JPH07120631B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH07120631B2
JPH07120631B2 JP63223111A JP22311188A JPH07120631B2 JP H07120631 B2 JPH07120631 B2 JP H07120631B2 JP 63223111 A JP63223111 A JP 63223111A JP 22311188 A JP22311188 A JP 22311188A JP H07120631 B2 JPH07120631 B2 JP H07120631B2
Authority
JP
Japan
Prior art keywords
layer
boron
semiconductor
diffusion
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63223111A
Other languages
Japanese (ja)
Other versions
JPH0271514A (en
Inventor
謙 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63223111A priority Critical patent/JPH07120631B2/en
Publication of JPH0271514A publication Critical patent/JPH0271514A/en
Publication of JPH07120631B2 publication Critical patent/JPH07120631B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置を半導体シリコンのウエハ内に作り
込む方法、とくに半導体装置が集積回路装置であって集
積回路を構成する回路要素を接合分離された各半導体領
域内に作り込むに適する方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device in a semiconductor silicon wafer, and in particular, the semiconductor device is an integrated circuit device, and circuit elements constituting an integrated circuit are separated by joining. A method suitable for forming in each of the semiconductor regions formed.

〔従来の技術〕[Conventional technology]

周知のように、半導体装置はシリコンウエハ内に多数個
作り込まれた上でチップに切り離され、半導体装置が集
積回路装置である場合は各チップ内がさらに多数個の互
いに接合分離された半導体領域に分割され、集積回路を
構成する回路要素がこの各半導体領域内に振り分けて作
り込まれた上で相互に接続される。よく知られたことで
はあるが、第6図は1個のチップ内がこの半導体領域に
分割されている様子を部分的に拡大して示すものであ
る。
As is well known, a large number of semiconductor devices are formed in a silicon wafer and then cut into chips. When the semiconductor device is an integrated circuit device, each chip has a larger number of semiconductor regions bonded and separated from each other. The circuit elements constituting the integrated circuit are divided and formed in the respective semiconductor regions and then connected to each other. As is well known, FIG. 6 is a partially enlarged view showing how one chip is divided into these semiconductor regions.

第6図(a)の断面において、シリコンの半導体基板1
としてはふつうp形のものが用いられ、この基板1の表
面の各半導体領域に対応する範囲に高不純物濃度のn形
の埋込層2を拡散した上からエピタキシャル層3をn形
で所定の厚みに成長させる。ついでにのエピタキシャル
層3の表面から同図(b)に示すようなパターンで高不
純物濃度のp形の分離層4を同図(a)に示すように基
板1に達するまで深く拡散することにより、エピタキシ
ャル層3を複数個の半導体領域に分割する。この半導体
領域3内にバイポーラトランジスタや電界効果トランジ
スタ等の回路要素がそれぞれ作り込まれ、その動作時に
は正の電源電圧がn形の半導体領域3に掛かり、p形の
基板1はふつう接地電位と接続される。
In the cross section of FIG. 6A, a semiconductor substrate 1 made of silicon
Is usually a p-type, and the n-type buried layer 2 having a high impurity concentration is diffused in a range corresponding to each semiconductor region on the surface of the substrate 1 and then the epitaxial layer 3 is a predetermined n-type. Grow to thickness. Then, by diffusing the p-type separation layer 4 having a high impurity concentration deeply from the surface of the epitaxial layer 3 until reaching the substrate 1 as shown in FIG. The epitaxial layer 3 is divided into a plurality of semiconductor regions. Circuit elements such as bipolar transistors and field effect transistors are formed in the semiconductor region 3, and a positive power supply voltage is applied to the n-type semiconductor region 3 during its operation, and the p-type substrate 1 is normally connected to the ground potential. To be done.

従って、n形の半導体領域3といずれもp形の基板1お
よび分離層4との間のpn接合には逆バイアス方向に正の
電源電圧が掛かり、これによって各半導体領域3が基板
1から電位的に浮かされていわゆる接合分離され、半導
体領域3の相互間も同様に接合分離される。各半導体領
域3のパターンは第6図(b)からわかるようにふつう
は方形とされるが、その中に作り込むべき回路要素の種
類や個数に応じてその面積および縦横の寸法比が選択さ
れ、これらの半導体領域3のチップ内配置はよく知られ
ているように計算機を利用して自動割り付けされる。
Therefore, a positive power supply voltage is applied in the reverse bias direction to the pn junction between the n-type semiconductor region 3 and the p-type substrate 1 and the isolation layer 4, which causes the potential of each semiconductor region 3 from the substrate 1. The semiconductor regions 3 and the semiconductor regions 3 are similarly separated from each other. The pattern of each semiconductor region 3 is usually a square as can be seen from FIG. 6 (b), but the area and the vertical and horizontal dimensional ratios are selected according to the type and number of circuit elements to be built therein. The layout of these semiconductor regions 3 in the chip is automatically assigned using a computer as is well known.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上述の半導体領域3を接合分離するためのp形の分離層
4は前述のように高不純物濃度でかつ深く拡散する必要
があるので、それ用の不純物としては拡散係数の大きい
ボロンが一般に用いられるが、例えば半導体領域3に分
割すべきエピタキシャル層の厚みが大なときに分割層4
を深く拡散するため導入ボロン量を増して行くと、表面
不純物濃度が5x1018原子/cm3を越えたとき半導体装置と
くに集積回路装置に特性不良が出やすくなり、さらに表
面不純物濃度が5x1019原子/cm3を越えると良品率が急速
に低下する問題がある。
Since the p-type isolation layer 4 for junction isolation of the above-mentioned semiconductor region 3 needs to diffuse deeply with a high impurity concentration as described above, boron having a large diffusion coefficient is generally used as an impurity for that purpose. However, for example, when the thickness of the epitaxial layer to be divided into the semiconductor regions 3 is large, the dividing layer 4
When the go increasingly introducing boron amount for deep diffusion, becomes a semiconductor device particularly easily out characteristic defects in the integrated circuit device when the surface impurity concentration exceeds 5x10 18 atoms / cm 3, further surface impurity concentration of 5x10 19 atoms If it exceeds / cm 3 , there is a problem that the non-defective rate decreases rapidly.

この原因を追求したところ、半導体装置を構成する半導
体層とくにn形半導体層の不純物濃度や拡散深さが所定
値になっておらず、さらにその原因はその半導体層の高
温下の熱拡散時に分離層4からボロンがふん囲気中に混
入して拡散の邪魔をしていることが判明した。前の第6
図(a)にはこの様子が例示されている。
In pursuit of this cause, the impurity concentration and the diffusion depth of the semiconductor layers constituting the semiconductor device, particularly the n-type semiconductor layer, do not reach the predetermined values, and the cause is that the semiconductor layers are separated during thermal diffusion at high temperature. From layer 4, it was found that boron was mixed in the atmosphere and was an obstacle to diffusion. Previous 6th
This state is illustrated in FIG.

図示のように例えば中央の半導体領域3内にp形層5が
拡散され、さらにその中にn形層6が高不純物濃度で拡
散されるものとする。このn形層6の熱拡散時には、高
ボロン濃度層である分離層4の表面は図示のようにいわ
ゆるプロセス酸化膜20で覆われており、この酸化膜20に
明けた窓21を介してn形層6用の不純物として例えば燐
が拡散されるが、分離層4からp形不純物であるボロン
が酸化膜20を通って拡散ふん囲気内に混入してn形不純
物の拡散を妨害するのである。従ってこの際には、分離
層4の上の酸化膜20がいわばボロン供給源になっている
ことになる。
As shown, for example, the p-type layer 5 is diffused in the central semiconductor region 3, and the n-type layer 6 is diffused therein with a high impurity concentration. At the time of thermal diffusion of the n-type layer 6, the surface of the separation layer 4 which is a high boron concentration layer is covered with a so-called process oxide film 20 as shown in FIG. For example, phosphorus is diffused as an impurity for the shaping layer 6, but boron, which is a p-type impurity, is mixed from the separation layer 4 through the oxide film 20 into the diffusion atmosphere to hinder the diffusion of the n-type impurity. . Therefore, at this time, the oxide film 20 on the separation layer 4 is, so to speak, a boron supply source.

シリコン半導体に接する酸化膜のボロンに対するいわゆ
る偏析係数が大きいことは、例えば阿部孝夫,小切間正
彦,谷口研二共著「シリコン結晶とドーピング」,丸善
発行,153〜154頁に記載があり、一般的には酸化膜に接
する半導体表面部のp形不純物とくにボロンが酸化膜の
方に偏析により吸い出されやすいことが従来から知られ
ている。第5図はボロンの偏析状態をIMA(イオンマイ
クロアナライザ)法で測定した結果を示すものである。
ただし、この図は分離層4の表面に約0.5μmの酸化膜2
0と0.1μm強のいわゆる燐ガラス膜(燐シリケートガラ
ス膜)22が付けられている場合の深さdに対するボロン
濃度cの分布を測定した結果であるが、これらの膜は実
質的には厚みが0.6μmの単一酸化膜と等価と考えてよ
い。図からわかるように、分離層4から酸化膜20にかけ
て両者の界面でボロン濃度cが偏析により約1桁上が
り、かつ酸化膜の表面に行くに従ってボロン濃度cがさ
らに上がっている。この非常に高い不純物濃度の酸化膜
表面から上述の有害ボロンが放出されると考えられる。
The fact that the oxide film in contact with a silicon semiconductor has a large so-called segregation coefficient for boron is described, for example, in Takao Abe, Masahiko Ogiri, Kenji Taniguchi, "Silicon Crystals and Doping," published by Maruzen, pp. 153-154. It has been conventionally known that p-type impurities, particularly boron, on the surface of a semiconductor which is in contact with the oxide film are easily absorbed by the oxide film due to segregation. FIG. 5 shows the result of measuring the segregation state of boron by the IMA (ion microanalyzer) method.
However, this figure shows that about 0.5 μm oxide film 2 is formed on the surface of the separation layer 4.
This is the result of measuring the distribution of the boron concentration c with respect to the depth d when a so-called phosphorus glass film (phosphorus silicate glass film) 22 having a thickness of 0 and 0.1 μm is attached. Can be considered to be equivalent to a single oxide film having a thickness of 0.6 μm. As can be seen from the figure, the boron concentration c increases from the separation layer 4 to the oxide film 20 at the interface between them by about one digit due to segregation, and further increases toward the surface of the oxide film. It is considered that the harmful boron is released from the surface of the oxide film having a very high impurity concentration.

このボロンの影響によってトランジスタの特性が充分出
なくなるほか、漏洩電流により消費電流の増加や集積回
路装置ではトランジスタ間の電流漏洩が発生しやすい。
かかる漏洩現象から判断すると、半導体層が作り込まれ
ていない半導体領域の表面までが放出ボロンにより汚染
されやすいことがわかる。なお、この半導体表面の汚染
等の問題は、窒化ボロンを用いる固体拡散法やジボラン
を用いるガス拡散法により分離層用の高濃度ボロン拡散
を行なったときにとくに起こりやすいが、イオン注入法
を利用してボロンを導入した場合もあまり大差がなく、
問題がその上の酸化膜にあることを裏付けている。
Due to the influence of boron, the characteristics of the transistor are not sufficiently obtained, and the leakage current tends to increase the consumption current and cause current leakage between transistors in the integrated circuit device.
Judging from the leakage phenomenon, it can be seen that even the surface of the semiconductor region where the semiconductor layer is not formed is easily contaminated by the emitted boron. The problem of contamination of the semiconductor surface is particularly likely to occur when high concentration boron diffusion for a separation layer is performed by a solid diffusion method using boron nitride or a gas diffusion method using diborane, but the ion implantation method is used. When introducing boron, there is not much difference,
It confirms that the problem lies in the oxide film above it.

かかる問題を解決するため、分離層用の高濃度ボロン拡
散を行なった後にその上の酸化膜を除去して、清浄な酸
化膜に付け直すことは可能であるが、容易にわかるよう
に高温加熱工程のつど高ボロン濃度層からボロンが比較
的短時間内に酸化膜に吸い出されて汚染源になるのであ
まり有効な対策といえず、また高温加熱工程のつど酸化
膜を付け直すのは非常に厄介でコストが掛かり、かつ折
角拡散したボロンを逐次吸い出して表面不純物濃度を下
げてしまうことになる。
In order to solve such a problem, it is possible to remove the oxide film on it after performing high-concentration boron diffusion for the separation layer and attach it to a clean oxide film. Boron is sucked into the oxide film from the high boron concentration layer in each process in a relatively short time and becomes a pollution source, so it cannot be said that it is a very effective measure, and it is very difficult to reattach the oxide film in each high temperature heating process. This is troublesome and costly, and the boron diffused at regular intervals is sucked out one after another to lower the surface impurity concentration.

本発明はかかる問題を解決して、上述の分離層などの高
ボロン濃度層の上の酸化シリコン膜等に偏析によりボロ
ンが蓄積されても、その再拡散による良品率の低下を有
効に防止することができる半導体装置とくに集積回路装
置の実用的な製造方法を得ることを目的とする。
The present invention solves such a problem, and even if boron is accumulated in the silicon oxide film or the like on the high boron concentration layer such as the separation layer due to segregation, the reduction of the non-defective rate due to the re-diffusion thereof is effectively prevented. It is an object of the present invention to obtain a practical manufacturing method of a semiconductor device, especially an integrated circuit device, which can be manufactured.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、上述の分離層のようにボロンが高い表面不純
物濃度で拡散され、ウエハの高温加熱プロセス時に表面
が酸化シリコンを含む膜で覆われる高ボロン濃度層の拡
散パターンの最大幅を、その拡散用フォトマスク上の寸
法で20μm以下に統一することにより上記の目的達成に
成功したものである。
The present invention provides the maximum width of a diffusion pattern of a high boron concentration layer in which boron is diffused at a high surface impurity concentration like the above-mentioned separation layer and the surface is covered with a film containing silicon oxide during a high temperature heating process of a wafer. By unifying the size on the diffusion photomask to 20 μm or less, the above-mentioned object was successfully achieved.

上記方法はボロンの表面不純物濃度が5x1018原子/cm3
上の高ボロン濃度層に適用した有用である。また、この
高ボロン濃度層の拡散パターンの最大幅の上記構成にい
う限界値は、集積回路装置の場合にはフォトマスク上の
寸法で20μmとするのが望ましい。さらに、集積回路装
置では高ボロン濃度層のウエハ内で占める割合は通常25
%程度までであるが、この割合がこれより高い場合には
上述のように高ボロン濃度層の最大幅を制限した上で、
さらにその面積の合計をウエハの面積の多くても40%ま
でに、望ましくは35%以下に抑える必要がある。
The above method is useful when applied to a high boron concentration layer having a boron surface impurity concentration of 5 × 10 18 atoms / cm 3 or more. Further, the limit value of the maximum width of the diffusion pattern of the high boron concentration layer in the above structure is preferably 20 μm in terms of the size on the photomask in the case of an integrated circuit device. Furthermore, in an integrated circuit device, the high boron concentration layer usually occupies 25% of the wafer.
%, But if this ratio is higher than this, after limiting the maximum width of the high boron concentration layer as described above,
Furthermore, the total area must be limited to at most 40% of the area of the wafer, preferably less than 35%.

〔作用〕[Action]

本発明は高ボロン濃度層の上の酸化シリコン膜等からの
ボロンの再拡散の影響を受ける範囲がその付近の比較的
小面積に限られていることに着目して、高ボロン濃度層
の最大幅を上記構成のように制限することにより、その
上の酸化シリコン膜等の中のボロン汚染源量を減少させ
てその周辺に対する再拡散ボロンの悪影響を軽減し、半
導体装置の良品率の低下を実質的かつ有効に防止するこ
とに成功したものである。従って本発明方法によれば、
従来のように酸化シリコン膜を付け替えるなどの余分な
手間を掛ける必要は一切なく、追加工程なしで課題を解
決することができる。
The present invention focuses on the fact that the range affected by the re-diffusion of boron from the silicon oxide film or the like on the high boron concentration layer is limited to a relatively small area in the vicinity of the high boron concentration layer. By significantly limiting the above configuration, the amount of boron contamination source in the silicon oxide film, etc. on it is reduced and the adverse effect of re-diffused boron on the periphery is reduced, and the reduction in the yield rate of semiconductor devices is substantially reduced. It has been successfully and effectively prevented. Therefore, according to the method of the present invention,
There is no need for extra work such as replacing the silicon oxide film as in the conventional case, and the problem can be solved without additional steps.

〔実施例〕〔Example〕

以下、図を参照しながら本発明の若干の実施例を説明す
る。第1図は本発明方法を集積回路装置の半導体領域用
の分離層に適用した実施例を示すもので、前に説明した
第6図と同じ部分には同じ符号が付けられており、説明
の重複する部分は省略することとする。第1図(a)は
同図(b)に平面図で示されたウエハ10のX−X断面で
あって、高ボロン濃度層としてのp形分離層4が拡散さ
れた直後の状態を示す。同図(c)にはこの分離層4の
拡散用フォトマスク30が示されている。
Hereinafter, some embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment in which the method of the present invention is applied to a separation layer for a semiconductor region of an integrated circuit device. The same parts as those in FIG. The overlapping part will be omitted. FIG. 1 (a) is an XX cross section of the wafer 10 shown in the plan view of FIG. 1 (b), showing a state immediately after the p-type separation layer 4 as a high boron concentration layer is diffused. . A photomask 30 for diffusion of the separation layer 4 is shown in FIG.

この実施例での高ボロン濃度層であるp形の分離層4
は、例えば1019原子/cm3程度のボロン濃度に、場合に応
じて固体拡散法,ガス拡散法またはイオン注入法によっ
て拡散され、その上の酸化シリコン膜20は通常のスチー
ム酸化膜ないしはプロセス酸化膜であってその厚みはふ
つう1μm程度とされ、それに明けた窓を介して分離層
4用のボンロが拡散される。
The p-type separation layer 4 which is a high boron concentration layer in this embodiment
Is diffused to a boron concentration of, for example, about 10 19 atoms / cm 3 by a solid diffusion method, a gas diffusion method, or an ion implantation method as the case may be, and the silicon oxide film 20 formed thereon is a normal steam oxide film or a process oxide film. The thickness of the film is usually about 1 μm, and the bonro for the separation layer 4 is diffused through the window opened therein.

この分離層4の拡散パターンは同図(c)のフォトマス
ク30に示すようにその最大幅Wmがこの例では20μm以下
になるように各半導体領域3に対応する図ではハッチッ
グを付されたパターン31の配置と面積が決められる。図
では白地である分離層用パターン32のW1〜W3で示された
幅はもちろん最大幅Wmより狭く、その内の最小幅W1はフ
ォトプロセスの精度やエピタキシャル層の厚みに応じて
ふつう2〜8μmの間に設定される。第1図(b)は前
の第6図(b)に対応しており、両者を比較すればわか
るように、分離層用拡散パターン32の最大幅を20μm以
下に抑えるために、例えば第6図(b)の半導体領域3
のパターンR2がパターンR1の方に寄せられ、パターンR3
の面積が拡大されている。かかるパターン配置や大きさ
の変更は、計算機のパターン割り付けソフトウエアに最
大幅の制約機能を追加することによって簡単に行うこと
ができる。かかる変更だけで最大幅を制約できない場合
には、実際には使用しない半導体領域用のパターンを適
宜追加するようにしてもよい。
The diffusion pattern of the isolation layer 4 is hatched in the drawing corresponding to each semiconductor region 3 so that the maximum width Wm is 20 μm or less in this example as shown in the photomask 30 of FIG. Placement and area of 31 are decided. In the figure, the width of the separation layer pattern 32, which is a white background, shown by W1 to W3 is of course narrower than the maximum width Wm, and the minimum width W1 is usually 2 to 8 μm depending on the accuracy of the photo process and the thickness of the epitaxial layer. Is set between. FIG. 1 (b) corresponds to FIG. 6 (b), and as can be seen by comparing the two, in order to suppress the maximum width of the separation layer diffusion pattern 32 to 20 μm or less, for example, Semiconductor region 3 of FIG.
Pattern R2 is moved closer to pattern R1, and pattern R3
The area of has been expanded. Such pattern arrangement and size change can be easily performed by adding a maximum width constraint function to the pattern allocation software of the computer. When the maximum width cannot be restricted only by such a change, a pattern for a semiconductor region which is not actually used may be added as appropriate.

第1図(c)のフォトマスク30を用いて分離層4を作り
込んだとき、同図(a)に示すようにボロンが酸化シリ
コン膜20の下を横方向に拡散するので、実際の分離層4
の幅は同図(b)に示すようにフォトマスク30のパター
ン32の幅よりかなり広がる。このボロンの横方向拡散は
分離層4の拡散深さによって異なり、ふつうエピタキシ
ャル層の厚みと同程度になる得るので、例えばエピタキ
シャル層の厚みが10μmの場合、分離層4の実際の最大
幅は40μm近くになり得る。
When the isolation layer 4 is formed by using the photomask 30 shown in FIG. 1C, boron is laterally diffused under the silicon oxide film 20 as shown in FIG. Layer 4
Is much wider than the width of the pattern 32 of the photomask 30, as shown in FIG. Since the lateral diffusion of boron depends on the diffusion depth of the separation layer 4 and can be almost the same as the thickness of the epitaxial layer, for example, when the thickness of the epitaxial layer is 10 μm, the actual maximum width of the separation layer 4 is 40 μm. Can be close.

第1図(d)はp形層5を半導体領域3内に作り込む際
に状態を示し、図示のように分離層4は酸化シリコン膜
20によって覆われた状態で酸化シリコン膜20に明けた窓
21を介してp形層5が拡散される。この際、分離層4の
上の酸化シリコン膜20のボロン濃度は1020原子/cm3程度
に達し得るが、本発明ではそれを付け替えることなくプ
ロセスが進められる。
FIG. 1D shows a state when the p-type layer 5 is formed in the semiconductor region 3, and the isolation layer 4 is a silicon oxide film as shown in the figure.
Window opened in silicon oxide film 20 while covered by 20
The p-type layer 5 is diffused through 21. At this time, the boron concentration of the silicon oxide film 20 on the separation layer 4 can reach about 10 20 atoms / cm 3 , but in the present invention, the process proceeds without changing it.

第2図は本発明方法をウエハから半導体装置用の各チッ
プを切り離すスクライブラインの個所に適用した実施例
を示す。同図(a)のウエハ10にはこのスクライブライ
ンCで示されており、その左右の半導体領域3内にはp
形層5やn形層6を備えたバイポーラトランジスタT1や
電界効果トランジスタT2が作り込まれている。ウエハ10
はスクライブラインCに沿って同図(b)のようにチッ
プ11および12に分離されるのであるが、これらのチップ
上のトランジスタT1やT2から分離面への電流の漏洩を防
止するため、トランジスタと分離面との間に分離層4を
必ず介在させる必要があり、このため従来は分離層4内
にスクライブラインCが設けられるのが通例である。
FIG. 2 shows an embodiment in which the method of the present invention is applied to the location of a scribe line for separating each chip for a semiconductor device from a wafer. The scribe line C is shown on the wafer 10 in FIG.
A bipolar transistor T1 and a field effect transistor T2 having a shaping layer 5 and an n-type layer 6 are built in. Wafer 10
Is divided into chips 11 and 12 along the scribe line C as shown in FIG. 7B. In order to prevent current leakage from the transistors T1 and T2 on these chips to the separation plane, It is necessary to interpose the separation layer 4 between the separation layer and the separation surface. Therefore, conventionally, the scribe line C is usually provided in the separation layer 4.

しかし、分離層4内でウエハをチップに分離するには、
スクライブ作業の都合上分離層4の幅をかなり広目にふ
つうは60〜100μmにとらねばならず、その上の酸化シ
リコン膜20からの汚染ボロン量が無視できないので、こ
の実施例においては各チップの周囲をそれぞれ取り囲む
ように設けられた分離層4の間に半導体領域3を設け、
その中にスクライブラインCを設定してその両側の分離
層4の幅を前述の最大幅以下に制限する。かかるスクラ
イブラインC用の半導体領域3を設けることにより各チ
ップの面積は若干増加するが、ウエハ内で高ボロン濃度
層としての分離層4が占める全体面積を減少させ、かつ
集積回路装置内のチップ周縁部に生じやすい回路要素の
特性不良の発生率を減少させる上で非常に有利である。
However, in order to separate the wafer into chips in the separation layer 4,
For the sake of the scribing work, the width of the separation layer 4 should be set to a wide range, usually 60 to 100 μm, and the amount of contaminating boron from the silicon oxide film 20 on the separation layer 4 cannot be neglected. The semiconductor region 3 is provided between the isolation layers 4 provided so as to respectively surround the periphery of
The scribe line C is set therein to limit the width of the separation layer 4 on both sides of the scribe line C to the maximum width or less. Although the area of each chip is slightly increased by providing the semiconductor region 3 for the scribe line C, the total area occupied by the separation layer 4 as a high boron concentration layer in the wafer is reduced and the chip in the integrated circuit device is reduced. This is very advantageous in reducing the rate of occurrence of characteristic defects of circuit elements that are likely to occur in the peripheral portion.

ウエハ内には分離層以外にも高ボロン濃度層があり、こ
の内見落とされやすいのに回路要素のモニタパターンや
ウエハのマスク合わせ用マークがあり、これらに本発明
を適用した例を第3図と第4図に示す。第3図のモニタ
パターン40はトランジスタ等のプロセス条件のモニタ用
回路要素が作り込まれる数十μm角の半導体領域41を図
示のように10個程度含むチップと同程度の数mm角の大き
さのもので、ウエハ内の適当な場所に分布してふつう数
個所程度設けられる。本発明を適用したモニタパターン
40では、その場所を識別するためのこの例では方形枠状
のマーク層42と、各半導体領域41を個別に取り囲む分離
層43が前述の分離層4の拡散と同時に高ボロン濃度層を
利用して作り込まれる。マーク層42の幅は目立ちやすい
ように例えば前述の最大幅Wmとされ、分離層43のの幅は
前述の最小幅W1とされる。
There is a high boron concentration layer other than the separation layer in the wafer, and there are monitor patterns of circuit elements and mask alignment marks of the wafer, which are easily overlooked, and an example in which the present invention is applied to these is shown in FIG. And shown in FIG. The monitor pattern 40 shown in FIG. 3 has a size of several mm square, which is similar to a chip including about ten semiconductor regions 41 of several tens of μm square in which circuit elements for monitoring process conditions such as transistors are formed. It is distributed in an appropriate place in the wafer and is usually provided at several places. Monitor pattern to which the present invention is applied
In 40, a mark layer 42 in the shape of a rectangular frame for identifying the location and a separation layer 43 individually surrounding each semiconductor region 41 are used for diffusion of the separation layer 4 and a high boron concentration layer at the same time. Built in. The width of the mark layer 42 is set to, for example, the above-described maximum width Wm so that the mark layer 42 is conspicuous, and the width of the separation layer 43 is set to the above-described minimum width W1.

第4図に示されたマスク合わせ用マーク50としては、例
えば図示のような十字形の標識51やかぎ形の標識52があ
り、これらも分離層4の拡散と同時に高ボロン濃度層を
利用して作り込むのが便利であるが、本発明によりそれ
ら用の高ボロン濃度層の幅は必ず前述の最大幅Wmないし
はそれ以下とするのがよい。
As the mask alignment mark 50 shown in FIG. 4, there are, for example, a cross-shaped mark 51 and a hook-shaped mark 52 as shown in the drawing. These also use the high boron concentration layer at the same time when the separation layer 4 is diffused. The width of the high boron concentration layer for them is always the above-mentioned maximum width Wm or less according to the present invention.

以上説明した実施例のほか、本発明は種々の態様で実施
をすることができる。例えば、本発明の一種の応用とし
てウエハ内の高ボロン濃度層の全体面積を管理すること
ができる。すなわち、高ボロン濃度層の上の酸化シリコ
ン膜からの再拡散ボロンの影響は比較的局部的なので、
その最大幅を管理するだけでふつう充分な効果が得られ
るが、高ボロン濃度層の全体面積があまりにも多いとウ
エハの全面に対する再拡散ボロンの悪影響が避けられな
くなって来る。このため、前述のように高ボロン濃度層
の最大幅を制限した上で、さらにその面積の合計をウエ
ハの面積の多くても40%までに望ましくは35%以下に制
限することにより、ウエハ全面に対する再拡散ボロンの
影響を実用上問題がない程度にまで減少させることがで
きる。
In addition to the embodiments described above, the present invention can be implemented in various modes. For example, as one application of the present invention, the total area of the high boron concentration layer in the wafer can be controlled. That is, since the influence of re-diffusion boron from the silicon oxide film on the high boron concentration layer is relatively local,
A sufficient effect is usually obtained only by controlling the maximum width, but if the total area of the high boron concentration layer is too large, the adverse effect of re-diffused boron on the entire surface of the wafer cannot be avoided. Therefore, by limiting the maximum width of the high boron concentration layer as described above, and further limiting the total area to 40% at most of the area of the wafer, preferably 35% or less, It is possible to reduce the effect of re-diffused boron to the degree that there is no practical problem.

〔発明の効果〕〔The invention's effect〕

以上の記載からすでに明らかなように、本発明では半導
体シリコンのウエハ内に半導体装置を作り込むに際し、
ボロンが例えば5x1018原子/cm3以上の高い表面不純物濃
度で拡散されウエハの高温加熱プロセス時に表面が酸化
シリコンを含む膜で覆われる分離層などの高ボロン濃度
層の拡散パターンの最大幅を、その拡散用フォトマスク
上の寸法で所定の限界値20μm以下に統一するようにし
たので、高ボロン濃度層の上の酸化シリコン膜等に偏析
によりボロンが吸い出されて高濃度で蓄積されても、そ
の再拡散による周辺の半導体領域表面の汚染や半導体層
の拡散への悪影響を最低に抑えて半導体層の良品率の低
下を有効に防止することができる。
As is apparent from the above description, in the present invention, when a semiconductor device is built in a semiconductor silicon wafer,
For example, the maximum width of the diffusion pattern of a high boron concentration layer such as a separation layer in which boron is diffused at a high surface impurity concentration of 5 × 10 18 atoms / cm 3 or more and the surface is covered with a film containing silicon oxide during the high temperature heating process of the wafer, Since the size on the diffusion photomask is unified to a predetermined limit value of 20 μm or less, even if boron is sucked out and accumulated at a high concentration due to segregation on the silicon oxide film or the like on the high boron concentration layer. The contamination of the surface of the peripheral semiconductor region and the adverse effect on the diffusion of the semiconductor layer due to the re-diffusion can be suppressed to the minimum and the reduction in the yield rate of the semiconductor layer can be effectively prevented.

本発明を実施した結果では、半導体装置の製造歩留まり
が30%以下であったものを最低でも60%に、条件の良い
場合には90%近くまで向上することができた。また、特
性不良までには至らないまでも接地電位への漏洩電流や
回路要素間の漏洩電流が多めであった半導体装置とくに
集積回路装置についても、漏洩電流のレベルを1桁程度
減少できる効果が得られた。
As a result of carrying out the present invention, it was possible to improve the semiconductor device manufacturing yield of 30% or less to at least 60%, and to 90% under good conditions. Further, even in the case of a semiconductor device, particularly an integrated circuit device, in which the leakage current to the ground potential or the leakage current between the circuit elements is large, even if it does not lead to a characteristic failure, there is an effect that the level of the leakage current can be reduced by about one digit. Was obtained.

本発明は、その実施に当たって単に高ボロン濃度層用の
フォトマスクのパターンを変更するだけで済み、なんら
新しく工程を追加する必要がないので、従来と全く変わ
らないコストで上述のように半導体装置とくに集積回路
装置の製造歩留まりを上げ、かつその性能ないしは信頼
性を向上する実用上の効果を奏し得る半導体装置の製造
方法を提供するものである。
In carrying out the present invention, it suffices to simply change the pattern of the photomask for the high boron concentration layer, and it is not necessary to add any new steps. The present invention provides a method for manufacturing a semiconductor device, which has a practical effect of increasing the manufacturing yield of the integrated circuit device and improving its performance or reliability.

【図面の簡単な説明】[Brief description of drawings]

第1図から第5図までが本発明に関し、第1図は本発明
による半導体装置の製造方法を集積回路装置の半導体領
域の接合分離用分離層に適用した実施例を示すウエハお
よびフォトマスクの一部拡大平面図および断面図、第2
図は本発明方法を集積回路装置用チップのウエハからの
分割のためのスクライブライン部に適用したウエハの一
部拡大断面図、第3図は本発明方法をウエハ内に作り込
むモニタパターンに適用した実施例の平面図、第4図は
本発明方法をウエハ内に作り込むマスク合わせ用マーク
に適用した実施例の平面図、第5図はボロンの酸化シリ
コン膜への偏析に関する実験結果を示すボロン濃度分布
線図である。第6図は従来技術を例示するウエハの平面
図および断面図である。図において、 1:半導体シリコン基板、2:埋込層、3:半導体領域ないし
はエピタキシャル層、4:接合分離層、5:半導体装置のp
形層、6:半導体装置のn形層、10:ウエハ、11,12:半導
体装置用チップ、20:酸化シリコン膜、21:窓、22:燐ガ
ラス膜、30:フォトマスク、31:半導体領域用パターン、
32:分離層用パターン、40:モニタパターン、41:モニタ
回路要素用半導体領域、42:マーク層、43:分離層、50:
マスク合わせ用マーク、51,52:標識、C:スクライブライ
ン、R1〜R3:半導体領域の拡散パターン、T1:バイポーラ
トランジスタ、T2:電界効果トランジスタ、W1〜W3:分離
層の幅、Wm:分離層の最大幅、である。
1 to 5 relate to the present invention. FIG. 1 shows a wafer and a photomask showing an embodiment in which the method for manufacturing a semiconductor device according to the present invention is applied to a separation layer for junction separation in a semiconductor region of an integrated circuit device. Partially enlarged plan view and sectional view, second
FIG. 3 is a partially enlarged sectional view of a wafer in which the method of the present invention is applied to a scribe line portion for dividing an integrated circuit device chip from the wafer, and FIG. 3 is applied to a monitor pattern in which the method of the present invention is formed in the wafer. FIG. 4 is a plan view of an embodiment in which the method of the present invention is applied to a mask alignment mark formed in a wafer, and FIG. 5 shows an experimental result regarding segregation of boron into a silicon oxide film. It is a boron concentration distribution diagram. FIG. 6 is a plan view and a sectional view of a wafer illustrating a conventional technique. In the figure, 1: semiconductor silicon substrate, 2: buried layer, 3: semiconductor region or epitaxial layer, 4: junction isolation layer, 5: semiconductor device p
Shaped layer, 6: n-type layer of semiconductor device, 10: wafer, 11, 12: semiconductor device chip, 20: silicon oxide film, 21: window, 22: phosphorus glass film, 30: photomask, 31: semiconductor region Pattern for
32: Separation layer pattern, 40: Monitor pattern, 41: Monitor circuit element semiconductor region, 42: Mark layer, 43: Separation layer, 50:
Marks for mask alignment, 51, 52: sign, C: scribe line, R1 to R3: diffusion pattern of semiconductor region, T1: bipolar transistor, T2: field effect transistor, W1 to W3: width of separation layer, Wm: separation layer Is the maximum width of.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体シリコンのウエハ内に半導体装置を
作り込むに際し、ボロンが高い表面不純物濃度で拡散さ
れウエハの高温加熱プロセス時に表面が酸化シリコンを
含む膜で覆われる高ボロン濃度層の拡散パターンの最大
幅をその拡散用フォトマスク上の寸法で20μm以下に統
一することを特徴とする半導体装置の製造方法。
1. A diffusion pattern of a high boron concentration layer in which boron is diffused at a high surface impurity concentration when a semiconductor device is formed in a semiconductor silicon wafer and the surface is covered with a film containing silicon oxide during a high temperature heating process of the wafer. The method for manufacturing a semiconductor device is characterized in that the maximum width of the device is unified to 20 μm or less in the dimension on the photomask for diffusion.
JP63223111A 1988-09-06 1988-09-06 Method for manufacturing semiconductor device Expired - Lifetime JPH07120631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63223111A JPH07120631B2 (en) 1988-09-06 1988-09-06 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63223111A JPH07120631B2 (en) 1988-09-06 1988-09-06 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0271514A JPH0271514A (en) 1990-03-12
JPH07120631B2 true JPH07120631B2 (en) 1995-12-20

Family

ID=16792997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63223111A Expired - Lifetime JPH07120631B2 (en) 1988-09-06 1988-09-06 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH07120631B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2825721B2 (en) * 1992-12-28 1998-11-18 三鷹光器株式会社 Medical optical equipment stand device
JP2006108196A (en) * 2004-10-01 2006-04-20 Fuji Electric Device Technology Co Ltd Semiconductor device manufacturing method
US8088058B2 (en) 2005-01-20 2012-01-03 Neuronetics, Inc. Articulating arm

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928081A (en) * 1973-10-26 1975-12-23 Signetics Corp Method for fabricating semiconductor devices using composite mask and ion implantation

Also Published As

Publication number Publication date
JPH0271514A (en) 1990-03-12

Similar Documents

Publication Publication Date Title
US6524928B1 (en) Semiconductor device and method for manufacturing the same
US4835592A (en) Semiconductor wafer with dice having briding metal structure and method of manufacturing same
KR20000076026A (en) Method of providing a gettering scheme in the manufacture of silicon-on-insulator(soi) integrated circuits
JPH0348663B2 (en)
US4046605A (en) Method of electrically isolating individual semiconductor circuits in a wafer
JPH07120631B2 (en) Method for manufacturing semiconductor device
US5258644A (en) Semiconductor device and method of manufacture thereof
JPH07142586A (en) Semiconductor device
JPS59144168A (en) Bipolar mos semiconductor device and manufacture thereof
JPS60123062A (en) Manufacture of semiconductor integrated circuit
JP2724707B2 (en) Semiconductor wafer having die having bridge metal structure and method of manufacturing the same
JPS61237428A (en) Manufacture of semiconductor device
KR100275950B1 (en) A method for isolating active region
JPH02170571A (en) Semiconductor device and manufacture thereof
JPH02154428A (en) Junction separation semiconductor region structure for integrated circuit device
JPH05315341A (en) Semicondctor integrated circuit device
JPH04125975A (en) Semiconductor element and manufacture thereof
JPH02234453A (en) Manufacture of semiconductor device
JPH03142824A (en) Planar-type semiconductor device
JPH06326115A (en) Bipolar transistor and its manufacture
JPS6222451A (en) P-n junction isolation method of semiconductor substrate
JPS61135147A (en) Semiconductor integrated circuit device
JPH02296374A (en) Diode
JPS63124567A (en) Semiconductor device
JPS61111575A (en) Semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 13