JPH06244081A - Surface configuration detection method and projection exposure device - Google Patents

Surface configuration detection method and projection exposure device

Info

Publication number
JPH06244081A
JPH06244081A JP5028064A JP2806493A JPH06244081A JP H06244081 A JPH06244081 A JP H06244081A JP 5028064 A JP5028064 A JP 5028064A JP 2806493 A JP2806493 A JP 2806493A JP H06244081 A JPH06244081 A JP H06244081A
Authority
JP
Japan
Prior art keywords
light
sample surface
lens
wafer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5028064A
Other languages
Japanese (ja)
Other versions
JP3265031B2 (en
Inventor
Yasuhiko Nakayama
保彦 中山
Masahiro Watanabe
正浩 渡辺
Yoshitada Oshida
良忠 押田
Minoru Yoshida
実 吉田
Ken Fujii
憲 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP02806493A priority Critical patent/JP3265031B2/en
Publication of JPH06244081A publication Critical patent/JPH06244081A/en
Application granted granted Critical
Publication of JP3265031B2 publication Critical patent/JP3265031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To improve detection accuracy of tilt, height, etc., of a sample surface by imaging reflection light from a sample surface at a position of conjugate with a sample surface and by detecting tilt, height, etc., of a sample surface by casting the imaged light on the sample surface again to guide its reflection light to a photodetector and by detecting tilt, height, etc., of the sample surface based on information of interference fringes on the photodetector. CONSTITUTION:A reticle 9 is illuminated by an exposure illumination system 81 and its circuit pattern is imaged on a surface of a wafer (detection object) 4 on a stage 7 by a reduction lens 8. A surface detection system 2 detects and processes surface configuration information of a wafer. Object light 16 is cast on the wafer 4 at an incidence angle of 88 deg. and its reflection light and reference beam 17 are reflected by a mirror 19, reflected again by a mirror 22 through lenses 20, 21 to make them move reversely in the original optical path and reflected by a beam splitter 14 in a direction of prisms 23, 23'. The prisms 23, 23' enlarge a beam interval and provide a specified angle simultaneously to inject beam to a lens 24. Two beams projected from the lens 24 cross each other at a position A which is conjugate with a reflection surface of the wafer 4 and interfere there.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体ウエハのような
平坦な基板の表面形状を検出する方法ならびに投影露光
装置に関し、とくに、FFTにより光学的干渉縞情報か
らレジストの表面形状を算出して表面の傾きや高さ等を
求める表面形状検出方法と、この方法により焦点合わせ
を行う投影露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a projection exposure apparatus for detecting the surface shape of a flat substrate such as a semiconductor wafer, and more particularly to calculating the surface shape of a resist from optical interference fringe information by FFT. The present invention relates to a surface shape detection method for obtaining the surface inclination, height, etc., and a projection exposure apparatus for performing focusing by this method.

【0002】[0002]

【従来の技術】微細化された半導体集積回路や液晶ディ
スプレイ等のパタ−ン露光工程では、ウエハや基板表面
の傾きや高さを精度よく検出して露光面の位置合わせを
正確に行う必要がある。例えば半導体集積回路にて水銀
ランプのi線を用いて線幅0.5μmのパタ−ンを露光
する場合には、ウエハのそり、表面の凹凸を考慮して焦
点深度を±1μm以下とし、ウエハの傾きを約10μra
d、ウエハ面の高さを0.1μmの以下にする必要があ
る。
2. Description of the Related Art In a pattern exposure process for miniaturized semiconductor integrated circuits, liquid crystal displays, etc., it is necessary to accurately detect the inclination and height of the surface of a wafer or substrate to accurately align the exposed surface. is there. For example, when a pattern with a line width of 0.5 μm is exposed by using the i-line of a mercury lamp in a semiconductor integrated circuit, the depth of focus is set to ± 1 μm or less in consideration of the warp and surface unevenness of the wafer. Slope of about 10μra
d, The height of the wafer surface must be 0.1 μm or less.

【0003】特願平1−100026号公報には、レ−
ザ光のS偏光をウエハ表面に斜め入射してその反射光を
参照光と干渉させて得られる干渉縞よりレジスト表面の
高さ、傾き等を検出する方法が開示されている。すなわ
ち、干渉縞のピッチよりウエハ表面の傾きを求め、干渉
縞の位相よりウエハ面の高さを求めるようにしていた。
Japanese Patent Application No. 1-100026 discloses a laser.
There is disclosed a method of detecting the height, inclination, etc. of the resist surface from interference fringes obtained by obliquely injecting the S-polarized light of the light into the wafer surface and causing the reflected light to interfere with the reference light. That is, the inclination of the wafer surface is obtained from the pitch of the interference fringes, and the height of the wafer surface is obtained from the phase of the interference fringes.

【0004】この方法ではレ−ザ光のビ−ムサイズを極
めて細くできるので集束角を大きくする必要がなく、ま
た、干渉縞を用いるので、集光レンズを用いたことによ
るセンサ上のスポット径の広がりも発生しないので、入
射光の入射角を85°以上、例えば88°等に設定して
フォトレジスト内への侵入光量を低減することができ
た。
With this method, the beam size of the laser light can be made extremely small, so that it is not necessary to increase the focusing angle, and since interference fringes are used, the spot diameter on the sensor due to the use of the condenser lens can be reduced. Since the light does not spread, the incident angle of incident light can be set to 85 ° or more, for example, 88 ° or the like to reduce the amount of light penetrating into the photoresist.

【0005】また、ウエハからの反射光をミラ−により
反射してウエハ面に再入射するようにして反射光と参照
光間の位相差を拡大しするようにして干渉縞の強度分布
を精度良く検出できるようにしていた。
Further, the reflected light from the wafer is reflected by the mirror and re-incident on the wafer surface so as to enlarge the phase difference between the reflected light and the reference light, and the intensity distribution of the interference fringes is accurately measured. I was able to detect it.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記特願平1
−100026号公報に開示の方法ではウエハ面と干渉
縞検出位置とを共役な位置関係に保つ必要があるもの
の、2度目の入射においてはミラ−が干渉縞検出位置と
共役な位置関係になるのでウエハ面と干渉縞検出位置と
を共役な位置関係に保てないことが問題であった。この
ため、2度目の入射光がウェハ表面でデフォ−カスして
オフセットが発生し、このオフセットを測定の都度補正
する必要があった。
SUMMARY OF THE INVENTION However, the above-mentioned Japanese Patent Application No. 1
In the method disclosed in Japanese Patent Laid-Open No. 100026, the wafer surface and the interference fringe detection position need to be maintained in a conjugate positional relationship, but the mirror has a conjugate positional relationship with the interference fringe detection position at the second incidence. The problem is that the wafer surface and the interference fringe detection position cannot be maintained in a conjugate positional relationship. Therefore, the incident light of the second time is defocused on the surface of the wafer to generate an offset, and this offset needs to be corrected each time the measurement is performed.

【007】図8は上記従来の干渉縞検出方法を説明する
図である。図8(a)はウエハ面にて入射光を1回反射
させた場合、同図(b)は2回反射させた場合である。
基準面40に対してウエハ表面41が図示のような突起
部を持っている場合を想定する。可干渉性のレ−ザ光を
2分してその一方を検出照明光16としてウエハ表面4
1に照射し、他方を参照光17にする。
FIG. 8 is a diagram for explaining the above conventional interference fringe detection method. FIG. 8A shows the case where the incident light is reflected once on the wafer surface, and FIG. 8B shows the case where the incident light is reflected twice.
It is assumed that the wafer surface 41 has a protrusion as shown in the drawing with respect to the reference surface 40. The coherent laser light is divided into two, and one of them is used as detection illumination light 16 for the wafer surface 4
1 is irradiated, and the other is made the reference light 17.

【0008】図8(a)において、検出照明光16はウ
エハ表面41で反射し、反射光46は面x上で参照光1
7と重なって同図(c)の実線で示すような干渉縞を発
生する。これにたいして突起部がない場合には、検出照
明光16は点線で示したようにウエハ表面41で反射す
るので、上記xからずれた位置で参照光17と重なり同
図(c)の点線で示すような干渉縞を発生する。
In FIG. 8A, the detection illumination light 16 is reflected by the wafer surface 41, and the reflected light 46 is the reference light 1 on the surface x.
7, the interference fringes as shown by the solid line in FIG. In contrast to this, when there is no protrusion, the detection illumination light 16 is reflected by the wafer surface 41 as shown by the dotted line, so that it overlaps with the reference light 17 at a position deviated from the above x and is shown by the dotted line in FIG. Such interference fringes are generated.

【0009】同図(c)の実線と点線間の位相差φは式
(1)のように導かれるので、基準面40よりの干渉縞
とウエハ面からの干渉縞の位相差φを計測することによ
りウエハ面41の突起部の高さz(y)を求めることが
できる。 φ=4πm・cosθ・z(y)/λ (1) なお、mは反射の回数で同図(a)の場合は1である。
θは検出照明光16の入射角度、λは同波長である。
Since the phase difference φ between the solid line and the dotted line in FIG. 3C is derived as in the equation (1), the phase difference φ between the interference fringes from the reference plane 40 and the interference fringes from the wafer surface is measured. Thus, the height z (y) of the protrusion on the wafer surface 41 can be obtained. φ = 4πm · cos θ · z (y) / λ (1) Note that m is the number of reflections and is 1 in the case of FIG.
θ is the incident angle of the detection illumination light 16 and λ is the same wavelength.

【0010】また、mが1では位相差φが小さ過ぎて計
測精度が低いので、同図(b)に示すように反射光46
をミラ−40によりほぼ元の光路に折り返してウエハ面
で再度反射させ、この2回目の反射光を面x上で参照光
17と重ねて干渉縞を発生するようにすると、式(1)
のmが2となり上記位相差φを2倍に増大することがで
きるので、計測精度を2倍に高めることができる。
When m is 1, the phase difference φ is too small and the measurement accuracy is low. Therefore, as shown in FIG.
Is returned to the original optical path by the mirror 40 and reflected again on the wafer surface, and the second reflected light is superposed on the reference light 17 on the surface x to generate interference fringes.
Since m becomes 2 and the phase difference φ can be doubled, the measurement accuracy can be doubled.

【0011】しかし、ウエハ面41の反射面位置と面x
が共役になるように光学系を構成できれば上記干渉縞情
報よりウエハの各反射面位置の高さを対応づけ、ウエハ
の傾き等も正確に検出できるものの、上記2度目の入射
においてはミラ−が干渉縞検出位置と共役な位置関係に
なるのでウエハ面と面xとは共役な位置関係から外れ、
これにより反射面位置の高さを正確に検出できないこと
が問題であった。
However, the position of the reflecting surface of the wafer surface 41 and the surface x
If the optical system can be constructed so as to be conjugate with each other, the heights of the respective reflecting surfaces of the wafer can be associated with each other based on the interference fringe information, and the tilt of the wafer can be accurately detected. Since the positional relationship is conjugate with the interference fringe detection position, the wafer surface and the surface x deviate from the conjugated positional relationship,
As a result, the height of the reflecting surface position cannot be detected accurately, which is a problem.

【0012】すなわち図9に示すように、上記干渉縞強
度の位相は同図(a)に示すウエハ面の高さの急激な変
化に対応して上記干渉縞強度の位相が同図(b)に示す
ように急激に変化すべきところ、上記共役関係のずれに
より同図(c)のように位相変化がなだらかになるの
で、これから算出されるウエハ面の高さは同図(d)の
ようになだらかななものとなっていた。本発明の目的は
上記の問題を解消することのできるウェハの表面形状の
検出方法とこの情報に基づいて露光装置の高さ及び傾き
を制御することのできる投影露光装置を提供することに
ある。
That is, as shown in FIG. 9, the phase of the interference fringe intensity corresponds to the abrupt change of the height of the wafer surface shown in FIG. As shown in (d), since the phase change becomes gentle as shown in (c) of the figure, the height of the wafer surface calculated from this is as shown in (d) of the figure. It was a gentle one. An object of the present invention is to provide a method for detecting the surface shape of a wafer that can solve the above problems, and a projection exposure apparatus that can control the height and inclination of the exposure apparatus based on this information.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に、所定の形状に整形した可干渉性単色光源の光ビ−ム
を2分割し、その一方の光ビ−ム(物体光)を試料面に
照射して得られる反射光と上記他方の光ビ−ム(参照
光)とを重畳させて得られる干渉縞情報より上記試料面
の傾き、高さ等を検出する表面形状検出方法において、
上記試料面からの反射光を上記試料面と共役の位置にて
結像させ、この結像光を再度上記試料面に照射してその
反射光を上記試料に対して共役な位置に設けた光検出器
に導き、上記光検出器上で上記参照光と重畳して得られ
る干渉縞情報より上記試料面の傾き、高さ等を検出する
ようにする。
In order to solve the above problems, the light beam of a coherent monochromatic light source shaped into a predetermined shape is divided into two, and one of the light beams (object light) is In a surface shape detection method for detecting the inclination, height, etc. of the sample surface from interference fringe information obtained by superimposing the reflected light obtained by irradiating the sample surface with the other optical beam (reference light) ,
Light reflected from the sample surface is imaged at a position conjugate with the sample surface, the imaged light is irradiated again to the sample surface, and the reflected light is provided at a position conjugate with the sample. The inclination, height, etc. of the sample surface are detected from the interference fringe information obtained by superimposing the reference light on the photodetector and superimposing it on the photodetector.

【0014】このため、上記試料面からの反射光を上記
試料面と共役の位置にて結像させる結像光学系と、上記
結像光学系の結像光を上記試料面に再照射する反射手段
と、上記再照射光の上記試料面における反射光を上記試
料とは共役な位置に設けた光検出器に導く検出光学系
と、上記参照光を上記光検出器面に導かれた反射光に重
畳させる参照光学系と、上記光検出器が検出する干渉縞
情報より上記試料面の傾き、高さ等を検出する信号処理
回路とを設け、上記信号処理回路の出力により上記試料
面の傾き、高さ等を制御する手段により試料面の位置を
適正に補正するようにする。
Therefore, an imaging optical system for forming an image of the reflected light from the sample surface at a position conjugate with the sample surface, and a reflection for re-irradiating the image light of the imaging optical system on the sample surface. Means, a detection optical system for guiding the reflected light of the re-irradiated light on the sample surface to a photodetector provided at a position conjugate with the sample, and the reference light for the reference light reflected on the photodetector surface And a signal processing circuit for detecting the inclination, height, etc. of the sample surface from the interference fringe information detected by the photodetector, and the inclination of the sample surface by the output of the signal processing circuit. , The position of the sample surface is properly corrected by means of controlling the height and the like.

【0015】また、上記結像光学系を少なくとも焦点距
離がそれぞれf1とf2である第1および第2のレンズに
より構成し、第1のレンズを試料面から距離f1だけ離
して配置し、第2のレンズを第1のレンズから距離(f
1+f2)だけ離して配置し、さらに上記反射手段を第2
のレンズから距離f2だけ離して配置するようにする。
また、上記結像光学系を少なくとも焦点距離がf1であ
るレンズにより構成し、上記レンズを試料面から距離f
1だけ離して配置し、上記反射手段を上記レンズから距
離f1だけ離して配置するようにする。また、上記光検
出器上における上記物体光と参照光の交叉角を調整する
手段を設けるようにする。
The imaging optical system is composed of at least first and second lenses having focal lengths f 1 and f 2 , respectively, and the first lens is arranged at a distance f 1 from the sample surface. , The distance between the second lens and the first lens (f
1 + f 2 ) apart from each other, and further the above-mentioned reflecting means is
The lens is placed at a distance f 2 from the lens.
Further, the imaging optical system is composed of a lens having a focal length of at least f 1 , and the lens is separated from the sample surface by a distance f.
Only 1 apart place, the reflecting means so as to spaced apart by a distance f 1 from the lens. Further, means for adjusting the crossing angle of the object light and the reference light on the photodetector is provided.

【0016】[0016]

【作用】上記試料面からの反射光は上記試料面と共役の
位置にて結像した後、試料面に再照射されその反射光は
試料に対して共役な位置にある光検出器に導かれて参照
光と重畳され、位相誤差のない干渉縞パタ−ンを形成す
る。光検出器はこの干渉縞パタ−ンを検出し、信号処理
回路は光検出器の出力信号より試料面の傾き、高さ等を
算出し、試料面の傾き、高さ等を補正する。また、上記
結像光学系のレンズ系は試料面からの反射光を試料面に
対して共役の位置に結像し、上記反射手段はこの結像を
反射し上記レンズ系を介して上記試料面に結像させる。
After the reflected light from the sample surface is imaged at a position conjugate with the sample surface, it is re-irradiated on the sample surface and the reflected light is guided to the photodetector at a position conjugate with the sample. To form an interference fringe pattern with no phase error. The photodetector detects this interference fringe pattern, and the signal processing circuit calculates the tilt, height, etc. of the sample surface from the output signal of the photodetector, and corrects the tilt, height, etc. of the sample surface. Further, the lens system of the image forming optical system forms an image of the reflected light from the sample surface at a position conjugate with the sample surface, and the reflecting means reflects this image formation to form the sample surface via the lens system. Image.

【0017】[0017]

【実施例】図1は本発明による縮小投影露光装置実施例
の構成図である。露光照明系81によりレチクル9を照
明してその回路パタ−ンを縮小レンズ8によりステージ
7上のウエハ(被検物)4面に結像し、表面検出系2は
ウェハの表面形状情報を検出して処理する。本発明では
例えば上記ウエハ4上の回路パタ−ンの線幅が0.35
μmのときには、ウエハ上の焦点深度を±1μm以下と
してウエハ4の傾きと高さをそれぞれ5μrad、0.0
5μmに制御する。なお、図1にはウェハの傾き検出の
1軸分のみを示したが、実際には紙面に垂直方向のウェ
ハの傾きを検出する系が存在する。
1 is a block diagram of an embodiment of a reduction projection exposure apparatus according to the present invention. The reticle 9 is illuminated by the exposure illumination system 81, and its circuit pattern is imaged on the surface of the wafer (inspection object) 4 on the stage 7 by the reduction lens 8, and the surface detection system 2 detects the surface shape information of the wafer. And process. In the present invention, for example, the line width of the circuit pattern on the wafer 4 is 0.35.
In the case of μm, the depth of focus on the wafer is ± 1 μm or less, and the tilt and height of the wafer 4 are 5 μrad and 0.0, respectively.
Control to 5 μm. Although FIG. 1 shows only one axis of the wafer tilt detection, there is actually a system for detecting the wafer tilt in the direction perpendicular to the paper surface.

【0018】レ−ザ(可干渉光源)1の出射光はシャッ
タ5を通過し、そのs偏光(直線偏光)成分が偏光ビ−
ムスプリッタ6により抽出され、レンズ10,12によ
りビ−ム径を拡大され、プリズム13により二つの平行
ビ−ムに分離される。また、開口11はウェハ4の反射
面と共役な位置にありその形状がウェハ面のスポット形
状を決定する。プリズム15は上記二つの平行ビ−ムに
それぞれ所定の角度を与える。このプリズム15からの
出射光の一方は物体光16としてウエハ4に照射され、
他方は参照光17となる。
The light emitted from the laser (coherent light source) 1 passes through a shutter 5 and its s-polarized (linearly polarized) component is a polarized light beam.
The beam is extracted by the beam splitter 6, the beam diameter is enlarged by the lenses 10 and 12, and the beam is separated into two parallel beams by the prism 13. Further, the opening 11 is located at a position conjugate with the reflecting surface of the wafer 4, and its shape determines the spot shape of the wafer surface. The prism 15 gives a predetermined angle to each of the two parallel beams. One of the light emitted from the prism 15 is applied to the wafer 4 as the object light 16,
The other becomes the reference light 17.

【0019】物体光16は入射角88°(ウエハ4に立
てた垂線に対して88°)でウェハ4に照射され、その
反射光と参照光17はミラ−19で反射され、レンズ2
0,21を介してミラ−22で再反射されて元の光路を
逆進し、ビ−ムスプリッタ14によりプリズム23,2
3’方向に反射される。プリズム23および同23’は
上記ビ−ムの間隔を広げ、同時に所定の角度を与えてレ
ンズ24に入射する。レンズ24を出射した二つのビ−
ムはウェハ4の反射面と共役な位置Aで交わりそこで干
渉する。
The object light 16 is irradiated onto the wafer 4 at an incident angle of 88 ° (88 ° with respect to the vertical line standing on the wafer 4), and its reflected light and reference light 17 are reflected by the mirror 19 and the lens 2
It is reflected again by the mirror 22 through 0, 21 and travels backward in the original optical path, and the beam splitter 14 causes the prisms 23, 2 to travel.
It is reflected in the 3'direction. The prisms 23 and 23 'widen the interval between the beams and at the same time give them a predetermined angle to make them incident on the lens 24. Two beams emitted from the lens 24
The beams intersect with the reflecting surface of the wafer 4 at a conjugate position A and interfere there.

【0020】また、上記位置Aには絞り25が設けら
れ、その通過光はレンズ26を介してシリンドリカルレ
ンズ27により一方向に圧縮され、CCDセンサ28面
に干渉縞を形成する。従来装置においては、レンズ2
0、21とミラ−22等が省略され、ウェハ4からの反
射光は原理的に取付角を変えたミラ−19により反射さ
れてウェハ4に再入射され、その反射光が同様に他の角
度から入射される参照光と干渉するように構成されてい
た。しかし、本発明ではウェハ4の像をミラ−22上に
結像して反射するようにするので、ミラ−22をウエハ
4の反射面に対して共役な位置に設定することができ
る。
A diaphragm 25 is provided at the position A, and the light passing therethrough is compressed in one direction by a cylindrical lens 27 via a lens 26 to form an interference fringe on the CCD sensor 28 surface. In the conventional device, the lens 2
0, 21 and the mirror 22 are omitted, and the reflected light from the wafer 4 is reflected by the mirror 19 which has a different mounting angle in principle and is re-incident on the wafer 4, and the reflected light is similarly reflected at another angle. It was configured to interfere with the reference light incident from. However, in the present invention, since the image of the wafer 4 is formed on the mirror 22 and reflected, the mirror 22 can be set at a position conjugate with the reflecting surface of the wafer 4.

【0021】図2は上記ウェハ4とレンズ20,21、
及びミラ−22の位置関係を表わす図である。図2
(a)に示すように、レンズ20、21の焦点距離をそ
れぞれf1,f2とし、ウェハ4とレンズ20までの距離
をf1、レンズ20とレンズ21までの距離を(f1+f
2)、レンズ21とミラ−22間の距離をf2に設定す
る。
FIG. 2 shows the wafer 4 and the lenses 20, 21,
It is a figure showing the positional relationship of a mirror. Figure 2
As shown in (a), the focal lengths of the lenses 20 and 21 are f 1 and f 2 , respectively, the distance between the wafer 4 and the lens 20 is f 1 , and the distance between the lens 20 and the lens 21 is (f 1 + f
2 ) Set the distance between the lens 21 and the mirror 22 to f 2 .

【0022】同図(b)はウェハ4が角度ψだけ傾斜し
た場合を示している。物体光16はウエハ4で(a)の
場合に比べて角度が2ψだけ傾斜して反射する。この反
射光162はレンズ20により(a)の場合の反射光1
61と平行となりレンズ21によりミラ−22の(a)
の場合と同一の場所に集光され、その反射光163は光
161に平行となり、レンズ20によりウェハ4上の反
射光162と同一の反射位置にて反射する。この結果、
2度目の反射光164に対してウエハ4の反射位置を共
役の位置とすることができる。
FIG. 3B shows the case where the wafer 4 is tilted by the angle ψ. The object light 16 is reflected by the wafer 4 with an angle inclined by 2ψ as compared with the case of (a). This reflected light 162 is reflected light 1 in the case of (a) by the lens 20.
It becomes parallel to 61 and the lens 21 makes the mirror 22 (a).
The reflected light 163 is condensed at the same place as in the case of (1), becomes parallel to the light 161, and is reflected by the lens 20 at the same reflection position as the reflected light 162 on the wafer 4. As a result,
The reflection position of the wafer 4 with respect to the second reflected light 164 can be a conjugate position.

【0023】また、反射光164は入射光16に対して
角度が4ψだけ傾斜するので参照光17との交叉角も4
ψだけ変化する。干渉縞の周期変化よりこの交叉角の変
化を求め、これよりウエハ4の傾き角ψを算出ることが
できる。図2(c)はウェハ4の高さがdだけ変化した
場合である。物体光16に対する反射光165は図
(a)の反射光161と平行に進んでレンズ20からf
1の離れた位置に集光し、レンズ21により反射光16
1と再び平行になりミラ−21にて反射される。この反
射光は165と同一の光路を逆進してウェハ4で反射す
るので、2度目の反射光166は物体光16と同じ光路
を逆進することになる。
Since the reflected light 164 is inclined at an angle of 4ψ with respect to the incident light 16, the cross angle with the reference light 17 is also 4 °.
Only ψ changes. The change in the crossing angle can be obtained from the periodic change in the interference fringes, and the tilt angle ψ of the wafer 4 can be calculated from the change. FIG. 2C shows a case where the height of the wafer 4 changes by d. The reflected light 165 with respect to the object light 16 travels in parallel with the reflected light 161 of FIG.
The light is condensed at a position separated by 1 and reflected by the lens 21.
It becomes parallel to 1 again and is reflected by Mira-21. Since this reflected light travels back in the same optical path as 165 and is reflected by the wafer 4, the second reflected light 166 travels in the same optical path as the object light 16.

【0024】また、高さの変化dによる光路差は4ds
inθとなり、これに応じて干渉縞の位相が変化するの
でこれより高さの変化dを算出してウエハの断面プロフ
ァイルを算出することができる。なお、高さの変化dの
他に上記傾き角が存在する場合には、まず、傾き角ψの
補正を行った後に高さの変化dを導くようにする。図2
(d)は上記(a)〜(c)における結像関係の展開図
である。右側のウェハ像はレンズ20,21によりミラ
−22上で反転するので等価的には左側のウェハ像とし
て結像する。
The optical path difference due to the height change d is 4 ds.
Since it becomes in θ, and the phase of the interference fringes changes accordingly, the height change d can be calculated from this to calculate the cross-sectional profile of the wafer. If the tilt angle is present in addition to the height change d, the tilt angle ψ is first corrected and then the height change d is derived. Figure 2
(D) is a development view of the imaging relationship in (a) to (c) above. Since the right wafer image is inverted on the mirror 22 by the lenses 20 and 21, it is equivalently formed as the left wafer image.

【0025】さらに、ミラ−22で反射された上記左側
のウェハ像はレンズ21,20によりウェハ4上の同一
位置で反転するのでこの2度目の反射像は一度目の反射
像と同一になる。したがって、この2度目の反射像を検
出すればウエハ像を検出することができる。
Further, the left wafer image reflected by the mirror 22 is inverted at the same position on the wafer 4 by the lenses 21 and 20, so that the second reflection image is the same as the first reflection image. Therefore, the wafer image can be detected by detecting the second reflection image.

【0026】図1においては、上記図2に示した2度目
の反射光に参照光17が当てられて干渉縞が形成され、
その波形をCCDセンサ28が検出し、信号処理回路3
でA/D変換されてデジタル信号化され、この表面形状
情報より高さ/傾き制御部50がチップの高さ、傾き等
を算出してステ−ジ7を制御し、ウエハ4の高さ傾きが
焦点面に一致するようにする。また、ウエハ面における
物体光16の形状は開口11により与えられる。
In FIG. 1, the reference light 17 is applied to the second reflected light shown in FIG. 2 to form an interference fringe,
The CCD sensor 28 detects the waveform, and the signal processing circuit 3
Is converted into a digital signal by A / D conversion, and the height / tilt control unit 50 calculates the height, tilt, etc. of the chip from this surface shape information and controls the stage 7 to tilt the height of the wafer 4. So that it matches the focal plane. The shape of the object light 16 on the wafer surface is given by the opening 11.

【0027】図3は上記ウエハ面における物体光16の
形状例を示している。開口11の形状が円形の場合には
斜め照射によりウェハ4上では同図(a)に示すように照
明方向に伸びる楕円光32となる。ウェハ4上のチップ
33、および露光領域34を図示のようにすると、楕円
光32はチップ33の対角方向に照射される。この場合
は小さな円形ビ-ムであるため光学系の調整が容易にな
る。
FIG. 3 shows an example of the shape of the object beam 16 on the wafer surface. When the shape of the opening 11 is circular, oblique irradiation results in elliptic light 32 extending in the illumination direction on the wafer 4 as shown in FIG. When the chip 33 on the wafer 4 and the exposure area 34 are set as shown in the drawing, the elliptical light 32 is irradiated in a diagonal direction of the chip 33. In this case, a small circular beam facilitates adjustment of the optical system.

【0028】図3(b)は開口11が細長い矩形の場合
である。ウエハ4には照明方向と直角の方向に伸びた矩
形光35が照明される。この場合には焦点深度を小さく
できるため表面形状の横方向分解能を高めることができ
る。図3(c)は開口11が矩形の場合である。この光
はウェハ4上で広がった矩形光36となるので露光領域
34の全面に照射することができるので2次元のCCD
センサ28によりチップ33の表面形状を検出すること
ができる。
FIG. 3B shows the case where the opening 11 is an elongated rectangle. The wafer 4 is illuminated with rectangular light 35 extending in a direction perpendicular to the illumination direction. In this case, since the depth of focus can be reduced, the lateral resolution of the surface shape can be increased. FIG. 3C shows the case where the opening 11 is rectangular. This light becomes a rectangular light 36 spread on the wafer 4 and can be applied to the entire surface of the exposure area 34.
The surface shape of the chip 33 can be detected by the sensor 28.

【0029】図4は本発明による他の投影露光装置実施
例の構成図である。図4では図1に示したレンズ20,
21、ミラ−22等をレンズ29、コ−ナ−キュ−ブ3
0、ミラ−31に置き換えている。ウェハ4で反射した
物体光16はミラ−19で反射し、レンズ29を介して
ウェハ4の反射面と共役の位置にあるコ−ナ−キュ−ブ
30の反射面上にウェハ像を結像する。コ−ナ−キュ−
ブ30からの反射光は上記光路上を折り返してウェハの
上記ウエハの反射位置に再び結像して再反射する。な
お、参照光17は折り返しミラ−31で反射して元の光
路を逆進する。
FIG. 4 is a block diagram of another embodiment of the projection exposure apparatus according to the present invention. In FIG. 4, the lens 20 shown in FIG.
21, mirror 22, lens 29, corner cube 3
0, replaced with Mira-31. The object light 16 reflected by the wafer 4 is reflected by the mirror 19, and a wafer image is formed on the reflection surface of the corner cube 30 which is at a position conjugate with the reflection surface of the wafer 4 via the lens 29. To do. Corner Cure
The reflected light from the beam 30 is returned on the optical path, and is imaged again on the wafer at the reflection position of the wafer to be reflected again. The reference light 17 is reflected by the folding mirror 31 and travels backward in the original optical path.

【0030】図5は図4におけるウェハ4とレンズ2
9,コ−ナ−キュ−ブ30、ミラ−31の位置関係を表
わす図である。これらは図5(a)に示すように、レン
ズ29に対するウェハ4の反射面およびプリズム30ま
での距離を共にレンズ29の焦点距離f1に設定する。
図5(b)はウェハ4の角度がψだけ傾斜した場合であ
る。ウエハ4で反射した光162はレンズ29により
(a)図の反射光161と平行して進む光162となっ
てコ−ナ−キュ−ブ31により反射される。この反射光
163も光161と平行して進みレンズ29によりウェ
ハ4上の物体光16と同一の反射位置にて反射する。こ
の結果、2度目の反射光164に対してウエハ4の反射
位置を共役の位置とすることができる。
FIG. 5 shows the wafer 4 and the lens 2 in FIG.
It is a figure showing the positional relationship of 9, corner cube 30, mirror 31. As shown in FIG. 5A, these set the distance between the reflecting surface of the wafer 4 and the prism 30 with respect to the lens 29 to the focal length f 1 of the lens 29.
FIG. 5B shows a case where the angle of the wafer 4 is inclined by ψ. The light 162 reflected by the wafer 4 becomes a light 162 traveling in parallel with the reflected light 161 of FIG. This reflected light 163 also travels in parallel with the light 161, and is reflected by the lens 29 at the same reflection position as the object light 16 on the wafer 4. As a result, the reflection position of the wafer 4 with respect to the second reflected light 164 can be set to a conjugate position.

【0031】また、反射光164は入射光16に対して
角度が4ψだけ傾斜するので参照光17との交叉角も4
ψだけ変化する。干渉縞の周期変化よりこの交叉角の変
化を求め、これよりウエハ4の傾き角ψを算出ることが
できる。図5(c)はウェハ4の高さがdだけ変化した
場合である。物体光16に対する反射光165は図
(a)における反射光161と平行に進んでコ−ナ−キ
ュ−ブ31上に結像され、その反射光166は元の光路
上を逆進する。
Further, since the reflected light 164 is inclined at an angle of 4ψ with respect to the incident light 16, the crossing angle with the reference light 17 is also 4 °.
Only ψ changes. The change in the crossing angle can be obtained from the periodic change in the interference fringes, and the tilt angle ψ of the wafer 4 can be calculated from the change. FIG. 5C shows the case where the height of the wafer 4 changes by d. The reflected light 165 with respect to the object light 16 travels in parallel with the reflected light 161 in FIG. 5A to form an image on the corner cube 31, and the reflected light 166 travels backward on the original optical path.

【0032】このとき高さの変化dによって生じる光路
差は4dsinθとなるのでこれに応じて干渉縞の位相
が変化する。これより高さの変化dを算出してウエハの
断面プロファイルを算出することができる。なお、高さ
の変化dの他に上記傾き角が存在する場合には、まず、
傾き角ψの補正を行った後に高さの変化dを導くように
する。
At this time, since the optical path difference caused by the height change d becomes 4 dsin θ, the phase of the interference fringe changes accordingly. From this, the change d in height can be calculated to calculate the cross-sectional profile of the wafer. In addition, when the tilt angle is present in addition to the height change d, first,
After the inclination angle ψ is corrected, the height change d is introduced.

【0033】図5(d)は上記(a)〜(c)における
結像関係の展開図である。右側のウェハ像はレンズ29
によりコ−ナ−キュ−ブ31上で反転するので等価的に
は左側のウェハ像として結像する。さらに、上記左側の
ウェハ像はレンズ29によりウェハ4上の同一位置で反
射するのでこの2度目の反射像は一度目の反射像と同一
になる。したがって、この2度目の反射像を検出すれば
ウエハ像を検出することができる。
FIG. 5D is a development view of the image forming relationship in the above (a) to (c). The wafer image on the right is the lens 29.
Thus, the image is inverted on the corner cube 31, so that the image is equivalently formed as the left wafer image. Further, the left wafer image is reflected at the same position on the wafer 4 by the lens 29, so that the second reflected image is the same as the first reflected image. Therefore, the wafer image can be detected by detecting the second reflection image.

【0034】図6は上記ウエハの表面形状を算出するア
ルゴリズムの説明図である。(a)に示す干渉縞波形を
高速フ−リェ変換(FFT)して(b)に示すスペクト
ルを得る。このとき、周波数f=0付近のスペクトルが
干渉縞波形のDC成分b(x)に対応し、f0と−f0
位置のスペクトルが干渉縞の位相の揺らぎφ(x)と振
幅a(x)に対応する。
FIG. 6 is an explanatory diagram of an algorithm for calculating the surface shape of the wafer. The interference fringe waveform shown in (a) is subjected to fast Fourier transform (FFT) to obtain the spectrum shown in (b). At this time, the spectrum near the frequency f = 0 corresponds to the DC component b (x) of the interference fringe waveform, and the spectra at the positions of f 0 and −f 0 have fluctuations φ (x) in the phase of the interference fringe and amplitude a ( x).

【0035】(c)に示すように上記f0に対応するス
ペクトルを周波数原点に移動させた後、逆FFTをかけ
ると(d)の波形が得られる。このp(x)の絶対値が
干渉縞の振幅a(x)、位相が干渉縞の位相の揺らぎφ
(x)を表す。なお、この位相にはπ単位の不確定性が
あり、さらに(f0−f1)に対応するだけ傾きオフセッ
トがあるので、まずこの位相をxに沿って追跡して位相
を接続する。
After moving the spectrum corresponding to f 0 to the frequency origin as shown in (c), inverse FFT is applied to obtain the waveform of (d). The absolute value of p (x) is the amplitude a (x) of the interference fringe, and the phase is the fluctuation φ of the phase of the interference fringe.
Represents (x). Since this phase has an uncertainty of π unit and further has a tilt offset corresponding to (f 0 −f 1 ), this phase is first traced along x to connect the phases.

【0036】ついで、上記f0は反射光と参照光17と
の交差角により定まるので、傾きオフセットを補正し
(f)に示す位相の揺らぎφ(x)を得る。このφ
(x)を式(1)に代入して式(2)に示すようにウエ
ハ4の断面プロファイルz(y)を求めることができ
る。 z(y)=λφ(x)/4πm cosθ (2) なお、CCD28上の座標xはウェハ上の座標yに対応
する。
Next, since the above f 0 is determined by the crossing angle between the reflected light and the reference light 17, the tilt offset is corrected to obtain the phase fluctuation φ (x) shown in (f). This φ
By substituting (x) into the equation (1), the cross-sectional profile z (y) of the wafer 4 can be obtained as shown in the equation (2). z (y) = λφ (x) / 4πm cos θ (2) The coordinate x on the CCD 28 corresponds to the coordinate y on the wafer.

【0037】また、光学系の波面収差により生じる干渉
縞位相の揺らぎは、予め光学的に平面度な参照試料のφ
(x)データを記憶しておき、これを上記ウェハのφ
(x)から引いて補正するようにする。これにより波面
収差測定時とウェハ面測定時の傾き補正量が同一である
ため、上記図6の(e)と(f)で行った傾き補正処理
を省略することができる。また図7に示すように、干渉
波形s(x)の1周期分のデ−タを正弦波(a0+a1 s
inω0t+a2 cosω0t)と最小二乗法によりマッチン
グさせて上記φ(x)を算出することもできる。以上の
ようにして算出した表面形状データよりウエハ面の傾き
と高さを求め、ウエハ面を焦点面に一致させるようにス
テージ機構7を制御する。また、表面形状情報の取捨選
択により焦点合わせを精度良く、機能的に行うことがで
きる。
Further, the fluctuation of the phase of the interference fringes caused by the wavefront aberration of the optical system is the φ of the reference sample which is optically flat in advance.
(X) Store the data and store it in the wafer φ
Correct it by subtracting from (x). As a result, the tilt correction amount at the time of measuring the wavefront aberration is the same as that at the time of measuring the wafer surface, so that the tilt correction process performed in (e) and (f) of FIG. Further, as shown in FIG. 7, the data of one cycle of the interference waveform s (x) is converted into a sine wave (a 0 + a 1 s
In ω 0 t + a 2 cos ω 0 t) can be matched with the least squares method to calculate φ (x). The inclination and height of the wafer surface are obtained from the surface shape data calculated as described above, and the stage mechanism 7 is controlled so that the wafer surface coincides with the focal plane. In addition, focusing can be performed accurately and functionally by selecting the surface shape information.

【0038】[0038]

【発明の効果】本発明により、投影露光装置における半
導体ウエハ表面の傾き、凹凸等の検出精度を高めること
ができる。この結果、ウエハステ−ジを制御してウエハ
面を投影レンズの焦点マージン内に正確に収めることが
できるので、今後のパタ−ンの微細化によりウエハ面に
照射する光ビ−ムの焦点深度が浅くなることに対応する
ことができる。また、設計データやレチクルのパターン
密度を参照して露光するパターンの細かい領域に焦点を
合わせたり、表面形状の検出値が不安定な領域を除外し
て、その周辺部の情報よりウエハの傾き、高さ等を求
め、補正することができる。
According to the present invention, it is possible to improve the accuracy of detecting inclination, unevenness, etc. of the surface of a semiconductor wafer in a projection exposure apparatus. As a result, the wafer stage can be controlled so that the wafer surface can be accurately contained within the focus margin of the projection lens, so that the depth of focus of the optical beam irradiating the wafer surface will be reduced due to future finer patterns. It can cope with shallowing. Further, by referring to the design data and the pattern density of the reticle, focusing on a fine area of the pattern to be exposed, or excluding an area where the surface shape detection value is unstable, the wafer tilt from the information of the peripheral portion, The height and the like can be obtained and corrected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による投影露光装置実施例の構成図であ
る。
FIG. 1 is a configuration diagram of an embodiment of a projection exposure apparatus according to the present invention.

【図2】図1における光学系の説明図である。FIG. 2 is an explanatory diagram of an optical system in FIG.

【図3】ウェハに照射する物体光のビ−ム形状とウエハ
上のスポット形状との関係を説明する図である。
FIG. 3 is a diagram illustrating a relationship between a beam shape of object light with which a wafer is irradiated and a spot shape on the wafer.

【図4】本発明による他の投影露光装置実施例の構成図
である。
FIG. 4 is a configuration diagram of another embodiment of the projection exposure apparatus according to the present invention.

【図5】図4における光学系の説明図である。5 is an explanatory diagram of an optical system in FIG.

【図6、7】本発明における表面形状算出方法の説明図
である。
6 and 7 are explanatory views of a surface shape calculation method according to the present invention.

【図8】従来装置における干渉縞検出方法の説明図であ
る。
FIG. 8 is an explanatory diagram of an interference fringe detection method in a conventional device.

【図9】従来装置が検出する干渉縞の問題点を説明する
波形図である。
FIG. 9 is a waveform diagram illustrating a problem of interference fringes detected by a conventional device.

【符号の説明】[Explanation of symbols]

1…レ−ザ、2…表面検出系、3…信号処理回路、4…
ウエハ、5…シャッタ、6…偏向ビ−ムスプリッタ、7
…ステ−ジ、8…縮小レンズ、9…レチクル、…11…
開口、13、15、23…プリズム、14…ビ−ムスプ
リッタ、16…物体光、17…参照光、18、19、2
2、31、40…ミラ−、20、21、29…レンズ、
25…絞り、27…シリンドリカルレンズ、28…CC
Dセンサ、30…コ−ナキュ−ブ、40…基準面、41
…ウエハ面、50…高さ/傾き制御部。
1 ... Laser, 2 ... Surface detection system, 3 ... Signal processing circuit, 4 ...
Wafer, 5 ... Shutter, 6 ... Deflection beam splitter, 7
… Stage, 8… Reduction lens, 9… Reticle,… 11…
Apertures, 13, 15, 23 ... Prism, 14 ... Beam splitter, 16 ... Object light, 17 ... Reference light, 18, 19, 2
2, 31, 40 ... Miller, 20, 21, 29 ... Lens,
25 ... Aperture, 27 ... Cylindrical lens, 28 ... CC
D sensor, 30 ... Convex, 40 ... Reference plane, 41
... wafer surface, 50 ... height / tilt control section.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 実 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 藤井 憲 茨木県勝田市大字市毛882番地 株式会社 日立製作所計測器事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Minor Yoshida, 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Kanagawa Prefecture Production Technology Research Laboratory (72) Inventor Ken Fujii, 882, Ichige, Katsuta-shi, Ibaraki Shares Company Hitachi Ltd. Measuring Instruments Division

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 所定の形状に整形した可干渉性単色光源
の光ビ−ムを2分割し、その一方の光ビ−ム(物体光)
を試料面に照射して得られる反射光と上記他方の光ビ−
ム(参照光)とを重畳させて得られる干渉縞情報より上
記試料面の傾き、高さ等を検出する表面形状検出方法に
おいて、上記試料面からの反射光を上記試料面と共役の
位置にて結像させ、この結像光を再度上記試料面に照射
してその反射光を上記試料に対して共役な位置に設けた
光検出器に導き、上記光検出器上にて上記参照光と重畳
して得られる干渉縞情報より上記試料面の傾き、高さ等
を検出するようにしたことを特徴とする表面形状検出方
法。
1. An optical beam of a coherent monochromatic light source shaped into a predetermined shape is divided into two, and one of the optical beams (object light) is divided.
Reflected light obtained by irradiating the sample surface with the other light beam
In the surface shape detection method for detecting the tilt, height, etc. of the sample surface from the interference fringe information obtained by superimposing the sample (reference light), the reflected light from the sample surface is placed at a position conjugate with the sample surface. The sample surface is irradiated with the imaged light again, and the reflected light is guided to a photodetector provided at a position conjugate with the sample. A surface shape detection method characterized in that the inclination, height, etc. of the sample surface are detected from the interference fringe information obtained by superposition.
【請求項2】 所定の形状に整形した可干渉性単色光源
の光ビ−ムを2分割し、その一方の光ビ−ム(物体光)
を試料面に照射して得られる反射光と上記他方の光ビ−
ム(参照光)とを重畳させて得られる干渉縞情報より上
記試料面の傾き、高さ等を検出して上記試料の傾きと高
さを補正するようにした投影露光装置において、上記試
料面からの反射光を上記試料面と共役の位置にて結像さ
せる結像光学系と、上記結像光学系の結像光を上記試料
面に再照射する反射手段と、上記再照射光の上記試料面
における反射光を上記試料とは共役な位置に設けた光検
出器に導く検出光学系と、上記参照光を上記光検出器面
に導かれた反射光に重畳させる参照光学系と、上記光検
出器が検出する干渉縞情報より上記試料面の傾き、高さ
等を検出する信号処理回路と、上記信号処理回路の出力
により上記試料面の傾き、高さ等を制御する手段を備え
たことを特徴とする投影露光装置。
2. An optical beam of a coherent monochromatic light source shaped into a predetermined shape is divided into two, and one of the optical beams (object light) is divided.
Reflected light obtained by irradiating the sample surface with the other light beam
In the projection exposure apparatus, the tilt and height of the sample surface are detected from the interference fringe information obtained by superimposing the sample (reference light) to correct the tilt and height of the sample. An image forming optical system for forming an image of reflected light from the sample surface at a position conjugate with the sample surface, a reflection means for re-irradiating the image forming light of the image forming optical system onto the sample surface, A detection optical system for guiding the reflected light on the sample surface to a photodetector provided at a position conjugate with the sample; a reference optical system for superimposing the reference light on the reflected light guided to the photodetector surface; A signal processing circuit for detecting the inclination, height, etc. of the sample surface from the interference fringe information detected by the photodetector, and means for controlling the inclination, height, etc. of the sample surface by the output of the signal processing circuit were provided. A projection exposure apparatus characterized by the above.
【請求項3】 請求項2において、上記結像光学系を少
なくとも焦点距離がそれぞれf1とf2である第1および
第2のレンズにより構成し、第1のレンズを試料面から
距離f1だけ離して配置し、第2のレンズを第1のレン
ズから距離(f1+f2)だけ離して配置し、さらに上記
反射手段を第2のレンズから距離f2だけ離して配置す
るようにしたことを特徴とする投影露光装置。
3. The image forming optical system according to claim 2, wherein the image forming optical system is composed of at least first and second lenses having focal lengths f 1 and f 2 , respectively, and the first lens is located at a distance f 1 from the sample surface. The second lens is spaced apart from the first lens by a distance (f 1 + f 2 ), and the reflecting means is further spaced from the second lens by a distance f 2 . A projection exposure apparatus characterized by the above.
【請求項4】 請求項2において、上記結像光学系を少
なくとも焦点距離がf1であるレンズにより構成し、上
記レンズを試料面から距離f1だけ離して配置し、上記
反射手段を上記レンズから距離f1だけ離して配置する
ようにしたことを特徴とする投影露光装置。
4. The image forming optical system according to claim 2, wherein the image forming optical system is composed of a lens having a focal length of f 1 and the lens is arranged at a distance f 1 from a sample surface, and the reflecting means is the lens. A projection exposure apparatus characterized in that the projection exposure apparatus is arranged at a distance of f 1 from.
【請求項5】 請求項2において、上記光検出器上にお
ける上記物体光と参照光の交叉角を調整する手段を設け
たことを特徴とする投影露光装置。
5. The projection exposure apparatus according to claim 2, further comprising means for adjusting a crossing angle of the object light and the reference light on the photodetector.
【請求項6】 マスク上に形成された回路パタ−ンを投
影レンズにより基板上に投影露光する投影露光装置にお
いて、投影レンズと基板との間の側方よりほぼ平行なる
ビ−ムを上記基板上に所望の形状で照射する照射手段
と、該照射手段で照射された基板上からの反射物体光を
上記基板表面と共役の位置に結像させる結像光学系と、
該結像光学系で結像された光像を受光して信号に変換す
る検出器と、該検出器から検出される信号に基づいて基
板の表面形状を検出して基板の傾き若しくは高さを制御
して基板の表面を投影レンズの結像面にほぼ合せる制御
手段とを備えたことを特徴とする投影露光装置。
6. A projection exposure apparatus for projecting and exposing a circuit pattern formed on a mask onto a substrate by a projection lens, wherein a beam substantially parallel to the side of the substrate is provided between the projection lens and the substrate. Irradiating means for irradiating a desired shape on the top, and an imaging optical system for forming an image of the reflected object light from the substrate irradiated by the irradiating means at a position conjugate with the substrate surface,
A detector that receives an optical image formed by the image forming optical system and converts it into a signal, and detects the surface shape of the substrate based on the signal detected by the detector to determine the inclination or height of the substrate. A projection exposure apparatus comprising: control means for controlling the surface of the substrate to substantially match the image plane of the projection lens.
【請求項7】 マスク上に形成された回路パタ−ンを投
影レンズにより基板上に投影露光する投影露光装置にお
いて、投影レンズと基板との間の側方よりほぼ平行なる
ビ−ムを上記基板上に所望の形状で照射し、該照射され
た基板上からの反射物体光を上記基板表面と共役の位置
に結像させ、該結像された光像を検出器で受光して信号
に変換し、該信号に基づいて基板の表面形状を検出して
基板の傾き若しくは高さを制御して基板の表面を投影レ
ンズの結像面にほぼ合せることを特徴とする表面形状検
出方法。
7. A projection exposure apparatus for projecting and exposing a circuit pattern formed on a mask onto a substrate by a projection lens, wherein a beam substantially parallel to the side of the projection lens and the substrate is provided on the substrate. It is irradiated with a desired shape on the top, the reflected object light from the irradiated substrate is imaged at a position conjugate with the surface of the substrate, and the formed optical image is received by a detector and converted into a signal. Then, the surface shape detection method is characterized in that the surface shape of the substrate is detected based on the signal and the inclination or height of the substrate is controlled so that the surface of the substrate is substantially aligned with the image plane of the projection lens.
JP02806493A 1993-02-17 1993-02-17 Surface shape detection method and projection exposure apparatus Expired - Fee Related JP3265031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02806493A JP3265031B2 (en) 1993-02-17 1993-02-17 Surface shape detection method and projection exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02806493A JP3265031B2 (en) 1993-02-17 1993-02-17 Surface shape detection method and projection exposure apparatus

Publications (2)

Publication Number Publication Date
JPH06244081A true JPH06244081A (en) 1994-09-02
JP3265031B2 JP3265031B2 (en) 2002-03-11

Family

ID=12238341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02806493A Expired - Fee Related JP3265031B2 (en) 1993-02-17 1993-02-17 Surface shape detection method and projection exposure apparatus

Country Status (1)

Country Link
JP (1) JP3265031B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099629A (en) * 2007-10-12 2009-05-07 Nikon Corp Illumination optical device, exposure method and apparatus, and method of manufacturing electronic device
KR101032180B1 (en) * 2008-02-28 2011-05-02 캐논 가부시끼가이샤 Surface shape measuring apparatus, exposure apparatus, and device manufacturing method
EP2693167A3 (en) * 2012-08-02 2014-04-09 Cornelius Hahlweg Optical device and method for measuring microscopic structures
CN111913187A (en) * 2020-08-11 2020-11-10 生物岛实验室 Distance measuring method and microscopic distance measuring device
JP2021167786A (en) * 2020-04-13 2021-10-21 株式会社神戸製鋼所 Flatness measuring device and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099629A (en) * 2007-10-12 2009-05-07 Nikon Corp Illumination optical device, exposure method and apparatus, and method of manufacturing electronic device
KR101032180B1 (en) * 2008-02-28 2011-05-02 캐논 가부시끼가이샤 Surface shape measuring apparatus, exposure apparatus, and device manufacturing method
EP2693167A3 (en) * 2012-08-02 2014-04-09 Cornelius Hahlweg Optical device and method for measuring microscopic structures
JP2021167786A (en) * 2020-04-13 2021-10-21 株式会社神戸製鋼所 Flatness measuring device and method
CN111913187A (en) * 2020-08-11 2020-11-10 生物岛实验室 Distance measuring method and microscopic distance measuring device

Also Published As

Publication number Publication date
JP3265031B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
US5004348A (en) Alignment device
US6057908A (en) Exposure condition measurement method
JP2893823B2 (en) Positioning method and apparatus
JP3128827B2 (en) Projection exposure apparatus, projection exposure method, device manufacturing method using the projection exposure method, and device manufactured by the device manufacturing method
JP2913755B2 (en) Positioning method and apparatus
US5048967A (en) Detection optical system for detecting a pattern on an object
JPH04233218A (en) Device designed for projecting mask pattern on substrate
JP3477777B2 (en) Projection exposure apparatus and method
JP2938187B2 (en) Pattern forming method and apparatus for performing the method
US5585923A (en) Method and apparatus for measuring positional deviation while correcting an error on the basis of the error detection by an error detecting means
US6198527B1 (en) Projection exposure apparatus and exposure method
US4626103A (en) Focus tracking system
US5757505A (en) Exposure apparatus
JP3265031B2 (en) Surface shape detection method and projection exposure apparatus
JPH08219718A (en) Plane position detector
JP2814538B2 (en) Alignment device and alignment method
JP2996211B2 (en) Position detecting device and method
JP3003646B2 (en) Projection exposure equipment
JPH07134013A (en) Surface shape measuring method and projection aligner
JP2796347B2 (en) Projection exposure method and apparatus
JPH06267824A (en) Exposure
JP3003694B2 (en) Projection exposure equipment
JP3351051B2 (en) Horizontal detector and exposure apparatus using the same
JP3305058B2 (en) Exposure method and apparatus
JPH07283110A (en) Scanning aligner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees