・入射光における偏光、51,52゜
53・・−戻シ光における偏光。
FIG. 1 is a perspective view showing the configuration of an optical isolator element, and FIG. 1 (,) shows a polarizer for incident light. The operation of the Faraday rotation element and analyzer is shown in Figure 1 (b).
) shows the operation of the polarizer, Faraday rotator, and analyzer with respect to the returned light. 1°゛° polarizer, 2... Faraday rotation element, 3...
・Analyzer, 4...Incoming light, 5...Returning light, 21...
・Direction of magnetic field applied to Faraday rotation element, 41, 42
゜43.44...Polarized light in the incident light, 51,52゜53...-Polarized light in the returned light.

Claims (1)

【特許請求の範囲】 1、特定の1辺に対して偏光軸がある特定の角度を持つ
偏光子と、この偏光子の偏光軸に対して偏光軸が45度
の角度を持つ検光子と、これらの偏光子、検光子の間に
ほぼ45度のファラデー回転角を持つガーネット厚膜を
はさみ、ガーネット厚膜には、磁場を加えて構成した光
アイソレータ素子を製作する場合の偏光軸を合わせる方
法において、前記検光子側からレーザからのレー ザ光を通し、前記偏光子側から出てきた常光の遮断率が
最小となるように、前記偏光子及び前記検光子を互いに
回転させて偏光軸を合わせることを特徴とする光アイソ
レータ素子の偏光軸合わせ方法。
[Claims] 1. A polarizer whose polarization axis has a specific angle with respect to one specific side, and an analyzer whose polarization axis has an angle of 45 degrees with respect to the polarization axis of the polarizer; A method for aligning the polarization axis when manufacturing an optical isolator element in which a garnet thick film with a Faraday rotation angle of approximately 45 degrees is sandwiched between these polarizers and analyzers, and a magnetic field is applied to the garnet thick film. In this step, the polarizer and the analyzer are rotated with respect to each other to align the polarization axes so that the laser beam from the laser passes through the analyzer side and the blocking rate of ordinary light coming out from the polarizer side is minimized. A method for aligning polarization axes of an optical isolator element, characterized by:
JP4448788A 1988-02-29 1988-02-29 Aligning method for axis of polarization of optical isolator element Pending JPH01219816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4448788A JPH01219816A (en) 1988-02-29 1988-02-29 Aligning method for axis of polarization of optical isolator element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4448788A JPH01219816A (en) 1988-02-29 1988-02-29 Aligning method for axis of polarization of optical isolator element

Publications (1)

Publication Number Publication Date
JPH01219816A true JPH01219816A (en) 1989-09-01

Family

ID=12692902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4448788A Pending JPH01219816A (en) 1988-02-29 1988-02-29 Aligning method for axis of polarization of optical isolator element

Country Status (1)

Country Link
JP (1) JPH01219816A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691845A (en) * 1994-08-12 1997-11-25 Tdk Corporation Optical isolator, optical isolator with fiber and method for making the same
CN103969842A (en) * 2014-05-22 2014-08-06 北京大学 1.5-micron waveband polarization pump atomic light filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691845A (en) * 1994-08-12 1997-11-25 Tdk Corporation Optical isolator, optical isolator with fiber and method for making the same
CN103969842A (en) * 2014-05-22 2014-08-06 北京大学 1.5-micron waveband polarization pump atomic light filter

Similar Documents

Publication Publication Date Title
US4974944A (en) Optical nonreciprocal device
JPH0746177B2 (en) Optical isolator
JPS6317426A (en) Optical isolator
JPH02123321A (en) Manufacture of optical isolator and polarizing element array used for said manufacture and optical module obtained by forming as one body optical isolator obtained by said manufacture
US4973120A (en) Optical isolator with resonant cavity having gyrotropic material
CN214097865U (en) Polarization-independent optical isolator core, optical fiber isolator and semiconductor laser assembly
JPH01219816A (en) Aligning method for axis of polarization of optical isolator element
JP2003287713A (en) Optical isolator
JPH0477713A (en) Optical isolator independent of polarization
JPS6257012B2 (en)
JPH0473712A (en) Variable direction optical isolator
JPH0391715A (en) Optical isolator
JPH11223797A (en) Optical isolator and manufacture of the same
JPS6230607B2 (en)
JPH03171029A (en) Production of optical isolator
JP3260159B2 (en) Manufacturing method of magneto-optical component
JPH02188715A (en) Optical isolator
JPS5828716A (en) Optical isolator
JP3554140B2 (en) Optical isolator element and method of manufacturing the same
JPS5977409A (en) Optical isolator
JPH07120704A (en) Optical isolator and its production
JPH0255313A (en) Optical isolator
JPH0749468A (en) Optical isolator
JPH02160213A (en) Plane of polarization rotating device
JPS60227222A (en) Optical isolator