JPH07120212A - Position detector - Google Patents

Position detector

Info

Publication number
JPH07120212A
JPH07120212A JP5266084A JP26608493A JPH07120212A JP H07120212 A JPH07120212 A JP H07120212A JP 5266084 A JP5266084 A JP 5266084A JP 26608493 A JP26608493 A JP 26608493A JP H07120212 A JPH07120212 A JP H07120212A
Authority
JP
Japan
Prior art keywords
light
mask
wafer
reflecting surface
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5266084A
Other languages
Japanese (ja)
Other versions
JP3346851B2 (en
Inventor
Takeshi Nishisaka
武士 西坂
Yoriyuki Ishibashi
頼幸 石橋
Tatsuhiko Touki
達彦 東木
Hiroyuki Nagahama
博幸 長浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Topcon Corp
Original Assignee
Toshiba Corp
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Topcon Corp filed Critical Toshiba Corp
Priority to JP26608493A priority Critical patent/JP3346851B2/en
Publication of JPH07120212A publication Critical patent/JPH07120212A/en
Application granted granted Critical
Publication of JP3346851B2 publication Critical patent/JP3346851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To achieve a quick position measurement by providing a reference reflection surface obliquely to a surface crossing the traveling direction and then constituting a detector with an area sensor. CONSTITUTION:Radiation beams from a white color light source 21 are split into two fluxes of light by a beam splitter 23 and one flux of light 24 is applied to a mask M and a wafer W and the other flux of light 25 is applied to a reference reflection surface 27 of a reflection mirror 26 which can travel freely in Y-axis direction. The fluxes of reflection light of the mask M and wafer W and the flux of reflection light of the reflection surface 27 are matched by the splitter 23 and the flux of light is detected by a detector 28. Then, based on the position of the reflection surface 27 and the interference position of the detector 28 when both reflection lights interfere with each other, the position of a sample surface is measured. In this case, the reflection surface 27 is formed on the surface which is inclined by an angle of theta to the surface crossing the Y axis which is the traveling direction and the angle theta is set to an angle where the reflection light passes the same inverse path as the incidence path. Also, the detector 28 is constituted by, for example, a CCD area sensor, thus simultaneously measuring the spacing length between a mask and a wafer without traveling on the reflection surface 27.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、干渉計式の位置検出装
置に係り、たとえば2つの試料間の間隙長検出などに適
した位置検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometer type position detecting device, and more particularly to a position detecting device suitable for detecting a gap length between two samples.

【0002】[0002]

【従来の技術】最近、超LSIの回路パターンをX線露
光装置を使って等倍露光で形成する試みがなされてい
る。X線露光は、高解像性を有したパターン形成技術で
あり、最小線幅 0.2μmを実現する技術の1つでもあ
る。
2. Description of the Related Art Recently, an attempt has been made to form a circuit pattern of a VLSI by an equal-magnification exposure using an X-ray exposure apparatus. X-ray exposure is a pattern forming technique with high resolution and is one of the techniques for realizing a minimum line width of 0.2 μm.

【0003】X線等倍露光装置を使って最小線幅 0.2μ
mの微細パターンを形成するには、マスクとウェハとの
重ね合せに際して±0.05μm以下の精度を得る必要があ
る。これを実現するには、マスクとウェハとの対向方向
と直交する面内の正確な位置合せは勿論のこと、半影ボ
ケやランナウト誤差を最小にするために、マスク・ウェ
ハ間の間隙長を正確に設定することが要求される。
A minimum line width of 0.2μ is obtained by using an X-ray equal-magnification exposure apparatus.
In order to form a fine pattern of m, it is necessary to obtain an accuracy of ± 0.05 μm or less when the mask and the wafer are superposed. In order to realize this, not only accurate alignment in a plane orthogonal to the facing direction of the mask and the wafer but also the gap length between the mask and the wafer is set in order to minimize penumbra blurring and runout error. Accurate settings are required.

【0004】ところで、マスク・ウェハ間の間隙長設定
を行う技術は従来から種々考えられている。代表的なも
のとして、回折格子を用いた光ヘテロダン干渉式位置検
出装置を用いた位置合せ装置と、干渉計式の位置検出装
置を用いた位置合せ装置とを挙げることができる。
By the way, various techniques for setting the gap length between the mask and the wafer have been conventionally considered. As typical examples, there are a position aligning device using an optical heterodane interferometric position detecting device using a diffraction grating and a position aligning device using an interferometer type position detecting device.

【0005】光ヘテロダン干渉式位置検出装置を用いた
位置合せ装置は、マスクとウェハとにストライプ状の回
折格子を互いのストライプを直交させて対向関係に設け
るとともに、1つの光源から放射された可干渉性の光ビ
ームを2分割し、これらを変調して得られた周波数の異
なる2本の光ビームをマスクに設けられた回折格子に対
してマスク面と垂直な面を境にして左右対称に定められ
た入射角度で照射し、この照射によって得られた回折光
のうちの特定次数の回折光間の位相差から間隙情報を得
るように構成されている。
An alignment device using an optical heterodyne interferometric position detection device is provided with stripe-shaped diffraction gratings on a mask and a wafer so as to face each other so that the stripes are orthogonal to each other, and the radiation emitted from one light source is used. The coherent light beam is divided into two, and two light beams with different frequencies obtained by modulating these are symmetrically arranged with respect to the diffraction grating provided on the mask with the plane perpendicular to the mask surface as a boundary. Irradiation is performed at a predetermined incident angle, and the gap information is obtained from the phase difference between the diffracted lights of a specific order among the diffracted lights obtained by this irradiation.

【0006】しかし、この位置合せ装置にあっては、光
ヘテロダン干渉式位置検出装置で検出できる間隙長範囲
が± 5μm程度であるため、予めたとえば静電容量式セ
ンサなどを使って上記範囲に追い込んだ後に、光ヘテロ
ダン干渉式位置検出装置を使って目標間隙長に設定する
手順を採る必要がある。このため、位置合せの迅速性に
欠ける問題があった。
However, in this alignment device, the range of the gap length that can be detected by the optical heterodyne interference position detection device is about ± 5 μm, so that the above range is previously driven by using, for example, a capacitance type sensor. After that, it is necessary to take the procedure of setting the target gap length using the optical hetero-dyne interferometric position detection device. For this reason, there is a problem that the alignment is not swiftly performed.

【0007】一方、干渉計式の位置検出装置を用いた位
置合せ装置は、図13に示すように、白色光源1から放
射された光をレンズ2で平行光束に変換した後、ビーム
スプリッタ3で2つの光束に分離し、分離された一方の
光束4を試料面であるマスクMおよびウェハWに、他方
の光束5を図中Y軸方向に移動自在な反射鏡6の基準反
射面7に照射し、マスクMあるいはウェハWで反射した
反射光束と基準反射面7で反射した反射光束とを検出器
8で検出し、両反射光が干渉したときの基準反射面7の
位置に基いて試料面の位置を計測するように構成されて
いる。
On the other hand, as shown in FIG. 13, the alignment device using the interferometer type position detection device converts the light emitted from the white light source 1 into a parallel light beam by the lens 2 and then the beam splitter 3 The light beam 4 is divided into two light beams, and one of the separated light beams 4 is applied to the mask M and the wafer W, which are sample surfaces, and the other light beam 5 is applied to the reference reflecting surface 7 of the reflecting mirror 6 which is movable in the Y-axis direction in the figure. Then, the reflected light flux reflected by the mask M or the wafer W and the reflected light flux reflected by the reference reflection surface 7 are detected by the detector 8, and the sample surface is determined based on the position of the reference reflection surface 7 when both reflected lights interfere with each other. Is configured to measure the position of.

【0008】すなわち、基準反射面7を、たとえばビー
ムスプリッタ3に近付けておき、この位置から駆動機構
9を使ってビームスプリッタ3から離れる方向に基準反
射面7を移動させる。このように移動させると、図14
中のAで示す位置まで移動した時点でビームスプリッタ
・基準反射面間の光路長とビームスプリッタ・マスク間
の光路長とが一致し、検出器8によって強い干渉光が検
出される。この干渉光が検出されたときの基準反射面7
の位置をポジションセンサ10で検出する。基準反射面
7がさらに移動して、図14中のBで示す位置まで移動
した時点でビームスプリッタ・基準反射面間の光路長と
ビームスプリッタ・ウェハ間の光路長が一致し、検出器
8によって強い干渉光が検出される。この干渉光が検出
されたときの基準反射面7の位置をポジションセンサ1
0で検出する。そして、ウェハWに対して干渉光の得ら
れた基準反射面7の位置BとマスクMに対して干渉光の
得られた基準反射面7の位置Aとの差からマスク・ウェ
ハ間の間隙長Z1 を求める。このようにして計測された
間隙長に基いてマスクテーブル駆動機構11あるいはウ
ェハテーブル駆動機構12を駆動することによりマスク
・ウェハ間の間隙長を正確に設定することが可能とな
る。
That is, the reference reflecting surface 7 is brought close to the beam splitter 3, for example, and the driving mechanism 9 is used to move the reference reflecting surface 7 away from the beam splitter 3 from this position. When moved in this manner, FIG.
The optical path length between the beam splitter / reference reflection surface and the optical path length between the beam splitter / mask coincide with each other at the time point of moving to the position indicated by A, and the detector 8 detects strong interference light. Reference reflection surface 7 when this interference light is detected
The position sensor 10 detects the position of. When the reference reflecting surface 7 further moves to the position indicated by B in FIG. 14, the optical path length between the beam splitter / reference reflecting surface and the optical path length between the beam splitter / wafer match and the detector 8 Strong coherent light is detected. The position of the reference reflection surface 7 when the interference light is detected is determined by the position sensor 1
Detect with 0. Then, from the difference between the position B of the reference reflection surface 7 where the interference light is obtained for the wafer W and the position A of the reference reflection surface 7 where the interference light is obtained for the mask M, the gap length between the mask and the wafer is obtained. Find Z 1 . By driving the mask table driving mechanism 11 or the wafer table driving mechanism 12 based on the gap length thus measured, the gap length between the mask and the wafer can be set accurately.

【0009】このような干渉計式の位置検出装置を使用
した位置合せ装置にあっては、計測範囲を広くとれる。
しかし、基準反射面7を移動させてマスク位置およびウ
ェハ位置を順次計測し、最終的に両位置の差から間隙長
1 を求める必要があるので、やはり位置合せの迅速性
に欠ける問題があった。
A positioning device using such an interferometer-type position detecting device can have a wide measuring range.
However, since it is necessary to move the reference reflecting surface 7 to sequentially measure the mask position and the wafer position and finally obtain the gap length Z 1 from the difference between the two positions, there is still a problem in that the alignment speed is insufficient. It was

【0010】[0010]

【発明が解決しようとする課題】上述の如く、位置合せ
装置において用いられている従来の光ヘテロダン干渉式
位置検出装置や干渉計式の位置検出装置にあっては、位
置計測の行える範囲が狭かったり、計測結果を得るまで
に時間を要したりし、使い易さや計測の迅速性に欠ける
問題があった。
As described above, in the conventional optical heterodyne interferometer type position detecting device and interferometer type position detecting device used in the aligning device, the range in which the position can be measured is narrow. In addition, it takes time to obtain the measurement result, and there is a problem in that it is not easy to use and quick in measurement.

【0011】そこで本発明は、位置計測の行える範囲が
広く、しかも短時間に計測結果を得ることができ、たと
えば位置合せ装置等に組込んだときその効果が大きい位
置検出装置を提供することを目的としている。
Therefore, the present invention is to provide a position detecting device which has a wide range of position measurement and can obtain a measurement result in a short time, and which has a great effect when incorporated in, for example, a positioning device. Has an aim.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、白色光源から出た光束をビームスプリッ
タで2つの光束に分離し、分離された一方の光束を試料
面に、他方の光束をこの光束に沿った方向に移動自在な
反射鏡の基準反射面に照射し、試料面で反射した反射光
束と基準反射面で反射した反射光束とを干渉させた光を
検出器で電気信号に変換するようにした位置検出装置に
おいて、前記基準反射面が前記移動方向と直交する面に
対して傾斜して設けられた少なくとも1つの反射面で構
成されており、前記検出器がラインセンサもしくはエリ
アセンサで構成されていることを特徴としている。
In order to achieve the above object, the present invention separates a light beam emitted from a white light source into two light beams by a beam splitter, and one of the separated light beams is directed to a sample surface and the other is directed to the other surface. The luminous flux of is radiated to the reference reflecting surface of the reflecting mirror that is movable in the direction along this luminous flux, and the light that interferes with the reflected luminous flux reflected on the sample surface and the reflected luminous flux reflected on the reference reflecting surface is electrically detected by the detector. In a position detecting device for converting into a signal, the reference reflecting surface is composed of at least one reflecting surface inclined with respect to a surface orthogonal to the moving direction, and the detector is a line sensor. Alternatively, it is characterized by being configured by an area sensor.

【0013】[0013]

【作用】基準反射面の傾斜角が小さい範囲では、ビーム
スプリッタを通して基準反射面に入射した光のほとんど
が、入射経路と同じ経路を逆方向に辿る反射光となって
ビームスプリッタ側へと進む。
In the range where the inclination angle of the reference reflecting surface is small, most of the light that has entered the reference reflecting surface through the beam splitter becomes reflected light that follows the same path as the incident path in the opposite direction, and travels to the beam splitter side.

【0014】今、基準反射面が1つの反射面で構成され
ている場合を例にとると、ビームスプリッタ・試料面間
の光路長が、基準反射面の傾斜角で決まるビームスプリ
ッタ・基準反射面間の最短光路長と最大光路長との間に
あるとき、検出器によって干渉光が検出される。この干
渉光の検出される検出器上の位置は、基準反射面のビー
ムスプリッタに対する位置と、基準反射面の傾斜角と、
検出器の配置とによって決まる。基準反射面のビームス
プリッタに対する位置はポジションセンサで知ることが
でき、基準反射面の傾斜角は既知であり、検出器の配置
は組立て時に既知である。したがって、干渉光の検出さ
れた検出器上の位置から干渉を起こした光路長、つまり
試料面の位置を計測することができる。つまり、ビーム
スプリッタ・試料面間の光路長が、ビームスプリッタ・
基準反射面間の最短光路長と最大光路長との間にあると
きには、基準反射面を移動させることなく、試料面の位
置を計測することができる。
Taking the case where the reference reflecting surface is composed of one reflecting surface as an example, the optical path length between the beam splitter and the sample surface is determined by the tilt angle of the reference reflecting surface. The interfering light is detected by the detector when it is between the shortest optical path length and the maximum optical path length therebetween. The position on the detector where this interference light is detected is the position of the reference reflection surface with respect to the beam splitter, the inclination angle of the reference reflection surface,
It depends on the arrangement of detectors. The position of the reference reflecting surface with respect to the beam splitter can be known by the position sensor, the inclination angle of the reference reflecting surface is known, and the detector arrangement is known at the time of assembly. Therefore, it is possible to measure the optical path length that causes interference, that is, the position of the sample surface, from the position on the detector where the interference light is detected. In other words, the optical path length between the beam splitter and the sample surface is
When it is between the shortest optical path length and the maximum optical path length between the reference reflecting surfaces, the position of the sample surface can be measured without moving the reference reflecting surface.

【0015】また、マスクとウェハとの関係のように、
試料面が2段構成の場合、ビームスプリッタ・マスク間
の光路長とビームスプリッタ・ウェハ間の光路長との両
方が、ビームスプリッタ・基準反射面間の最短光路長と
最大光路長との間にあるとき、やはり基準反射面を移動
させることなく、マスク位置およびウェハ位置、つまり
マスク・ウェハ間の間隙長を一度に計測することができ
る。
Further, like the relationship between the mask and the wafer,
When the sample surface has a two-stage structure, both the optical path length between the beam splitter and the mask and the optical path length between the beam splitter and the wafer are between the shortest optical path length and the maximum optical path length between the beam splitter and the reference reflection surface. At some time, the mask position and the wafer position, that is, the gap length between the mask and the wafer can be measured at once without moving the reference reflecting surface.

【0016】また、基準反射面を傾斜角が同じで段差を
有した複数の反射面で構成したり、傾斜角が異なる複数
の反射面で構成したりすることにより、基準反射面の移
動量を抑えた状態で、マスク・ウェハ間の広い範囲に亘
る間隙長の計測が可能となる。
Further, the reference reflecting surface is composed of a plurality of reflecting surfaces having the same inclination angle and a step, or a plurality of reflecting surfaces having different inclination angles, so that the movement amount of the reference reflecting surface is increased. It is possible to measure the gap length over a wide range between the mask and the wafer in a suppressed state.

【0017】[0017]

【実施例】以下、図面を参照しながら実施例を説明す
る。図1には本発明の一実施例に係る位置検出装置でマ
スクMとウェハWとの間のの間隙長Z1 を計測している
例が示されている。
Embodiments will be described below with reference to the drawings. FIG. 1 shows an example of measuring a gap length Z 1 between a mask M and a wafer W by a position detecting device according to an embodiment of the present invention.

【0018】この位置検出装置は、白色光源21から放
射された光をレンズ22で平行光束に変換した後、ビー
ムスプリッタ23で2つの光束に分離し、分離された一
方の光束24を試料面であるマスクMおよびウェハW
に、他方の光束25を図中Y軸方向に移動自在な反射鏡
26の基準反射面27に照射し、マスクMあるいはウェ
ハWで反射した反射光束と基準反射面27で反射した反
射光束とをビームスプリッタ23で一致させた光束を検
出器28で検出し、両反射光が干渉したときの基準反射
面27の位置および検出器28上の干渉位置に基いて試
料面の位置を計測するように構成されている。なお、図
1中、29は反射鏡26を移動させるための駆動機構を
示し、30は基準反射面27の位置を検出するためのポ
ジションセンサを示し、31はマスクテーブル駆動機構
を示し、32はウェハテーブル駆動機構を示している。
In this position detecting device, after the light emitted from the white light source 21 is converted into a parallel light flux by the lens 22, it is split into two light fluxes by the beam splitter 23, and one of the split light fluxes 24 is reflected on the sample surface. Certain mask M and wafer W
Then, the other light flux 25 is applied to the reference reflection surface 27 of the reflecting mirror 26 that is movable in the Y-axis direction in the figure, and the reflection light flux reflected by the mask M or the wafer W and the reflection light flux reflected by the reference reflection surface 27 are reflected. The detector 28 detects the light fluxes matched by the beam splitter 23, and the position of the sample surface is measured based on the position of the reference reflection surface 27 and the interference position on the detector 28 when both reflected lights interfere. It is configured. In FIG. 1, 29 indicates a drive mechanism for moving the reflecting mirror 26, 30 indicates a position sensor for detecting the position of the reference reflection surface 27, 31 indicates a mask table drive mechanism, and 32 indicates. The wafer table drive mechanism is shown.

【0019】ここで、この実施例に係る位置検出装置が
図13に示される従来の位置検出装置と大きく異なる点
は基準反射面27の構成にある。基準反射面27は、図
2に示すように、移動方向(Y軸方向)と直交する面に
対してθだけ傾いた面に形成されている。なお、傾き角
θは、ビームスプリッタ23を通して基準反射面27に
入射した光のほとんどを入射経路と同じ経路で逆方向に
辿る反射光としてビームスプリッタ23側へ進ませ得る
角度に設定されている。以下の図では、判り易くするた
めに傾き角θを大にして示してある。
Here, the point that the position detecting apparatus according to this embodiment is largely different from the conventional position detecting apparatus shown in FIG. 13 is the structure of the reference reflecting surface 27. As shown in FIG. 2, the reference reflecting surface 27 is formed on a surface inclined by θ with respect to a surface orthogonal to the moving direction (Y-axis direction). The tilt angle θ is set to an angle that allows most of the light that has entered the reference reflecting surface 27 through the beam splitter 23 to travel to the beam splitter 23 side as reflected light that follows the same path as the incident path but in the opposite direction. In the following figures, the tilt angle θ is shown large for easy understanding.

【0020】検出器28は、図3に示すように、縦横寸
法がそれぞれ数μmの受光素子33をX軸方向およびY
軸方向にそれぞれ所定ピッチで配列した、たとえばCC
Dエリアセンサによって構成されている。
As shown in FIG. 3, the detector 28 includes a light receiving element 33 having vertical and horizontal dimensions of several μm in the X-axis direction and the Y-axis direction.
For example, CCs arranged in a predetermined pitch in the axial direction
It is composed of a D area sensor.

【0021】このように構成されているので、基準反射
面27の移動量を最小に抑えた状態あるいは基準反射面
27を移動させることなく、マスク・ウェハ間の間隙長
を計測することができる。
With this configuration, the gap length between the mask and the wafer can be measured in a state in which the movement amount of the reference reflecting surface 27 is minimized or without moving the reference reflecting surface 27.

【0022】すなわち、図4にはビームスプリッタ23
と基準反射面27との間の光路およびビームスプリッタ
23とマスクMならびにウェハWとの間の光路が示され
ている。ビームスプリッタ23と基準反射面27との間
を進む光束25の光路長は、基準反射面27の傾きの影
響によりLβ1〜Lβ2の間の値となる。基準反射面2
7の傾き角をθとし、光路長Lβ1の位置を基準にした
とき、任意の点Pまでの距離をxとすると、Pの位置で
の光路長LβPは(1) 式で表される。
That is, the beam splitter 23 is shown in FIG.
And the reference reflection surface 27 and the optical path between the beam splitter 23, the mask M and the wafer W are shown. The optical path length of the light beam 25 traveling between the beam splitter 23 and the reference reflecting surface 27 becomes a value between Lβ1 and Lβ2 due to the influence of the inclination of the reference reflecting surface 27. Reference reflective surface 2
When the inclination angle of 7 is θ and the position of the optical path length Lβ1 is used as a reference, the optical path length LβP at the position of P is expressed by equation (1), where x is the distance to the arbitrary point P.

【0023】 LβP=Lβ1−x・tan θ …(1) 一方、ビームスプリッタ23とウェハWとの間を進む光
束24の光路長をLα1、ビームスプリッタ23とマス
クMとの間を進む光束24の光路長をLα2とし、基準
反射面27上の任意の2点の位置での光路長をLβ1,
Lβ2とし、光の波長をλとすると、光の干渉の原理か
ら下記の(2) 〜(5) 式が満たされたときにそれぞれ干渉
が起こって光量が増大する。
LβP = Lβ1-x · tan θ (1) On the other hand, the optical path length of the light beam 24 traveling between the beam splitter 23 and the wafer W is Lα1, and the light beam 24 traveling between the beam splitter 23 and the mask M is The optical path length is Lα2, and the optical path lengths at arbitrary two points on the reference reflecting surface 27 are Lβ1,
If Lβ2 is set and the wavelength of light is set to λ, interference occurs and the amount of light increases when the following expressions (2) to (5) are satisfied from the principle of light interference.

【0024】 |Lα1−Lβ1|=nλ/ 2 …(2) |Lα2−Lβ2|=nλ/ 2 …(3)
|Lα1−Lβ2|=nλ/ 2 …(4) |Lα2−Lβ1|=nλ/ 2 …(5) なお、上記(2) 〜(5) 式において、nは干渉次数であ
り、この例では白色光源を使用しているので、n= 0の
ときのみ干渉を起こす。
| Lα1-Lβ1 | = nλ / 2 (2) | Lα2-Lβ2 | = nλ / 2 (3)
| Lα1-Lβ2 | = nλ / 2 (4) | Lα2-Lβ1 | = nλ / 2 (5) In the formulas (2) to (5), n is the interference order, and in this example, white Since a light source is used, interference occurs only when n = 0.

【0025】今、マスク・ウェハ間の光路長がdLα
(=Lα1−Lα2)であるとき、基準反射面27上の
任意の2点での光束25の光路長Lβ1とLβ2との差
dLβ(=Lβ1−Lβ2)がdLαと等しいときに
は、基準反射面27のY軸方向の位置を調整することに
よって、マスクMによる干渉光とウェハWによる干渉光
とを検出器28で同時に検出することができる。そのと
き、基準反射面27上ではdLα/tan θだけ離れた位
置で干渉が起こる。
Now, the optical path length between the mask and the wafer is dLα.
When (= Lα1−Lα2), when the difference dLβ (= Lβ1−Lβ2) between the optical path lengths Lβ1 and Lβ2 of the light flux 25 at any two points on the reference reflecting surface 27 is equal to dLα, the reference reflecting surface 27 By adjusting the position in the Y-axis direction, the interference light from the mask M and the interference light from the wafer W can be simultaneously detected by the detector 28. At that time, interference occurs on the reference reflecting surface 27 at a position separated by dLα / tan θ.

【0026】図5には、光束25の最大光路長と最小光
路長との差dLβと、dLαと、θとの関係が 0<θ,
dLβ<dLαであるとき、ビームスプリッタ23から
離れる方向に基準反射面27を移動させたときに、干渉
の起こる基準反射面27上の位置Qの推移が示されてい
る。m1 がマスクMによって起こる範囲を示し、m2
ウェハWによって起こる範囲を示している。
In FIG. 5, the relationship between the difference dLβ between the maximum optical path length and the minimum optical path length of the light beam 25, dLα, and θ is 0 <θ,
When dLβ <dLα, the transition of the position Q on the reference reflection surface 27 where interference occurs when the reference reflection surface 27 is moved in the direction away from the beam splitter 23 is shown. m 1 indicates the range caused by the mask M, and m 2 indicates the range caused by the wafer W.

【0027】したがって、この場合には、干渉位置Qが
基準反射面27上の中心、つまり検出器28の中心位置
で干渉光が検出されたときにポジションセンサ30によ
って検出された位置Aと、次に検出器28の中心位置で
干渉光が検出されたときにポジションセンサ30によっ
て検出された位置Bとの差によってマスク・ウェハ間の
間隙長を知ることができる。この場合、基準反射面27
の移動量に対する計測可能な間隙長範囲を広くすること
ができる。
Therefore, in this case, the interference position Q is the center on the reference reflecting surface 27, that is, the position A detected by the position sensor 30 when the interference light is detected at the center position of the detector 28, and In addition, when the interference light is detected at the center position of the detector 28, the gap length between the mask and the wafer can be known from the difference from the position B detected by the position sensor 30. In this case, the reference reflection surface 27
It is possible to widen the measurable gap length range with respect to the movement amount of.

【0028】図6には、光束25の最大光路長と最小光
路長との差dLβと、dLαと、θとの関係が 0<θ,
dLβ>dLαであるとき、ビームスプリッタ23から
離れる方向に基準反射面27を移動させたときに、干渉
の起こる基準反射面27上の位置QM ,QW の推移が示
されている。QM がマスクMによって起こる位置を示
し、QW がウェハWによって起こる位置を示している。
In FIG. 6, the relationship between the difference dLβ between the maximum optical path length and the minimum optical path length of the light beam 25, dLα, and θ is 0 <θ,
When dLβ> dLα, transitions of the positions Q M and Q W on the reference reflecting surface 27 where interference occurs when the reference reflecting surface 27 is moved away from the beam splitter 23 are shown. Q M indicates a position caused by the mask M, and Q W indicates a position caused by the wafer W.

【0029】この場合には、範囲m3 内においてマスク
Mによる干渉光とウェハWによる干渉光とを同時に検出
器28によって観測することができるので、干渉光が検
出された検出器28上の位置からマスク・ウェハ間の間
隙長を計測できる。すなわち、基準反射面28の傾き角
は既知であり、検出器28の配置および素子ピッチも既
知であるため、干渉光が検出された検出器27上の位置
からマスク・ウェハ間の間隙長を計測できることにな
る。したがって、基準反射面27の移動量を最小に抑え
た状態で、かつ広い間隙長範囲に亘って迅速な計測が可
能となる。
In this case, since the interference light from the mask M and the interference light from the wafer W can be simultaneously observed by the detector 28 within the range m 3 , the position on the detector 28 at which the interference light is detected is detected. The gap length between the mask and the wafer can be measured from. That is, since the inclination angle of the reference reflecting surface 28 is known, and the arrangement and element pitch of the detector 28 are also known, the gap length between the mask and the wafer is measured from the position on the detector 27 where the interference light is detected. You can do it. Therefore, it is possible to perform quick measurement over a wide range of the gap length while keeping the movement amount of the reference reflecting surface 27 to a minimum.

【0030】なお、本発明は上記実施例に限定されるも
のではなく、種々変形することができる。たとえば、図
7に示すように、移動方向と直交する面に対する傾き角
θが等しく、かつ移動方向と平行する方向にHの段差を
持つ2つの反射面J1 ,J2 を持つ基準反射面27aを
備えた反射鏡26aを用いるようにしてもよい。
The present invention is not limited to the above embodiment, but can be variously modified. For example, as shown in FIG. 7, a reference reflecting surface 27a having two reflecting surfaces J 1 and J 2 having the same inclination angle θ with respect to a plane orthogonal to the moving direction and having a step difference of H in the direction parallel to the moving direction. You may make it use the reflecting mirror 26a provided with.

【0031】マスク・ウェハ間の間隙長検出に際して、
上記構成の反射鏡26aを駆動機構で移動させると、干
渉の起こる基準反射面27a上の位置QM ,QW は図8
(a),(b),(c)に示すように推移する。
When detecting the gap length between the mask and the wafer,
When the reflecting mirror 26a having the above structure is moved by the driving mechanism, the positions Q M and Q W on the reference reflecting surface 27a where interference occurs are shown in FIG.
It changes as shown in (a), (b), and (c).

【0032】すなわち、図8(a) はマスク・ウェハ間の
間隙長が段差Hより狭い場合であり、図8(b) はマスク
・ウェハ間の間隙長が段差Hと等しい場合であり、図8
(c)はマスク・ウェハ間の間隙長が段差Hより広い場合
である。
That is, FIG. 8A shows the case where the gap length between the mask and the wafer is narrower than the step H, and FIG. 8B shows the case where the gap length between the mask and the wafer is equal to the step H. 8
(c) is the case where the gap length between the mask and the wafer is wider than the step H.

【0033】これらの図から判るように、マスク・ウェ
ハ間の間隙長が段差Hと等しい場合には干渉の起こる位
置QM ,QW が等しくなり、マスク・ウェハ間の間隙長
と段差Hとが異なるときには、そのずれ量に応じて干渉
の起こる位置QM ,QW が左右にずれる。したがって、
位置QM ,QW のずれ量を検出器28の出力から計測す
ることによって、段差Hに対する間隙長のずれ量を知る
ことができる。
As can be seen from these figures, when the mask-wafer gap length is equal to the step H, the positions Q M and Q W at which interference occurs are equal, and the mask-wafer gap length and the step H are equal to each other. , The positions Q M and Q W at which interference occurs are shifted to the left and right according to the amount of deviation. Therefore,
By measuring the shift amount between the positions Q M and Q W from the output of the detector 28, the shift amount of the gap length with respect to the step H can be known.

【0034】また、図9に示すように、移動方向と直交
する面に対する傾き角θ1 が大きい反射面J1 と、傾き
角θ2 が小さい反射面J2 とを持つ基準反射面27bを
備えた反射鏡26bを用いるようにしてもよい。
Further, as shown in FIG. 9, a reflecting surface J 1 is larger inclination angle theta 1 with respect to a plane perpendicular to the moving direction, with a reference reflective surface 27b with an inclination angle theta 2 is less reflective surface J 2 Alternatively, the reflecting mirror 26b may be used.

【0035】基本的に、反射面の傾き角が小さいときに
は、測定方向に対する分解能が得られるが、計測範囲が
狭くなる。逆に、反射面の傾き角が大きいときには、計
測方向に対する分解能が悪くなるが、計測範囲が広くな
る。したがって、マスク・ウェハ間の間隙長検出に際し
て、上記構成の反射鏡26bを駆動機構で移動させる
と、干渉の起こる基準反射面27b上の位置QM ,QW
が図10に示すように推移するので、傾き角の大きい反
射面J1 上の位置QM ,QW を使って計測領域に追い込
んだ後、傾き角の小さい反射面J2 上の位置QM ,QW
を使って正確な間隙長計測を行うことが可能となる。な
お、図10中、AはマスクMによる干渉が反射面J2
の中心で起こる位置を示し、BはウェハWによる干渉が
反射面J2上の中心で起こる位置を示している。
Basically, when the inclination angle of the reflecting surface is small, the resolution in the measuring direction can be obtained, but the measuring range becomes narrow. On the contrary, when the tilt angle of the reflecting surface is large, the resolution in the measuring direction is poor, but the measuring range is wide. Therefore, when detecting the gap length between the mask and the wafer, if the reflecting mirror 26b having the above-mentioned structure is moved by the driving mechanism, the positions Q M and Q W on the reference reflecting surface 27b where interference occurs will occur.
As shown in FIG. 10, since the positions Q M and Q W on the reflecting surface J 1 having a large tilt angle are used to move into the measurement area, the position Q M on the reflecting surface J 2 having a small tilt angle is used. , Q W
It becomes possible to accurately measure the gap length by using. In FIG. 10, A indicates the position where the interference due to the mask M occurs at the center on the reflecting surface J 2 , and B indicates the position where the interference due to the wafer W occurs at the center on the reflecting surface J 2 .

【0036】図11には本発明に係る位置検出装置を応
用して試料の傾きを計測する例が示されている。この例
では、光束25の光軸上に頂部が位置するように2つの
反射面J1 ,J2 を山型状(谷型状でも可)に組合せた
基準反射面27cを持つ反射鏡26cを用いている。
FIG. 11 shows an example of measuring the inclination of the sample by applying the position detecting device according to the present invention. In this example, a reflecting mirror 26c having a reference reflecting surface 27c in which two reflecting surfaces J 1 and J 2 are combined in a mountain shape (a valley shape is also possible) so that the top portion is located on the optical axis of the light flux 25 is provided. I am using.

【0037】このような反射鏡26cを用いると、図中
a,b,cで示すように試料34に傾きがなく、高さの
みが変化した場合には、図中a′,b′,c′で示すよ
うに基準反射面27cの頂上位置35を中心にした左右
対象の位置Q1 ,Q2 において干渉が起こる。しかし、
試料34が図中d,eで示すように傾いている場合に
は、傾きに応じて左右の干渉位置の中心が図中d′,
e′で示すように基準反射面27cの頂上位置35から
ずれたものになる。このずれ量を図示しない検出器の出
力から計測することによって試料34がどれだけ、どの
方向に傾いているかを知ることができる。
When such a reflecting mirror 26c is used, as shown by a, b, and c in the figure, when the sample 34 has no inclination and only the height changes, a ', b', and c in the figure. As shown by ′, interference occurs at left and right symmetrical positions Q 1 and Q 2 centered on the top position 35 of the reference reflecting surface 27c. But,
When the sample 34 is tilted as shown by d and e in the figure, the center of the left and right interference positions is d ',
As indicated by e ', the reference reflecting surface 27c is displaced from the top position 35. By measuring this amount of deviation from the output of a detector (not shown), it is possible to know how much and in what direction the sample 34 is tilted.

【0038】図12には基準反射面の変形例が示されて
いる。図中(a) ,(b) に示される基準反射面27d,2
7eは、図7に示したものと同様に、反射面に段差を設
け、かつ同じ傾きでそれぞれの反射面Jを設けている。
このような基準反射面27d,27eを用いると、図7
で説明したように反射面間に設けた段差以上に高さの異
なる試料面間の間隙長を一度に計測できる。図中(c) に
示される基準反射面27fは傾きの異なる2つの反射面
Jを設けている。このような基準反射面27fを用いる
と、図9で説明したように、傾きの大きい反射面で広い
範囲を計測でき、傾きの小さい反射面で精密に計測でき
る。図中(d) に示されている基準反射面27gは、2つ
の反射面Jをそれぞれ反対方向に同じ傾き量だけ傾けて
いる。このような基準反射面27gを用いると、計測範
囲を広くでき、しかも試料面の高さが変わるとそれぞれ
の反射面で干渉位置が反対方向に移動するので、1つの
反射面で計測する場合に比べて2倍の分解能が得られ
る。図中(e) に示される基準反射面27hは反射面Jの
中心部の傾き量を小さくして分解能を上げ、精密な位置
検出が行えるようにし、両端は傾きを大きくして計測範
囲を広くできるようにしている。図中(f) に示される基
準反射面27iは、基本的には(e) に示されているもの
と同じであるが、反射面Jの傾きが連続的に変化するよ
うにしている。図中(g) に示される基準反射面27jは
図11に示されるものを拡張したものであり、中心から
上下左右にそれぞれ同じ量だけ傾いた反射面Jを備え、
2方向の傾きを計測できるようにしている。
FIG. 12 shows a modification of the reference reflecting surface. Reference reflection surfaces 27d, 2 shown in (a) and (b) in the figure
7e, similar to that shown in FIG. 7, the reflecting surface is provided with steps and the reflecting surfaces J are provided at the same inclination.
When such reference reflecting surfaces 27d and 27e are used, the structure shown in FIG.
As described above, the gap length between the sample surfaces having different heights than the step provided between the reflecting surfaces can be measured at one time. The reference reflecting surface 27f shown in (c) in the figure is provided with two reflecting surfaces J having different inclinations. When such a reference reflecting surface 27f is used, a wide range can be measured with a reflecting surface having a large inclination and precise measurement can be performed with a reflecting surface having a small inclination, as described with reference to FIG. In the reference reflecting surface 27g shown in FIG. 3D, the two reflecting surfaces J are tilted in the opposite directions by the same tilt amount. When such a reference reflection surface 27g is used, the measurement range can be widened, and when the height of the sample surface changes, the interference positions on the respective reflection surfaces move in opposite directions. Therefore, when measuring with one reflection surface. Double the resolution can be obtained. The reference reflection surface 27h shown in (e) in the figure reduces the inclination amount of the central portion of the reflection surface J to improve the resolution and enables precise position detection, and increases the inclination at both ends to widen the measurement range. I am able to do it. The reference reflecting surface 27i shown in (f) in the figure is basically the same as that shown in (e), but the inclination of the reflecting surface J is continuously changed. The reference reflection surface 27j shown in (g) in the figure is an extension of that shown in FIG. 11, and is provided with reflection surfaces J that are inclined from the center vertically and horizontally by the same amount.
The tilt in two directions can be measured.

【0039】また、図1に示すように1つの反射面から
なる基準反射面を持つ反射鏡を用いる場合には、検出器
28をラインセンサで構成してもよい。その他、本発明
の要旨を逸脱しない範囲で種々変形実施できることは勿
論である。
When a reflecting mirror having a reference reflecting surface consisting of one reflecting surface is used as shown in FIG. 1, the detector 28 may be composed of a line sensor. Of course, various modifications can be made without departing from the scope of the present invention.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
移動自在に配置される反射鏡の基準反射面を移動方向と
直交する面に対して傾けているので、反射鏡の移動量を
抑えた状態で広い範囲に亘っての位置計測を行うことが
できる。また、基準反射面の傾き角を設定することによ
って反射鏡を移動させることなく複数の試料間の間隙長
を計測することもできる。したがって、計測範囲の拡大
化および計測に要する時間の短縮化に寄与できる。ま
た、基準反射面を傾き角の異なる複数の反射面で構成す
ることによって計測位置への追い込みを容易化でき、計
測に要する時間の一層の短縮化に寄与できる。さらに、
基準反射面を目標とする間隙長と等しい段差を持った反
射面で構成することにより、反射鏡の移動量を抑えた状
態で、高速な間隙長設定にも寄与できる。
As described above, according to the present invention,
Since the reference reflecting surface of the movably arranged reflecting mirror is tilted with respect to the plane orthogonal to the moving direction, it is possible to measure the position over a wide range while suppressing the moving amount of the reflecting mirror. . Further, by setting the inclination angle of the reference reflecting surface, the gap length between a plurality of samples can be measured without moving the reflecting mirror. Therefore, the measurement range can be expanded and the time required for measurement can be shortened. Further, by configuring the reference reflecting surface with a plurality of reflecting surfaces having different inclination angles, it is possible to easily drive to the measurement position and contribute to further shortening of the time required for measurement. further,
By configuring the reference reflecting surface with a reflecting surface having a step equal to the target gap length, it is possible to contribute to high-speed gap length setting while suppressing the movement amount of the reflecting mirror.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る位置検出装置の概略構
成図
FIG. 1 is a schematic configuration diagram of a position detection device according to an embodiment of the present invention.

【図2】同装置に組込まれた反射鏡を取出して示す斜視
FIG. 2 is a perspective view showing a reflecting mirror incorporated in the same device as shown in FIG.

【図3】同装置に組込まれた検出器における受光素子配
置例を示す図
FIG. 3 is a diagram showing an arrangement example of light receiving elements in a detector incorporated in the same device.

【図4】同装置による計測原理を説明するための図FIG. 4 is a diagram for explaining a measurement principle of the device.

【図5】同装置によって試料であるマスク・ウェハを計
測したときの基準反射面移動量と基準反射面上における
干渉位置の推移との関係を説明するための図
FIG. 5 is a diagram for explaining the relationship between the movement amount of the reference reflection surface and the transition of the interference position on the reference reflection surface when the mask wafer as the sample is measured by the same apparatus.

【図6】同装置によって試料であるマスク・ウェハを計
測したときの基準反射面移動量と基準反射面上における
干渉位置の推移との関係を説明するための図
FIG. 6 is a diagram for explaining the relationship between the movement amount of the reference reflection surface and the transition of the interference position on the reference reflection surface when the mask wafer as the sample is measured by the same apparatus.

【図7】反射鏡に設けられる基準反射面の変形例を示す
斜視図
FIG. 7 is a perspective view showing a modified example of a reference reflecting surface provided on a reflecting mirror.

【図8】同基準反射面を持つ反射鏡を用いて試料である
マスク・ウェハを計測したときの基準反射面移動量と基
準反射面上における干渉位置の推移との関係を説明する
ための図
FIG. 8 is a diagram for explaining a relationship between a movement amount of a reference reflection surface and a transition of an interference position on the reference reflection surface when a mask wafer as a sample is measured using a reflection mirror having the reference reflection surface.

【図9】反射鏡に設けられる基準反射面の別の変形例を
示す斜視図
FIG. 9 is a perspective view showing another modification of the reference reflecting surface provided on the reflecting mirror.

【図10】同基準反射面を持つ反射鏡を用いて試料であ
るマスク・ウェハを計測したときの基準反射面移動量と
基準反射面上における干渉位置の推移との関係を説明す
るための図
FIG. 10 is a diagram for explaining the relationship between the movement amount of the reference reflection surface and the transition of the interference position on the reference reflection surface when a mask wafer, which is a sample, is measured using the reflection mirror having the reference reflection surface.

【図11】反射鏡に設けられる基準反射面のさらに別の
変形例とその作用を説明するための図
FIG. 11 is a view for explaining still another modification of the reference reflecting surface provided on the reflecting mirror and its operation.

【図12】反射鏡に設けられる基準反射面のそれぞれ異
なる変形例を示す図
FIG. 12 is a diagram showing different modifications of the reference reflecting surface provided on the reflecting mirror.

【図13】従来の干渉計式位置検出装置の概略構成を示
す図
FIG. 13 is a diagram showing a schematic configuration of a conventional interferometer-type position detection device.

【図14】同装置を用いて試料であるマスク・ウェハを
計測したときの基準反射面移動量と干渉位置との関係を
説明するための図
FIG. 14 is a diagram for explaining a relationship between a reference reflection surface movement amount and an interference position when a mask wafer as a sample is measured using the same apparatus.

【符号の説明】[Explanation of symbols]

21…白色光源 22…レンズ 23…ビームスプリッタ 24…一方の
光束 25…他方の光束 28…検出器 26,26a,26b,26c…反射鏡 29…駆動機
構 27,27a〜27j…基準反射面 30…ポジシ
ョンセンサ 31…マスクテーブル駆動機構 32…ウェハ
テーブル駆動機構 33…受光素子 J,J1 ,J
2 …反射面
21 ... White light source 22 ... Lens 23 ... Beam splitter 24 ... One light flux 25 ... Other light flux 28 ... Detector 26, 26a, 26b, 26c ... Reflector 29 ... Drive mechanism 27, 27a-27j ... Reference reflection surface 30 ... Position sensor 31 ... Mask table drive mechanism 32 ... Wafer table drive mechanism 33 ... Light receiving element J, J 1 , J
2 … Reflective surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東木 達彦 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 長浜 博幸 東京都板橋区蓮沼町75番1号 株式会社ト プコン内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuhiko Higashi 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Toshiba Research and Development Center (72) Inventor Hiroyuki Nagahama 75 Hasunuma-cho, Itabashi-ku, Tokyo No. 1 Topcon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】白色光源から出た光束をビームスプリッタ
で2つの光束に分離し、分離された一方の光束を試料面
に、他方の光束をこの光束に沿った方向に移動自在な反
射鏡の基準反射面に照射し、上記試料面で反射した反射
光束と上記基準反射面で反射した反射光束とを干渉させ
た光を検出器で電気信号に変換するようにした位置検出
装置において、前記基準反射面は前記移動方向と直交す
る面に対して傾斜した少なくとも1つの反射面で構成さ
れ、前記検出器はラインセンサもしくはエリアセンサで
構成されていることを特徴とする位置検出装置。
1. A light beam emitted from a white light source is separated into two light beams by a beam splitter, one of the separated light beams is directed to a sample surface, and the other light beam is moved in a direction along the light beam. In the position detecting device, which irradiates the reference reflection surface and causes the reflected light flux reflected by the sample surface and the reflected light flux reflected by the reference reflection surface to interfere with each other, is converted into an electric signal by the detector. The position detecting device, wherein the reflecting surface is composed of at least one reflecting surface inclined with respect to a surface orthogonal to the moving direction, and the detector is composed of a line sensor or an area sensor.
JP26608493A 1993-10-25 1993-10-25 Position detection device Expired - Fee Related JP3346851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26608493A JP3346851B2 (en) 1993-10-25 1993-10-25 Position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26608493A JP3346851B2 (en) 1993-10-25 1993-10-25 Position detection device

Publications (2)

Publication Number Publication Date
JPH07120212A true JPH07120212A (en) 1995-05-12
JP3346851B2 JP3346851B2 (en) 2002-11-18

Family

ID=17426123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26608493A Expired - Fee Related JP3346851B2 (en) 1993-10-25 1993-10-25 Position detection device

Country Status (1)

Country Link
JP (1) JP3346851B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324308A (en) * 2000-05-15 2001-11-22 Nikon Corp Interval measuring instrument and surface shape measuring instrument
JP2009121969A (en) * 2007-11-15 2009-06-04 Topcon Corp Method and device for measuring height of bump
JP2010014426A (en) * 2008-07-01 2010-01-21 Topcon Corp Measuring device
JP2011518312A (en) * 2007-12-14 2011-06-23 インテクプラス カンパニー、リミテッド 3D shape measuring device
US9156166B2 (en) 2013-08-05 2015-10-13 Kabushiki Kaisha Toshiba Robot control device
US9242374B2 (en) 2012-08-10 2016-01-26 Kabushiki Kaisha Toshiba Robotic control apparatus
CN107702657A (en) * 2017-10-31 2018-02-16 北京汽车研究总院有限公司 A kind of gap measuring device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324308A (en) * 2000-05-15 2001-11-22 Nikon Corp Interval measuring instrument and surface shape measuring instrument
JP2009121969A (en) * 2007-11-15 2009-06-04 Topcon Corp Method and device for measuring height of bump
JP2011518312A (en) * 2007-12-14 2011-06-23 インテクプラス カンパニー、リミテッド 3D shape measuring device
JP2010014426A (en) * 2008-07-01 2010-01-21 Topcon Corp Measuring device
US9242374B2 (en) 2012-08-10 2016-01-26 Kabushiki Kaisha Toshiba Robotic control apparatus
US9156166B2 (en) 2013-08-05 2015-10-13 Kabushiki Kaisha Toshiba Robot control device
CN107702657A (en) * 2017-10-31 2018-02-16 北京汽车研究总院有限公司 A kind of gap measuring device
CN107702657B (en) * 2017-10-31 2024-03-22 北京汽车集团越野车有限公司 Spacing measuring device

Also Published As

Publication number Publication date
JP3346851B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
KR102042212B1 (en) Determining a position of a substrate in lithography
NL2008679C2 (en) Position determination in a lithography system using a substrate having a partially reflective position mark.
JP3008633B2 (en) Position detection device
JP3346851B2 (en) Position detection device
JP2676933B2 (en) Position detection device
JP2814538B2 (en) Alignment device and alignment method
JPH08306602A (en) Alignment equipment
JP2796347B2 (en) Projection exposure method and apparatus
JP2996211B2 (en) Position detecting device and method
JP2698446B2 (en) Interval measuring device
JPH06244081A (en) Surface configuration detection method and projection exposure device
JP2890443B2 (en) Position detection method and device
JP3359950B2 (en) Positioning device
JP2827251B2 (en) Position detection device
JPH095055A (en) Surface inclination detecting device
JP3302164B2 (en) Positioning device
JP2791120B2 (en) Position detecting device and method
JPH021503A (en) Position detecting device
JPH05332730A (en) Position detecting device
SU1058875A1 (en) Laser profilograph
JP2996212B2 (en) Position detecting device and mark detecting method
JP2827250B2 (en) Position detection device
JPH0412523A (en) Position detector
JPH0340417A (en) Projection aligner
JP2513301B2 (en) Position detection device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070906

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130906

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees