JPH02160213A - Plane of polarization rotating device - Google Patents

Plane of polarization rotating device

Info

Publication number
JPH02160213A
JPH02160213A JP31391388A JP31391388A JPH02160213A JP H02160213 A JPH02160213 A JP H02160213A JP 31391388 A JP31391388 A JP 31391388A JP 31391388 A JP31391388 A JP 31391388A JP H02160213 A JPH02160213 A JP H02160213A
Authority
JP
Japan
Prior art keywords
faraday rotator
optical axis
polarization
polarization plane
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31391388A
Other languages
Japanese (ja)
Inventor
Hideki Isono
秀樹 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP31391388A priority Critical patent/JPH02160213A/en
Publication of JPH02160213A publication Critical patent/JPH02160213A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To rotate a plane of polarization stably at an optional angle by holding a Faraday rotator whose one surface crossing an optical axis is formed slantingly to the other surface rotatably around an axis which is not aligned with the optical axis in a specific magnetic field. CONSTITUTION:The Faraday rotator 4 is so constituted that one surface crossing the optical axis 1 is formed slantingly to the other surface 3, and held rotatably around the axis 5 which is not aligned with the optical axis 1 in the specific magnetic field. The angle theta of rotation of the plane of polarization is expressed by an equation I, where (t) is the thickness of the part of the Faraday rotator 4 that the optical axis 1 penetrates and H is an applied magnetic field in the direction of the optical axis. The Faraday rotator 4 is placed in the specific magnetic field, so the H in the equation I is constant and the angle of rotation of the plane of polarization per unit thickness of the Faraday rotator at the optical axis part is constant. Then, the Faraday rotator 4 is rotated around the axis 5 to cause the thickness of the Faraday rotator 4 at the optical axis part to vary, so the angle of rotation of the plane of polarization can be set optionally corresponding to the variation in the thickness.

Description

【発明の詳細な説明】 概要 光の偏波面(偏光面)を回転する偏波面回転装置に関し
、 任意角度の偏波面回転を安定に行うことができる偏波面
回転装置の提供を目的とし、 光軸と交わる一方の面が他方の面に対して斜めに形成さ
れたファラデー回転子を、所定磁界中で光軸とは一致し
ない軸を中心として回動可能に保持して構成する。
[Detailed Description of the Invention] Overview Regarding a polarization plane rotation device that rotates the polarization plane of light, the present invention aims to provide a polarization plane rotation device that can stably rotate the polarization plane at an arbitrary angle. A Faraday rotator, in which one surface that intersects with the other surface is formed obliquely with respect to the other surface, is held rotatably about an axis that does not coincide with the optical axis in a predetermined magnetic field.

産業上の利用分野 本発明は光の偏波面を回転する偏波面回転装置に関する
INDUSTRIAL APPLICATION FIELD The present invention relates to a polarization plane rotation device for rotating the polarization plane of light.

光通信システム等のシステムを構築する場合、例えば信
号光についてその偏波面を回転する要求が生じることが
ある。具体的には、以下に示すような場合に光の偏波面
を回転する必要が生じる。
When constructing a system such as an optical communication system, there may be a request to rotate the plane of polarization of signal light, for example. Specifically, it is necessary to rotate the plane of polarization of light in the following cases.

(ア) カプラ膜、光合分波膜等の光学膜において偏波
依存性の大きいものを光回路に挿入する場合、所要の膜
特性を得るために、膜への入射光の偏波面を任意角度で
回転調整する必要がある。
(a) When inserting an optical film such as a coupler film or an optical multiplexing/demultiplexing film that has strong polarization dependence into an optical circuit, the plane of polarization of the light incident on the film must be set at an arbitrary angle in order to obtain the desired film characteristics. It is necessary to adjust the rotation.

(イ) コヒーレント光伝送システムにおいて受信側の
光学系を構成する場合に、受信光と局発光との干渉効率
の低下を防止するために、受信光又は局発光の偏波面を
任意角度で回転調整する必要がある。
(b) When configuring the receiving optical system in a coherent optical transmission system, the plane of polarization of the received light or local light can be rotated and adjusted at any angle to prevent a decrease in the interference efficiency between the received light and the local light. There is a need to.

(つ) 光アイソレータを構成する場合に、正確に45
°の偏波面回転を行う必要があり、安定した偏波面の回
転が要求される。
(1) When configuring an optical isolator, exactly 45
It is necessary to rotate the plane of polarization by 100°, and stable rotation of the plane of polarization is required.

従来の技術 光の偏波面を回転する手法としては、従来、YIG等の
ファラデー回転子に所定磁界を印加し、その旋光特性に
より光の偏波面を回転するようにしたものがある。また
、シングルモード光ファイバにおける伝搬モードHEz
−、HF、117間のモード結合を利用してファイバに
捩り、曲げ、その他の外圧を加えることによって、光の
偏波面を回転するようにしたものがある。
BACKGROUND ART Conventionally, as a method for rotating the plane of polarization of light, there is a method in which a predetermined magnetic field is applied to a Faraday rotator such as YIG, and the plane of polarization of light is rotated by the optical rotation characteristics of the Faraday rotator. In addition, the propagation mode HEz in single mode optical fiber
There is a method in which the plane of polarization of light is rotated by twisting, bending, or applying other external pressure to the fiber by utilizing mode coupling between -, HF, and 117.

発明が解決しようとする課題 ファラデー回転子を用いる従来の手法にあっては、ファ
ラデー回転子に飽和磁界を印加しておくことによって比
較的安定した偏波面回転角を得ることができるが、偏波
面回転角を任意に調整し得ないという問題があった。フ
ァラデー回転子における偏波面回転角が印加磁界の強さ
及び光軸方向のファラデー回転子の厚みに依存するとい
う事実に2みれば、印加磁界を変化させることにより、
偏波面回転角の調整を行うことが容易に提案され得るが
、この方法により偏波面回転角の調整を行うと、磁気ヒ
ステリシスの存在等により偏波面回転角の再現性が良好
でなく、安定した偏波面回転を行うことが困難である。
Problems to be Solved by the Invention In the conventional method using a Faraday rotator, a relatively stable polarization plane rotation angle can be obtained by applying a saturation magnetic field to the Faraday rotator. There was a problem in that the rotation angle could not be adjusted arbitrarily. Considering the fact that the polarization plane rotation angle in a Faraday rotator depends on the strength of the applied magnetic field and the thickness of the Faraday rotator in the optical axis direction, by changing the applied magnetic field,
Adjusting the rotation angle of the polarization plane can be easily proposed, but when adjusting the rotation angle of the polarization plane using this method, the reproducibility of the rotation angle of the polarization plane is not good due to the presence of magnetic hysteresis, and it is difficult to stabilize the rotation angle of the polarization plane. It is difficult to perform polarization plane rotation.

一方、シングルモード光ファイバを利用する従来手法に
あっては、偏波面回転角を任意に調整することが困難で
あるとともに、偏波面回転角が安定しないという問題が
あった。また、シングルモード光ファイバにあけるモー
ド結合の結果として、偏波面が回転するだけでなく直線
偏光の楕円偏光化も生じるから、シングルモード光ファ
イバを用いる手法は消光比を問題とするシステムには不
適である。
On the other hand, the conventional method using a single mode optical fiber has the problem that it is difficult to arbitrarily adjust the polarization plane rotation angle, and the polarization plane rotation angle is not stable. Furthermore, as a result of mode coupling in a single-mode optical fiber, not only does the plane of polarization rotate, but also the linearly polarized light becomes elliptically polarized, so methods using single-mode optical fibers are not suitable for systems where extinction ratio is an issue. It is.

本発明はこのような事情に鑑みて創作されたもので、任
意角度の偏波面回転を安定に行うことができる偏波面回
転装置の提供を目的としている。
The present invention was created in view of the above circumstances, and an object of the present invention is to provide a polarization plane rotation device that can stably rotate the polarization plane at an arbitrary angle.

課題を解決するための手段 第1図は本発明の基本構成を示す原理図である。Means to solve problems FIG. 1 is a principle diagram showing the basic configuration of the present invention.

4はファラデー回転子であり、光軸1と交わる一方の面
2が他方の面3に対して斜めに形成されている。
4 is a Faraday rotator, and one surface 2 intersecting the optical axis 1 is formed obliquely with respect to the other surface 3.

そして、このファラデー回転子4は、所定磁界中で光軸
1とは一致しない軸5を中心として回動可能に保持され
ている。
The Faraday rotator 4 is held rotatably about an axis 5 that does not coincide with the optical axis 1 in a predetermined magnetic field.

なお、第1図においては、ファラデー回転子4の光@1
と交わる面3が光軸1と垂直になるように図示されてい
るが、本発明はこの構成に限定されず、例えば反射帰還
光の発生を防止するために、ファラデー回転子4の光軸
1と交わる面2.3の双方が光軸1と垂直にならないよ
うにしても良い。
In addition, in FIG. 1, the light of Faraday rotator 4 @1
Although the plane 3 of the Faraday rotator 4 is shown to be perpendicular to the optical axis 1, the present invention is not limited to this configuration. Both surfaces 2 and 3 intersecting with the optical axis 1 may not be perpendicular to the optical axis 1.

また、同図では光軸1と軸5とが平行に図示されている
が、必ずしも平行であることは要求されない。
Further, although the optical axis 1 and the axis 5 are shown to be parallel in the figure, they are not necessarily required to be parallel.

作   用 ファラデー回転子4にふける光軸1が貫通する部分の厚
みをt1光軸方向の印加磁界をHとすると、偏波面回転
角(旋光角)θは、 θ=F−t−H (Fはベルデ定数と呼ばれる材料固有の定数)で表され
る。本発明の構成においては、ファラデー回転子4は所
定磁界中におかれているので、上式におけるHは一定で
あり、したがって、光軸部分におけるファラデー回転子
の単位厚みあたりの偏波面回転角は一定である。そして
、軸5を中心としてファラデー回転子4を回動させるこ
とにより、光軸部分におけるファラデー回転子4の厚み
が変化するから、この厚みの変化に応じて任意の偏波面
回転角を設定することができる。本発明では、ファラデ
ー回転子4を所定磁界中においているので、磁気ヒステ
リシス等の影響を受けずに偏波面回転角の再現性が良好
であり、安定した偏波面回転角を得ることができる。
Function: If the thickness of the part of the Faraday rotator 4 penetrated by the optical axis 1 is t1, and the applied magnetic field in the optical axis direction is H, then the polarization plane rotation angle (optical rotation angle) θ is as follows: θ=F-t-H (F is expressed by a material-specific constant called the Verdet constant. In the configuration of the present invention, since the Faraday rotator 4 is placed in a predetermined magnetic field, H in the above equation is constant. Therefore, the polarization plane rotation angle per unit thickness of the Faraday rotator in the optical axis portion is constant. By rotating the Faraday rotator 4 about the axis 5, the thickness of the Faraday rotator 4 at the optical axis portion changes, so an arbitrary polarization plane rotation angle can be set according to this change in thickness. Can be done. In the present invention, since the Faraday rotator 4 is placed in a predetermined magnetic field, the reproducibility of the polarization plane rotation angle is good without being affected by magnetic hysteresis, etc., and a stable polarization plane rotation angle can be obtained.

いま、軸5を中心としてファラデー回転子4を回動させ
た場合(第2図)において、光軸部分の厚みが最も小さ
くなったときと最も大きくなったときとの厚みの差をΔ
tとすると、この厚みの差Δtはファラデー回転子4を
180°回動させることによって生じるから、ファラデ
ー回転子4を1°回動させたときの光軸部分の厚みの変
化はΔt/180で表される。したがって、ファラデー
回転子4の単位厚みあたりの偏波面回転角をaとおくと
、ファラデー回転子4を1°回動させることによって、 φ=Δt−a/180    ・・・(1)で与えられ
る偏波面回転角φを得ることができる。
Now, when the Faraday rotator 4 is rotated around the axis 5 (Fig. 2), the difference in the thickness of the optical axis portion between the time when it is the smallest and the time when it is the largest is Δ.
Assuming t, this thickness difference Δt is caused by rotating the Faraday rotator 4 by 180 degrees, so the change in thickness of the optical axis portion when the Faraday rotator 4 is rotated by 1 degree is Δt/180. expressed. Therefore, if the polarization plane rotation angle per unit thickness of the Faraday rotator 4 is set as a, then by rotating the Faraday rotator 4 by 1 degree, φ=Δt-a/180...(1) is given. The polarization plane rotation angle φ can be obtained.

このように本発明によれば、Δtを任意に設定すること
により、つまり、ファラデー回転子4における光軸lと
交わる面2.3がなす傾斜角を任意に設定することによ
り、必要に応じた精度で偏波面回転調整を行うことので
きる偏波面回転装置が提供される。
As described above, according to the present invention, by arbitrarily setting Δt, that is, by arbitrarily setting the inclination angle formed by the plane 2.3 that intersects the optical axis l in the Faraday rotator 4, A polarization plane rotation device that can perform polarization plane rotation adjustment with precision is provided.

実  施  例 以下本発明の実施例を図面に基づいて説明する。Example Embodiments of the present invention will be described below based on the drawings.

第3図は本発明の実施例を示す偏波面回転装置の斜視図
、第4図は第3図におけるrV−rV線に沿った断面図
である。基板10にはスリット状の開口10aが形成さ
れており、円盤状のファラデー回転子12はその外周部
が基板の開口tOaから外側に出るように軸受部材13
により基板10の内側に回動自在に保持されている。1
4は半割円筒形状の永久磁石であり、この永久磁石14
はファラデー回転子12における光軸OAが貫通する部
分に所定の磁界を印加するために、基板10のファラデ
ー回転子12が保持されている側に固着されている。
FIG. 3 is a perspective view of a polarization plane rotation device showing an embodiment of the present invention, and FIG. 4 is a sectional view taken along the rV-rV line in FIG. 3. A slit-shaped opening 10a is formed in the substrate 10, and a bearing member 13 is attached to the disk-shaped Faraday rotator 12 so that its outer peripheral portion comes out from the opening tOa of the substrate.
It is rotatably held inside the substrate 10 by. 1
4 is a permanent magnet having a half-cylindrical shape, and this permanent magnet 14
is fixed to the side of the substrate 10 where the Faraday rotator 12 is held in order to apply a predetermined magnetic field to the portion of the Faraday rotator 12 through which the optical axis OA passes.

第5図はファラデー回転子12の製造工程を示す図であ
る。先ず、同図(a)に示すように、透明基板14上に
例えばBi置換YIGをエピタキシャル結晶成長させる
ことによって適当厚みの磁気光学結晶16を形成する。
FIG. 5 is a diagram showing the manufacturing process of the Faraday rotator 12. First, as shown in FIG. 2A, a magneto-optic crystal 16 of an appropriate thickness is formed on a transparent substrate 14 by epitaxial crystal growth of, for example, Bi-substituted YIG.

次に、同図(b)に示すように、透明基板14に対して
所定角度で傾斜する面Cまで磁気光学結晶16を研潜す
る。そして、同図(C)に示すように、透明基板14の
磁気光学結晶16が形成されている側の面及び形成され
ていない側の面に軸部材18を固着する。
Next, as shown in FIG. 4B, the magneto-optic crystal 16 is polished to a plane C that is inclined at a predetermined angle with respect to the transparent substrate 14. Then, as shown in FIG. 2C, the shaft member 18 is fixed to the surface of the transparent substrate 14 on which the magneto-optic crystal 16 is formed and the surface on which the magneto-optic crystal 16 is not formed.

本実施例によれば、ファラデー回転子12を回動させる
ことにより、光軸OAが貫通する部分において偏波面の
回転に寄与する磁気光学結晶16の厚みを連続的に変化
させることができるので、ファラデー回転子12の回動
角に応じて任意の偏波面回転角を設定することができる
。また、ファラデー回転子12における光軸OAが貫通
する部分には永久磁石14により常に飽和磁界またJま
一定磁界が印加されるので、ファラデー回転子12の回
動方向等によらず再現性良く偏波面回転角を設定するこ
とができる。
According to this embodiment, by rotating the Faraday rotator 12, it is possible to continuously change the thickness of the magneto-optic crystal 16 that contributes to rotation of the plane of polarization in the portion where the optical axis OA passes through. An arbitrary polarization plane rotation angle can be set according to the rotation angle of the Faraday rotator 12. In addition, since a saturation magnetic field or a constant magnetic field J is always applied by the permanent magnet 14 to the portion of the Faraday rotator 12 through which the optical axis OA passes, the polarization is reproducibly reproducible regardless of the direction of rotation of the Faraday rotator 12. Wavefront rotation angle can be set.

第6図には、第3図及び第4図に示される偏波面回転装
置におけるファラデー回転子12の送信光源側及び受信
側にそれぞれテーパ状の複屈折性プリズム20.22を
配置して構成される光アイソレータの破断側面図が示さ
れている。この光アイソレータは、ルチル(T i 0
2単結晶)等からなる複屈折性プリズム20.22を光
が透過するときに常光と異常光とで屈折角度が異なるこ
とを利用したものである。この光アイソレータの動作を
簡単に説明する。図示しない光源からの光を複屈折性プ
リズム20に順方向(第6図における左から右に向かう
方向)に入射すると、偏波方向によって屈折率が異なる
ので、入射光は常光及び異常光に別れて別方向に屈折し
てファラデー回転子12に入射する。ファラデー回転子
12における偏波面回転角は45°に設定されており、
ファラデー回転子12を透過した上記常光及び異常光は
、偏波面を45°回転させられて複屈折性プリズム22
に入射される。複屈折性プリズム22の光学軸は複屈折
性プリズム20の光学軸に対して光軸方向の回りに45
°回転した方向に設定されているので、上記常光及び異
常光は複屈折性プリズム22の内部での常光及び異常光
にそれぞれ対応する。このため、複屈折性プリズム22
を透過した常光及び異常光は互いに平行となって出射さ
れ、したがって、これらの平行光を図示しないレンズに
より集束させて光ファイバ(光伝送路)に導入すること
ができる。一方、逆方向(第6図における右から左に向
いた方向)の光は、複屈折性プリズム22に入射した後
、常光と異常光に別れて別方向に屈折し、ファラデー回
転子12に入射して偏波面が45°回転させられて出射
する。偏波面が45°回転した複屈折性プリズム22の
常光は、複屈折性プリズム20の光学軸に対し偏波面が
90°回転した偏光となり、したがって、複屈折性プリ
ズム20において異常光としての屈折を受ける。偏波面
が45°回転した複屈折性プリズム22の異常光は同様
にして複屈折性プリズム20において常光としての屈折
を受ける。このため、複屈折性プリズム20を逆方向に
透過した後の常光及び異常光の伝搬方向は異なり、順方
向に低損失なレンズ配置では逆方向の光は光源に戻らな
い。
FIG. 6 shows a configuration in which tapered birefringent prisms 20 and 22 are arranged on the transmitting light source side and the receiving side of the Faraday rotator 12 in the polarization plane rotation device shown in FIGS. 3 and 4, respectively. A cutaway side view of an optical isolator is shown. This optical isolator is made of rutile (T i 0
This method takes advantage of the fact that when light passes through a birefringent prism 20, 22 made of a birefringent prism 20, 22 made of a birefringent prism (20, 22, etc.), ordinary light and extraordinary light have different refraction angles. The operation of this optical isolator will be briefly explained. When light from a light source (not shown) enters the birefringent prism 20 in the forward direction (from left to right in FIG. 6), the refractive index differs depending on the polarization direction, so the incident light is divided into ordinary light and extraordinary light. The beam is refracted in a different direction and enters the Faraday rotator 12. The polarization plane rotation angle in the Faraday rotator 12 is set to 45°,
The ordinary light and extraordinary light transmitted through the Faraday rotator 12 have their polarization planes rotated by 45 degrees and pass through the birefringent prism 22.
is incident on the The optical axis of the birefringent prism 22 is 45 degrees around the optical axis direction with respect to the optical axis of the birefringent prism 20.
Since the directions are rotated by .degree., the ordinary light and the extraordinary light correspond to the ordinary light and the extraordinary light inside the birefringent prism 22, respectively. For this reason, the birefringent prism 22
The ordinary light and extraordinary light that have passed through the optical fiber are emitted in parallel with each other, and therefore, these parallel lights can be focused by a lens (not shown) and introduced into an optical fiber (optical transmission path). On the other hand, light in the opposite direction (direction from right to left in FIG. 6) enters the birefringent prism 22, is divided into ordinary light and extraordinary light, refracted in different directions, and enters the Faraday rotator 12. The plane of polarization is rotated by 45 degrees and the beam is emitted. The ordinary light of the birefringent prism 22 whose polarization plane has been rotated by 45° becomes polarized light whose polarization plane has been rotated by 90° with respect to the optical axis of the birefringent prism 20, and therefore is refracted as extraordinary light by the birefringent prism 20. receive. The extraordinary light of the birefringent prism 22 whose polarization plane has been rotated by 45 degrees is similarly refracted as ordinary light by the birefringent prism 20. For this reason, the propagation directions of the ordinary light and the extraordinary light after passing through the birefringent prism 20 in the opposite direction are different, and in a lens arrangement with low loss in the forward direction, the light in the reverse direction does not return to the light source.

このように動作する光アイソレータにおいて、ファラデ
ー回転子の偏波面回転角と複屈折性結晶の光学軸同士の
傾斜角(45°)とがほぼ完全に一致していないと、逆
方向に伝搬する反射帰還光の除去性能が劣化する。この
ため従来は、磁気光学結晶を極めて高精度に研磨するこ
とによってファラデー回転子における偏波面回転角を正
確に45°に設定していた。しかしながら、磁気光学結
晶としてベルデ定数が大きぐ薄型化が可能な例えばBi
置換型YIGを用いている場合には、45゜の偏波面回
転角を得るための厚みが約200μmであることから、
偏波面回転角の正確な設定は極めて困難である。これに
対し、本実施例によれば、ファラデー回転子12におけ
る偏波面回転角を任意に設定することができるので、光
アイソレータを組み立てた後に容易に偏波面回転角の調
整を行って、反射帰還光の除去性能が良好な光アイソレ
ータを提供することができる。例えば、前記式%式%(
) ファラデー回転子12を1°回動させることにより偏波
面回転角を0.05°変化させることができ、高精度な
偏波面回転角の調整が可能になる。
In an optical isolator that operates in this way, if the polarization plane rotation angle of the Faraday rotator and the inclination angle (45°) between the optical axes of the birefringent crystal do not almost completely match, reflections propagating in the opposite direction will occur. Feedback light removal performance deteriorates. For this reason, conventionally, the polarization plane rotation angle in the Faraday rotator was set to exactly 45° by polishing the magneto-optic crystal with extremely high precision. However, as a magneto-optical crystal, for example, Bi has a large Verdet constant and can be made thinner.
When using substitution type YIG, since the thickness to obtain a polarization plane rotation angle of 45° is approximately 200 μm,
Accurately setting the polarization plane rotation angle is extremely difficult. On the other hand, according to this embodiment, since the rotation angle of the polarization plane in the Faraday rotator 12 can be set arbitrarily, the rotation angle of the polarization plane can be easily adjusted after assembling the optical isolator, and the reflection feedback An optical isolator with good light removal performance can be provided. For example, the formula % formula % (
) By rotating the Faraday rotator 12 by 1°, the polarization plane rotation angle can be changed by 0.05°, making it possible to adjust the polarization plane rotation angle with high precision.

東7図は第3図及び第4図に示される偏波面回転装置の
使用例を示す図である。LD(半導体レーザ)24から
の光を、分岐膜26aを有する分岐プリズム26により
分岐するときに、分岐膜26aへの入射面と入射光線の
偏波面との相対的な位置関係が直接的に分岐比に影響を
及ぼすから、LD24と分岐プリズム26との間に偏波
面回転装置28を介装したものである。このような構成
によれば、偏波面回転装置28により分岐膜26aへの
入射光線の偏波面を任意に回転調整することができるの
で、所要の分岐比でLD24からの光を分岐することが
できる。
FIG. 7 is a diagram showing an example of use of the polarization plane rotation device shown in FIGS. 3 and 4. When the light from the LD (semiconductor laser) 24 is branched by the branching prism 26 having the branching film 26a, the relative positional relationship between the plane of incidence on the branching film 26a and the polarization plane of the incident light is directly branched. Since it affects the ratio, a polarization plane rotation device 28 is interposed between the LD 24 and the branching prism 26. According to such a configuration, the plane of polarization of the light beam incident on the branching film 26a can be arbitrarily rotated and adjusted by the polarization plane rotation device 28, so that the light from the LD 24 can be branched at a desired branching ratio. .

第8図は偏波面回転装置をコヒーレント光伝送システム
における受信部の光学系に適用した場合を示している。
FIG. 8 shows a case where the polarization plane rotation device is applied to an optical system of a receiving section in a coherent optical transmission system.

光伝送路30により伝送されてきた信号光を光カプラ3
2により局発光源34からの局発光と合波して受光器3
6に入射させるに際して、信号光の偏波状態を偏波状態
検出器38により検出し、信号光の偏波面と局発光の偏
波面とが一致するように偏波面回転装置40をフィード
バック制御するものである。受光器36の自乗検波特性
によって生じる例えばヘテロゲイン検波信号の振幅は、
信号光の偏波面と局発光の偏波面が一致しているときに
最大となり、信号光の偏波面と局発光の偏波面が直交し
ているときに最小(零)になるから、信号光の偏波面と
局発光の偏波面とが一致するように制御することによっ
て常に最大振幅の検波信号を得ることができ、受信感度
の劣化を防止することができる。なお、この実施例では
、偏波状態検出器38からの信号に応じて偏波面回転装
置40を駆動する必要があるので、第3図及び第4図に
示すように手動によりファラデー回転子を回転させるの
ではなく、パルスモータ等を用いて電気信号によりファ
ラデー回転子を回転させる必要がある。
The optical coupler 3 transmits the signal light transmitted through the optical transmission line 30.
2, it is combined with the local light from the local light source 34 and sent to the light receiver 3.
6, the polarization state of the signal light is detected by a polarization state detector 38, and the polarization plane rotation device 40 is feedback-controlled so that the polarization plane of the signal light and the polarization plane of the local light coincide. It is. For example, the amplitude of the hetero gain detection signal generated by the square law detection characteristic of the photoreceiver 36 is:
It is maximum when the polarization plane of the signal light and the polarization plane of the local light match, and it is minimum (zero) when the polarization plane of the signal light and the polarization plane of the local light are orthogonal. By controlling the polarization plane so that the polarization plane of the local light coincides with the polarization plane of the local light, a detected signal with the maximum amplitude can always be obtained, and deterioration of receiving sensitivity can be prevented. In this embodiment, since it is necessary to drive the polarization plane rotation device 40 according to the signal from the polarization state detector 38, the Faraday rotator is manually rotated as shown in FIGS. 3 and 4. Instead, it is necessary to rotate the Faraday rotator using an electric signal using a pulse motor or the like.

第9図は本発明の他の実施例を示す偏波面回転装置の要
部説明図である。この実施例では、独立に回動可能な軸
部材18に2つの透明基板14をそれぞれ固定し、それ
ぞれの透明基板に形成される磁気光学結晶42.44の
傾斜角が異なるように研磨を行っている。例えば、磁気
光学結晶42におけるΔtを400μmとし、磁気光学
結晶44におけるΔtを40μmとし、aの値を0.2
25(deg/μm)とすれば、第9図における左側の
ファラデー回転子を1°回動させることにより0.5°
の偏波面回転角を得ることができ、同図中右側のファラ
デー回転子を同じく1°回動させることにより0.05
°の偏波面回転角を得ることができる。このようにΔt
が異なる複数のファラデー回転子を光軸OA上に配列す
ることにより、段階的な粗調整、微調整を行うことがで
きる。
FIG. 9 is an explanatory diagram of the main parts of a polarization plane rotation device showing another embodiment of the present invention. In this embodiment, two transparent substrates 14 are each fixed to an independently rotatable shaft member 18, and the magneto-optic crystals 42 and 44 formed on each transparent substrate are polished so that their inclination angles are different. There is. For example, Δt in the magneto-optic crystal 42 is 400 μm, Δt in the magneto-optic crystal 44 is 40 μm, and the value of a is 0.2.
25 (deg/μm), by rotating the Faraday rotator on the left side in Fig. 9 by 1°, the
A polarization plane rotation angle of 0.05 can be obtained by rotating the Faraday rotator on the right side of the figure by 1 degree.
It is possible to obtain a polarization plane rotation angle of °. In this way, Δt
By arranging a plurality of Faraday rotators with different values on the optical axis OA, coarse adjustment and fine adjustment can be performed in stages.

発明の詳細 な説明したように、本発明の偏波面回転装置により任意
角度の偏波面回転を安定に行うことが可能になるという
効果を奏する。
As described in detail, the polarization plane rotation device of the present invention has the effect of stably rotating the polarization plane at any angle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は本発明の作用説明図、 第3図は本発明の実施例を示す偏波面回転装置の斜視図
、 第4図は第3図におけるIV−IV線に沿った断面図、 第5図は本発明の実施例を示すファラデー回転子の製造
工程図、 第6図は本発明の実施例を示す光アイソレータの破断側
面図、 第7図は本発明の実施例を示す偏波面回転装置の使用例
説明図、 第8図は本発明の実施例を示す偏波面回転装置の他の使
用例説明図、 第9図は本発明の他の実施例を示す偏波面回転装置の要
部説明図である。 4.12・・・ファラデー回転子、 16.42.44・・・磁気光学結晶、14・・・永久
磁石、 28.40・・・偏波面回転装置。
FIG. 1 is a diagram of the principle of the present invention, FIG. 2 is an explanatory diagram of the operation of the present invention, FIG. 3 is a perspective view of a polarization plane rotation device showing an embodiment of the present invention, and FIG. 5 is a manufacturing process diagram of a Faraday rotator showing an embodiment of the present invention; FIG. 6 is a cutaway side view of an optical isolator showing an embodiment of the present invention; FIG. 8 is an explanatory diagram of another usage example of the polarization plane rotation device showing an embodiment of the invention. FIG. 9 is another embodiment of the invention. FIG. 2 is an explanatory diagram of main parts of a polarization plane rotation device. 4.12... Faraday rotator, 16.42.44... Magneto-optic crystal, 14... Permanent magnet, 28.40... Polarization plane rotation device.

Claims (1)

【特許請求の範囲】[Claims] 光軸(1)と交わる一方の面(2)が他方の面(3)に
対して斜めに形成されたファラデー回転子(4)を、所
定磁界中で光軸(1)とは一致しない軸(5)を中心と
して回動可能に保持して構成されることを特徴とする偏
波面回転装置。
A Faraday rotator (4) in which one surface (2) intersecting the optical axis (1) is formed obliquely to the other surface (3) is rotated in a predetermined magnetic field with an axis that does not coincide with the optical axis (1). (5) A polarization plane rotation device configured to be rotatably held around a center.
JP31391388A 1988-12-14 1988-12-14 Plane of polarization rotating device Pending JPH02160213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31391388A JPH02160213A (en) 1988-12-14 1988-12-14 Plane of polarization rotating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31391388A JPH02160213A (en) 1988-12-14 1988-12-14 Plane of polarization rotating device

Publications (1)

Publication Number Publication Date
JPH02160213A true JPH02160213A (en) 1990-06-20

Family

ID=18047029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31391388A Pending JPH02160213A (en) 1988-12-14 1988-12-14 Plane of polarization rotating device

Country Status (1)

Country Link
JP (1) JPH02160213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240620A (en) * 1989-03-14 1990-09-25 Matsushita Electric Ind Co Ltd Optical isolator
US5712728A (en) * 1994-10-06 1998-01-27 Chen; Peter Methods and devices incorporating wideband faraday rotation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240620A (en) * 1989-03-14 1990-09-25 Matsushita Electric Ind Co Ltd Optical isolator
US5712728A (en) * 1994-10-06 1998-01-27 Chen; Peter Methods and devices incorporating wideband faraday rotation

Similar Documents

Publication Publication Date Title
US5204771A (en) Optical circulator
US4712880A (en) Polarization rotation compensator and optical isolator using the same
JP2815509B2 (en) Optical attenuator
US20020005987A1 (en) Polarization beam splitter or combiner
CN107908022B (en) Optical fiber isolator and method of use thereof
JPH01134424A (en) Optical system having thin film polarization rotor and manufacture thereof
US5377040A (en) Polarization independent optical device
US6278547B1 (en) Polarization insensitive faraday attenuator
US6246807B1 (en) Optical circulator
US6407861B1 (en) Adjustable optical circulator
JPH02160213A (en) Plane of polarization rotating device
JP3161885B2 (en) Optical isolator
JPH0246419A (en) Optical isolator
JPS6257012B2 (en)
JP2647488B2 (en) Polarization coupler
JPH02188715A (en) Optical isolator
JP2553358B2 (en) Optical isolator
JPH0454929B2 (en)
JPS5993417A (en) Optical directional coupler
JP2977927B2 (en) Optical circuit element
JPS63139318A (en) Ld module optical system
JP2967257B2 (en) Optical isolator
JP2677365B2 (en) Polarization variable device
JPH0743696Y2 (en) Optical isolator
JPS62192718A (en) Light isolator