JPS5993417A - Optical directional coupler - Google Patents

Optical directional coupler

Info

Publication number
JPS5993417A
JPS5993417A JP20272082A JP20272082A JPS5993417A JP S5993417 A JPS5993417 A JP S5993417A JP 20272082 A JP20272082 A JP 20272082A JP 20272082 A JP20272082 A JP 20272082A JP S5993417 A JPS5993417 A JP S5993417A
Authority
JP
Japan
Prior art keywords
polarization
light
optical fiber
core
directional coupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20272082A
Other languages
Japanese (ja)
Inventor
Kazumasa Takada
和正 高田
Yutaka Sasaki
豊 佐々木
Juichi Noda
野田 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20272082A priority Critical patent/JPS5993417A/en
Publication of JPS5993417A publication Critical patent/JPS5993417A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • G02B6/2713Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations
    • G02B6/272Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations comprising polarisation means for beam splitting and combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2726Optical coupling means with polarisation selective and adjusting means in or on light guides, e.g. polarisation means assembled in a light guide
    • G02B6/274Optical coupling means with polarisation selective and adjusting means in or on light guides, e.g. polarisation means assembled in a light guide based on light guide birefringence, e.g. due to coupling between light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2766Manipulating the plane of polarisation from one input polarisation to another output polarisation, e.g. polarisation rotators, linear to circular polarisation converters

Abstract

PURPOSE:To maintain the polarization characteristic and distribution ratio of output light of a 3dB coupler against the disturbance such as temperature fluctuation, torsion, and bending by using polarization holding optical fibers for input and output. CONSTITUTION:Polarization holding optical fibers 9-11 are birefringent index optical fibers which have strain generation parts around a core and hold linear polarization in directions (X, long axis) connecting the core and the strain generation part and in orthogonal direction (Y, short axis). The linear polarization direction of the fiber 9 is in parallel (P polarization) to the paper surface and the polarization of the whole system is made coincident with P by setting the X axes of the fibers 10 and 11 in parallel to the paper surface; arrows indicate polarization directions. Output light from the fiber 9 while diverging in a convergent rod lens 4 enters a half-reflecting mirror 5 as a plane wave, so that crosstalk between reflected light and transmitted light is hardly changed. The reflected light and transmitted light converge in convergent rod lenses 7 and 8 in a linear polarization state and propagate to the fibers 10 and 11 as X-axial polarized waves.

Description

【発明の詳細な説明】 本発明は、偏波と分配比が正確に保持された偏波保持集
束性ロッドレンズ8 CIB方向性結合器に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polarization-maintaining focusing rod lens 8 CIB directional coupler in which polarization and distribution ratio are accurately maintained.

従来の集束性ロッドレンズ8 dB方向性結自器の構成
を第1図に示す。第1図において、112+8は真円コ
ア光ファイバ、4は集束性ロッドレンズ、5は半反射鏡
、6+7+8は光ビームの広がりである。光ファイバ1
からの出力光ビームは、集束性ロッドレンズ4内を6の
ように広がり、半反射鏡6での反射光および透過光は、
それぞれ7゜8のように集束して光ファイバ2および8
へ入射する。この構成においては、使用している光ファ
イバが真円コア光ファイバであって同波を保持しないこ
とから、光ファイバへ加わる温度変動、ねじれ、外圧等
の外乱により、光ファイバ1への入射光が直線偏光でも
半反射鏡5への入射光は楕円偏光となるとともに、その
偏光状態は大きく変動する。このために、反射光および
透過光の偏光状態も外乱により大きく変動するという欠
点があつた。しかも現在の集束性ロッドレンズ8 dB
方向性結合器の構成では、光ファイバlがらの出射光は
半反射鏡5へ垂直入射しておらず、入射光の偏光状態に
応じて反射率および透過率が異なる状況にある。このた
め、外乱による入射光の偏光状態の変化に応じて、半反
射鏡5からの反射光および透過光のパワーも変動するの
で、反射光と透過光の分配比もこの変動の範囲内にしか
抑えられないという欠点があった。
The configuration of a conventional 8 dB directional condenser with a focusing rod lens is shown in FIG. In FIG. 1, 112+8 is a circular core optical fiber, 4 is a focusing rod lens, 5 is a semi-reflecting mirror, and 6+7+8 is a spread of the light beam. optical fiber 1
The output light beam from the beam spreads inside the convergent rod lens 4 as shown in 6, and the reflected light and transmitted light from the semi-reflective mirror 6 are as follows.
Optical fibers 2 and 8 are focused at 7°8 respectively.
incident on the In this configuration, since the optical fiber used is a true circular core optical fiber and does not maintain the same wave, the incident light to the optical fiber 1 may be affected by disturbances such as temperature fluctuations, twisting, and external pressure applied to the optical fiber. Even if the light is linearly polarized, the light incident on the semi-reflecting mirror 5 becomes elliptically polarized, and its polarization state varies greatly. For this reason, there was a drawback that the polarization states of reflected light and transmitted light also varied greatly due to disturbances. Moreover, the current focusing rod lens 8 dB
In the configuration of the directional coupler, the light emitted from the optical fiber 1 is not perpendicularly incident on the semi-reflecting mirror 5, and the reflectance and transmittance differ depending on the polarization state of the incident light. Therefore, as the power of the reflected light and transmitted light from the semi-reflecting mirror 5 changes according to the change in the polarization state of the incident light due to disturbance, the distribution ratio of reflected light and transmitted light can only be within the range of this fluctuation. The drawback was that it could not be controlled.

本発明はこれらの欠点を解決するため、入出力用の光フ
ァイバとして偏波保持光ファイバを使用して、8dB方
向方向性器全体の偏波と分配比を保持したものである。
In order to solve these drawbacks, the present invention uses a polarization-maintaining optical fiber as an input/output optical fiber to maintain the polarization and distribution ratio of the entire directional device by 8 dB.

以下図面により本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

第2図は本発明の一実施例を示し、9,10゜11は偏
波保持光ファイバであって、この実施例ではコアの周囲
に応力団与部を有する構造からなり、コアと応力付与部
を結ぶ方向(y軸、長軸)と、それと直交する方向(y
軸、短軸)の直線偏光が保持される複屈折率光ファイバ
である PANDA光ファイバ(Po1arizati
on −maintaining anclAbsor
ption  −reduc±ng 、  O,FC’
82  THOO6参照 )を使用している。
FIG. 2 shows an embodiment of the present invention, in which reference numerals 9, 10, and 11 denote polarization-maintaining optical fibers, which in this embodiment have a structure with a stress-applying part around the core. The direction connecting the parts (y-axis, long axis) and the direction perpendicular to it (y-axis, long axis)
PANDA optical fiber is a birefringent optical fiber that maintains linearly polarized light (axis, short axis).
on -maintaining anclAbsor
ption-reduc±ng, O,FC'
82 THOO6) is used.

第8m(FL> 、 (b) 、 (0) 、 (d)
Lt、それぞれ第2図のA、B、(1,Dにおける偏波
保持光ファイバの拡大断面を示している。第8図では入
射端のコア複屈折率の長軸と出射端のコア複屈折率の長
軸が平行に配されている。
8th m (FL>, (b), (0), (d)
Lt shows enlarged cross-sections of the polarization-maintaining optical fiber at A, B, (1, and D in Fig. 2, respectively. Fig. 8 shows the long axis of the core birefringence at the input end and the core birefringence at the output end. The long axes of the ratios are parallel.

偏波保持光ファイバ9への入射光の直線偏光方向は紙面
に平行な方向、すなわぢPI波としてあり、系全体の偏
波がP偏波に一致するように、各部分の側波保持光ファ
イバ10.11の一波を保持するy軸の方向を紙面に平
行にしである。第2図中の矢印↓は光の偏光方向を示し
ている。偏波保持光ファイバ9からの出力光は、紙面に
平行な直線偏光として集束性ロッドレンズ4の内を6の
ように広がりながら半反射鏡5へ斜めに入射する。
The linear polarization direction of the light incident on the polarization-maintaining optical fiber 9 is parallel to the plane of the paper, that is, as a PI wave, and the side waves of each part are maintained so that the polarization of the entire system matches the P polarization. The direction of the y-axis, which holds one wave of the optical fibers 10 and 11, is parallel to the plane of the paper. The arrow ↓ in FIG. 2 indicates the polarization direction of light. The output light from the polarization-maintaining optical fiber 9 is diagonally incident on the semi-reflective mirror 5 while expanding inside the converging rod lens 4 as shown in 6 as linearly polarized light parallel to the plane of the drawing.

しかし半反射鏡5へは、はとんど平面波として入射して
いるので、半反射鏡5からの反射光および透過光のクロ
ストークは、はとんど変化しない(−20dB以下)。
However, since most of the light is incident on the semi-reflecting mirror 5 as a plane wave, the crosstalk between the reflected light and the transmitted light from the semi-reflecting mirror 5 hardly changes (-20 dB or less).

そして反射光および透過光は紙面に平行な直線偏光の状
態でそれぞれ集束性ロッドレンズ内を7お上び8のよう
に収束して偏波保持光ファイバIOおよび11にX軸方
向の偏波として伝搬する。このような構造となっている
ので、 (1)外乱に対して偏波が保持されており、直線酩先の
入射に対して出射光は直線偏光として保持されるしかも
半反射鏡への入射光ePI波もしくはS偏波(ここでP
@波とは、電場ベクトルが入射面内にある直砿月波2示
し、S偏波とは、電場ベクトルが入射面に垂直な方向を
向いた直線偏波を示す。)に固定することが可能となる
Then, the reflected light and the transmitted light are linearly polarized parallel to the plane of the paper and converged in the focusing rod lenses as shown in 7 and 8, respectively, and sent to polarization-maintaining optical fibers IO and 11 as polarized waves in the X-axis direction. propagate. With this structure, (1) the polarization is maintained against external disturbances, and the output light is maintained as linearly polarized light when it is incident in a straight line; ePI wave or S polarized wave (here P
The @ wave indicates a straight lunar wave 2 in which the electric field vector is within the plane of incidence, and the S-polarized wave indicates a linearly polarized wave in which the electric field vector is perpendicular to the plane of incidence. ).

(11)半反射鏡への入射光の(社)波が保持されてい
るので(PI波もしくはS−波)、半反射光の多層薄膜
の膜厚、屈折率、層の数を最適に設計することDuす、
反射光および透過光のパワーの比を少数点以下5桁の精
度で一致させることが可能となる。
(11) Since the wave of the light incident on the semi-reflecting mirror is retained (PI wave or S-wave), the thickness, refractive index, and number of layers of the multilayer thin film for semi-reflecting light are optimally designed. What to do,
It becomes possible to match the power ratio of reflected light and transmitted light with an accuracy of five decimal places.

第4図は本発明の池の実施例を示す。ここでは入力用光
ファイバ9と出力用光ファイバ10の、集束性篤%%に
%%集束性ロッドレンズ4の地点におけるそれぞれの端
面(B’ 、 0’ )のy軸が、第5図に示すように
互いに垂直な方向となっている。このような構造となっ
ているので、光ファイバ9の内をX軸方向の直線偏波と
して伝搬した光は、一部牛反射鏡で反射した後、光ファ
イバ10の内をy軸方向に直線偏波した光として伝搬さ
せることが可能となる。
FIG. 4 shows an embodiment of the pond of the present invention. Here, the y-axes of the respective end faces (B', 0') of the input optical fiber 9 and the output optical fiber 10 at the point of the focusing rod lens 4 are shown in FIG. As shown, the directions are perpendicular to each other. With this structure, the light that propagates in the optical fiber 9 as a linearly polarized wave in the It becomes possible to propagate it as polarized light.

第6図(a)、(b)、(03,(d)は、それぞれ第
4図のA/、 B/、 Q/、 D/における偏波保持
光ファイバの拡大断面を示す。第5図では入射端のコア
複屈折率の長軸と出射端のコア複屈折率の短軸が平行に
配されている。
Figures 6 (a), (b), (03, (d)) show enlarged cross sections of the polarization maintaining optical fiber at A/, B/, Q/, and D/ in Figure 4, respectively. In this case, the long axis of the core birefringence at the input end and the short axis of the core birefringence at the output end are arranged in parallel.

以下、上記の(1)および(11)についての詳細な説
明を行うことにする。
Hereinafter, the above (1) and (11) will be explained in detail.

(1)半反射鏡からの反射光および透過光の電場は次の
ように表わされる( M、Born 、 E、WO1f
’ Pr1noiples Of 0ptios′IP
P、 as 〜% 48参照]。
(1) The electric field of reflected light and transmitted light from a semi-reflecting mirror is expressed as follows (M, Born, E, WO1f
'Pr1noiples Of 0ptios'IP
P, as ~% 48].

第6図において、12は半反射鏡5の表面、18は入射
面ご示し、14は入射光、15は反射光、16は透過光
を示し、図中nは半反射鏡面5の法線方向を示し、A/
 、 A上は入射電場ベクトルの入射面に平行および垂
直な成分を示し、R/。
In FIG. 6, 12 is the surface of the semi-reflecting mirror 5, 18 is the incident surface, 14 is the incident light, 15 is the reflected light, 16 is the transmitted light, and n in the figure is the normal direction of the semi-reflecting mirror 5. Indicates A/
, A shows the components of the incident electric field vector parallel and perpendicular to the plane of incidence, R/.

R工およびT7 + T土は反射光および透過光のそれ
ぞれの成分を示す。このとき、 ここで、θ土は半反射鏡への入射角度、θtは透過光の
進行方向と法線nとのなす角度である。
R construction and T7 + T soil show respective components of reflected light and transmitted light. At this time, θt is the angle of incidence on the semi-reflecting mirror, and θt is the angle between the traveling direction of the transmitted light and the normal n.

第2図の本発明の実施状況においては、入射光の偏光方
向は入射面内にあるためにA上−0となって、(11,
(2)より、T上=R上=0となり、反射光および透過
光のクロストークの劣化は無視できる。このため、反射
光および透過光の直線丘先方向と偏波保持光ファイバの
主軸の方向とを一致させて、系全体を直11ili1偏
光が伝搬させることかり能となる。
In the implementation situation of the present invention shown in FIG. 2, the polarization direction of the incident light is within the plane of incidence, so it is A-0, (11,
From (2), on T = on R = 0, and the deterioration of crosstalk between reflected light and transmitted light can be ignored. Therefore, it is possible to make the direction of the linear peak of the reflected light and the transmitted light coincide with the direction of the main axis of the polarization-maintaining optical fiber, so that the directly polarized light propagates through the entire system.

(11)また同一の強度を有するP□□□波およびS偏
波(7) が入射したときの透過光のそれぞれのS偏波とP偏波の
強度の比pL /p/は、(1)式でA上= A/とお
T いて、 P” / P’  =  (: cos(θ土−θt)
〕2     ・・・・・(1)′T となる。使用した集束性ロッドレンズについては、その
長さが3asであり、第1図中の光ファイ)< 1と2
のコア間の距離がおよそ600μm程度となっているこ
とから、半反射鏡5への入射角度θiはおよそθ・〜0
°5(“)/8(工) = 0−16ラジアンと見1 
″′ 積れる。このため、反射光と透過光に関する7レネルの
法則を使ってθ1.;0.1ラジアンとなり、(1)l
より 工    / P  /P  ン0.996 T となり、0.4%程度のちがいがあることになる。
(11) When P□□□ wave and S polarized wave (7) having the same intensity are incident, the ratio pL /p/ of the intensity of each S polarized wave and P polarized wave of transmitted light is (1 ) in the formula, A on = A/T, and P''/P' = (: cos(θ soil - θt)
]2...(1)′T. The length of the converging rod lens used is 3 as, and the optical fibers in Fig. 1) < 1 and 2
Since the distance between the cores is approximately 600 μm, the incident angle θi to the semi-reflecting mirror 5 is approximately
°5 (“) / 8 (engineering) = 0-16 radians 1
Therefore, using 7Renell's law regarding reflected light and transmitted light, it becomes θ1.;0.1 radian, and (1)l
Therefore, P/P/P is 0.996 T, which means that there is a difference of about 0.4%.

反射ゲCに対しても同様に見積れる。このため、通常の
真円コア光ファイバを使用した場きでは、反射光、透過
光の光パワーは外乱によって変化する偏波状態に応じて
0.4%程度変動することになる!・b(8) 一方、偏波保持光ファイバを使用した場ばては、半反射
鏡への入射光を−20dBのクロストークでP偏波に保
持することが可能となるので、0.4%x O,01=
 0.004%、すなわち5桁の精度で反射光および透
過光のパワーの変動を抑えることが可能となり、半反射
鏡の最im設計により、分配比を5桁の精度で一致させ
ることが可能となる。
A similar estimation can be made for the reflection gear C. Therefore, when using a normal circular core optical fiber, the optical power of reflected light and transmitted light will fluctuate by about 0.4% depending on the polarization state that changes due to disturbance!・b(8) On the other hand, when using a polarization-maintaining optical fiber, it is possible to maintain the incident light to the semi-reflector as P polarization with -20 dB crosstalk, so 0.4 %x O,01=
It is possible to suppress fluctuations in the power of reflected light and transmitted light with an accuracy of 0.004%, or 5 digits, and the maximum im design of the semi-reflector makes it possible to match the distribution ratio with an accuracy of 5 digits. Become.

第7図はP偏波とS偏波の説明図で、17はP偏波、1
8はS偏波を示す。
Figure 7 is an explanatory diagram of P polarization and S polarization, where 17 is P polarization, 1
8 indicates S polarization.

長尺光ファイバを使用し、光フアイバドラムの回転に際
して生ずる、光ファイバ内′f:伝搬する左右両回り光
の位相差を検出することにより、系(>tファイバドラ
ム)の回転角速度を測定する光フアイバ回転センサにお
いては、lo−80/hrの回転速度検出感度を実現す
るためには、光フアイバ内の左右両回り光の光パワーを
10 の精度で一致させる必要があるとともに、8(I
B方向性結自器の分配比の変動も10−4の精度内で抑
える必要がある。以上述べたことより本発明の集束性ロ
ッドレンズ型8 dB方向性結合器の使用により、検出
感度の向上が期待される。
Using a long optical fiber, the rotational angular velocity of the system (>t fiber drum) is measured by detecting the phase difference between the left and right propagating light within the optical fiber, which occurs when the optical fiber drum rotates. In an optical fiber rotation sensor, in order to achieve a rotation speed detection sensitivity of lo-80/hr, it is necessary to match the optical power of the left and right rotation lights in the optical fiber with an accuracy of 8 (I).
It is also necessary to suppress fluctuations in the distribution ratio of the B-directional condenser to within an accuracy of 10-4. From the above, it is expected that detection sensitivity will be improved by using the focusing rod lens type 8 dB directional coupler of the present invention.

本発明の実施例では偏波保持光ファイバとして、PAN
DA光ファイバを使用したが、本発明はPANDA光フ
ァイバに限定されるものではなく、真円コア元ファイバ
に捩りを加えた構造から成る偏波保持光ファイバ(いわ
ゆる捩れ光ファイバ)に対しても有効である。
In the embodiment of the present invention, PAN is used as the polarization maintaining optical fiber.
Although DA optical fiber was used, the present invention is not limited to PANDA optical fiber, but can also be applied to polarization-maintaining optical fiber (so-called twisted optical fiber) consisting of a twisted core fiber. It is valid.

以上説明したように、本発明の光方向性結合器は、集束
性ロッドレンズ8 dB方向性結合器の光入出力用の光
ファイバとして調波保持光ファイバを使用して系全体の
偏波を保持しているので、光ファイバへの温度変動、ね
じれ、曲げ等の外乱に対して、BaBカプラーの出力光
の偏光特性(主にクロストーク)と分配比を保持できる
という利点がある。このことから、その偏波面の変動に
より検出感度の低下が生ずる8 (iB方向性結合器を
使用した光フアイバ回転センサにおいて、本発明の集束
性ロッドレンズ8 dB方向性結合器を使用Tることに
より、大幅な検出感度の向上が期待される。
As explained above, the optical directional coupler of the present invention uses a harmonic-maintaining optical fiber as an optical fiber for optical input/output of a focusing rod lens 8 dB directional coupler to maintain polarization of the entire system. This has the advantage that the polarization characteristics (mainly crosstalk) and distribution ratio of the output light of the BaB coupler can be maintained against disturbances such as temperature fluctuations, twisting, and bending to the optical fiber. Therefore, the detection sensitivity decreases due to variations in the plane of polarization. This is expected to significantly improve detection sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の集束性ロッドレンズ8 CIB方向性結
合器の構成図、 第2図は本発明の一実施例の構成図、 第8図(a)、(b)、(C1,(dlはそれぞれ第2
図のA、B、O,Dにおける偏波保持光ファイバの拡大
断面図、 第4図は本発明の他の実施例の構成図、第5図(a)、
(b)、(0)、((1)はそれぞれ第4図のA/ 、
 B/ 、 Ql 、 D/における拡大断面図i(第
6図は半反射面での反射光、透過光のクロストークを説
明するための図、 第7図はPm波とS偏波の説明図である。 1.2.8・・・真円コア・光7アイパ、4・・・集束
性ロッドレンズ、5・・・半反射fR,61718・・
・光ヒームの広がり%9110111・・・偏波保持光
ファイバ、12・・・半反射鏡の而、18・・・入射面
、14・・・入射光、15・・・反射光、16・・・透
過光、17・・・P偏波、18・・・S@波、A/ *
 R/ + T/・・・入射光、反射光および透過光の
入射面に平行な成分、A土、′(11) R上、T上・・・入射光、反射光および透過光の入射面
に垂直な成分。 特許出願人 日本電信電話公社
Fig. 1 is a block diagram of a conventional focusing rod lens 8 CIB directional coupler, Fig. 2 is a block diagram of an embodiment of the present invention, and Fig. 8 (a), (b), (C1, (dl are the second
An enlarged cross-sectional view of the polarization maintaining optical fiber at points A, B, O, and D in the figure; FIG. 4 is a configuration diagram of another embodiment of the present invention; FIG. 5(a),
(b), (0), ((1) are respectively A/ in Figure 4,
Enlarged cross-sectional view i at B/, Ql, D/ (Figure 6 is a diagram to explain the crosstalk of reflected light and transmitted light on a semi-reflective surface, Figure 7 is an explanatory diagram of Pm wave and S polarized wave 1.2.8...Perfect circular core/optical 7 eyeper, 4...Focusing rod lens, 5...Semi-reflection fR, 61718...
- Spread of optical beam %9110111...Polarization-maintaining optical fiber, 12...Semi-reflecting mirror, 18...Incidence surface, 14...Incoming light, 15...Reflected light, 16...・Transmitted light, 17...P polarization, 18...S @ wave, A/ *
R/ + T/... component parallel to the plane of incidence of incident light, reflected light, and transmitted light, A soil, '(11) On R, on T... plane of incidence of incident light, reflected light, and transmitted light component perpendicular to . Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 1 入出力端に光ファイバを有し、2個の集束性ロッド
レンズの軸を−l1fl上に一致させ該集束性ロッドレ
ンズ間に半反射鏡を挾んだ8dB光方向性結き器におい
て、該人出端の光ファイバに偏波保持光ファイバを使用
することにより、該8 dB光方向性結合器に入射した
直線偏波光が出射端まで直線扁波状態を保持することを
特徴とする光方向性結合器。 a 特許請求の範囲第1項に記載の光方向性結合器にお
いて、該偏波保持光ファイバとして複屈折率光ファイバ
を使用し、入射端のコア複屈折率の長軸と出射端のコア
複屈折率の長軸が平行に配されているかまたは入射端の
コア複屈折率の長軸と出射端のコア複屈折率の短軸が平
行に配されたこと2特徴とする光方向性結き器。
[Claims] 1. 8 dB light direction with an optical fiber at the input and output ends, with the axes of two focusing rod lenses aligned on -l1fl, and a semi-reflecting mirror sandwiched between the focusing rod lenses. In the directional coupler, by using a polarization maintaining optical fiber for the optical fiber at the protruding end, the linearly polarized light incident on the 8 dB optical directional coupler maintains a linearly polarized state until the output end. An optical directional coupler characterized by: a In the optical directional coupler according to claim 1, a birefringence optical fiber is used as the polarization maintaining optical fiber, and the long axis of the core birefringence at the input end and the core birefringence at the output end are aligned. Optical directional coupling characterized by two characteristics: the long axis of the refractive index is arranged in parallel, or the long axis of the core birefringence at the input end and the short axis of the core birefringence at the output end are arranged in parallel. vessel.
JP20272082A 1982-11-18 1982-11-18 Optical directional coupler Pending JPS5993417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20272082A JPS5993417A (en) 1982-11-18 1982-11-18 Optical directional coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20272082A JPS5993417A (en) 1982-11-18 1982-11-18 Optical directional coupler

Publications (1)

Publication Number Publication Date
JPS5993417A true JPS5993417A (en) 1984-05-29

Family

ID=16462039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20272082A Pending JPS5993417A (en) 1982-11-18 1982-11-18 Optical directional coupler

Country Status (1)

Country Link
JP (1) JPS5993417A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0191235A2 (en) * 1985-02-12 1986-08-20 Northern Telecom Europe Limited Optical fibre coupler
EP0725289A2 (en) * 1995-01-31 1996-08-07 SEIKOH GIKEN Co., Ltd. Ferrule with four polarization maintaining optical fibres and optical coupler for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0191235A2 (en) * 1985-02-12 1986-08-20 Northern Telecom Europe Limited Optical fibre coupler
EP0725289A2 (en) * 1995-01-31 1996-08-07 SEIKOH GIKEN Co., Ltd. Ferrule with four polarization maintaining optical fibres and optical coupler for the same
EP0725289A3 (en) * 1995-01-31 1996-10-23 Seiko Giken Kk Ferrule with four polarization maintaining optical fibres and optical coupler for the same
US5692081A (en) * 1995-01-31 1997-11-25 Seikon Giken Co., Ltd. Four polarization maintaining optical fiber ferrule and optical coupler using same

Similar Documents

Publication Publication Date Title
JP2774467B2 (en) Polarization independent optical isolator
CA2049382C (en) Fiber-optic gyroscope with fibre polarizers, depolarizers and coupling means
JPH07218866A (en) Optical isolator
WO2015081682A1 (en) Method for eliminating relevance of rotation angle of faraday rotator mirror to wavelength and temperature and rotator mirror
WO2015081806A1 (en) Wavelength-independent and temperature-independent faraday rotating mirror
JPS6385313A (en) Sagnack ring rotaion sensor and method of forming sagnack ring rotation sensor
JPS5993417A (en) Optical directional coupler
JPH01287528A (en) Optical isolator and optical circulator
US6407861B1 (en) Adjustable optical circulator
JP2002296544A (en) 3-port miniaturized optical circulator
JPH02160213A (en) Plane of polarization rotating device
CN108628013B (en) Optical phase conjugate mirror device
JPS60104271A (en) Magnetic field sensor using polarization plane maintaining optical fiber
JPS5950313A (en) Optical fiber rotary sensor
JPS6382317A (en) Light interference angular velocity meter and its manufacture
CN108628013A (en) A kind of optical phase conjugation lens device
JP3036610B2 (en) Polarization direction switch
JPS60218020A (en) Total single-polarization fiber rotary sensor
JPH02136806A (en) Optical directional coupler and rotating angular velocity sensor using such coupler
JPH04140709A (en) Optical isolator
JPH02281211A (en) Optical collimator and optical coupling parts
JPH05241107A (en) Optical branching unit
JPH04106416A (en) Optical fiber gyroscope
JPH04106418A (en) Optical fiber gyroscope
JPH03230104A (en) Optical fiber polarizer and production thereof