JP2021167786A - Flatness measuring device and method - Google Patents

Flatness measuring device and method Download PDF

Info

Publication number
JP2021167786A
JP2021167786A JP2020071484A JP2020071484A JP2021167786A JP 2021167786 A JP2021167786 A JP 2021167786A JP 2020071484 A JP2020071484 A JP 2020071484A JP 2020071484 A JP2020071484 A JP 2020071484A JP 2021167786 A JP2021167786 A JP 2021167786A
Authority
JP
Japan
Prior art keywords
flatness
reference plane
interference fringes
sample surface
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020071484A
Other languages
Japanese (ja)
Inventor
弘行 高枩
Hiroyuki Takamoku
正博 廣橋
Masahiro Hirohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2020071484A priority Critical patent/JP2021167786A/en
Publication of JP2021167786A publication Critical patent/JP2021167786A/en
Pending legal-status Critical Current

Links

Images

Abstract

To reduce measurement time compared to conventional methods.SOLUTION: A flatness measuring device for measuring the flatness of a sample surface of a measurement sample includes: a grazing incidence interferometer that includes an optical member having a reference plane and forming an optical interferometer between the reference plane and the sample surface of the measurement sample, and a light source irradiating coherent light at an angle to the reference plane; a tilting member that tilts the sample surface in one direction relative to the reference plane; and a flatness calculation unit that calculates the flatness of the sample surface on the basis of interference fringes formed by the grazing incidence interferometer.SELECTED DRAWING: Figure 1

Description

本発明は、干渉縞を用いて測定試料における試料面の平坦度を測定する技術に関する。 The present invention relates to a technique for measuring the flatness of a sample surface in a measurement sample using interference fringes.

測定試料における試料面の平坦度を精密に測定する場合、レーザ光等の可干渉光を試料面に参照平面を介して照射させ、試料面の反射光と参照平面の反射光との光干渉により干渉縞を生成して平坦度を測定する手法が広く用いられている。試料面が粗面である場合には、測定試料からの反射光の強度を向上するために、例えば特許文献1,2に記載の斜入射干渉計が適用される。また、斜入射干渉計を用いる手法では、光が測定試料に対して入射角θで斜めに照射されることから、等価波長はλ/cosθとなるので、入射角θを増減することにより試料面の凹凸に対する干渉縞の感度を調整することができ、測定のダイナミックレンジも拡大することができる。 When precisely measuring the flatness of the sample surface in the measurement sample, the sample surface is irradiated with interfering light such as laser light through the reference plane, and the reflected light of the sample surface and the reflected light of the reference plane cause optical interference. A method of generating interference fringes and measuring flatness is widely used. When the sample surface is a rough surface, for example, the oblique incident interferometer described in Patent Documents 1 and 2 is applied in order to improve the intensity of the reflected light from the measurement sample. Further, in the method using the oblique incident interferometer, since the light is obliquely irradiated to the measurement sample at the incident angle θ, the equivalent wavelength is λ / cos θ. Therefore, the sample surface is increased or decreased by increasing or decreasing the incident angle θ. The sensitivity of the interference fringes to the unevenness of the sample can be adjusted, and the dynamic range of measurement can be expanded.

特開2006−23263号公報Japanese Unexamined Patent Publication No. 2006-23263 特開2000−18912号公報Japanese Unexamined Patent Publication No. 2000-18912

上記特許文献1,2に記載の技術に限られないが、光干渉計を用いる手法では、試料面の凹凸により明領域および暗領域からなる干渉縞が発生する。この干渉縞の明領域(または暗領域)の間隔によって試料面の概ねの平坦度を評価することはできる。しかし、平坦度を定量化するためには、特許文献1に記載の位相シフト法が適用される。この位相シフト法では、参照平面を有するプリズムと試料面との距離を変えて干渉縞の画像を複数枚取得する必要がある。このため、プリズム移動等のメカニカル走査に伴う測定時間の増加が問題となる。 Although not limited to the techniques described in Patent Documents 1 and 2, in the method using an optical interferometer, interference fringes composed of a bright region and a dark region are generated due to the unevenness of the sample surface. The approximate flatness of the sample surface can be evaluated by the interval between the bright regions (or dark regions) of the interference fringes. However, in order to quantify the flatness, the phase shift method described in Patent Document 1 is applied. In this phase shift method, it is necessary to acquire a plurality of images of interference fringes by changing the distance between the prism having the reference plane and the sample surface. Therefore, an increase in measurement time due to mechanical scanning such as prism movement becomes a problem.

本発明は、上記の課題に鑑みてなされたもので、参照平面を移動させることなく平坦度を求めることにより、従来に比べて測定時間を短縮することが可能な平坦度測定装置および方法を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a flatness measuring device and a method capable of shortening the measurement time as compared with the conventional case by obtaining flatness without moving the reference plane. The purpose is to do.

本発明の第1態様にかかる平坦度測定装置は、
参照平面を持ち、前記参照平面と測定試料の試料面とで光干渉計を形成する光学部材、および、前記参照平面に斜めに可干渉光を照射する光源部を備える斜入射干渉計と、
前記試料面を前記参照平面に対し一方向に傾斜させる傾斜部材と、
前記斜入射干渉計で形成される干渉縞に基づいて前記試料面の平坦度を求める平坦度演算部と、を備えるものである。
The flatness measuring device according to the first aspect of the present invention is
An optical member having a reference plane and forming an optical coherometer between the reference plane and the sample surface of the measurement sample, and an oblique incident interferometer provided with a light source unit that obliquely irradiates the reference plane with coherent light.
An inclined member that inclines the sample surface in one direction with respect to the reference plane,
It is provided with a flatness calculation unit for obtaining the flatness of the sample surface based on the interference fringes formed by the oblique incident interferometer.

本発明の第2態様にかかる平坦度測定方法は、
参照平面を持ち、前記参照平面と測定試料の試料面とで光干渉計を形成する光学部材、および、前記参照平面に斜めに可干渉光を照射する光源部を備える斜入射干渉計を用いて前記試料面の平坦度を求める平坦度測定方法であって、
前記試料面を前記参照平面に対し一方向に傾斜させる傾斜ステップと、
前記斜入射干渉計で形成される干渉縞に基づいて前記試料面の平坦度を求める平坦度演算ステップと、を備えるものである。
The flatness measuring method according to the second aspect of the present invention is
Using an optical member having a reference plane and forming an optical coherometer between the reference plane and the sample surface of the measurement sample, and an oblique incident interferometer provided with a light source unit that obliquely irradiates the reference plane with coherent light. A flatness measuring method for determining the flatness of the sample surface.
A tilting step that tilts the sample surface in one direction with respect to the reference plane.
It includes a flatness calculation step for obtaining the flatness of the sample surface based on the interference fringes formed by the oblique incident interferometer.

この第1態様または第2態様によれば、試料面が参照平面に対し一方向に傾斜されているので、明暗パターンが一方向に並んだ干渉縞を生成することができる。試料面が完全に平坦な場合に生じる干渉縞に比べて、試料面に凹凸が存在すると、前記凹凸の存在する場所で干渉縞が変化する。そこで、干渉縞に基づき試料面の平坦度が求められる。このように、参照平面を移動させて参照平面と試料面との距離を変化させることなく試料面の平坦度が求められているため、従来に比べて測定時間を短縮することができる。 According to the first aspect or the second aspect, since the sample surface is inclined in one direction with respect to the reference plane, it is possible to generate interference fringes in which the light and dark patterns are arranged in one direction. Compared to the interference fringes that occur when the sample surface is completely flat, when the sample surface has irregularities, the interference fringes change at the place where the irregularities exist. Therefore, the flatness of the sample surface is obtained based on the interference fringes. As described above, since the flatness of the sample surface is required without changing the distance between the reference plane and the sample surface by moving the reference plane, the measurement time can be shortened as compared with the conventional case.

上記第1態様において、例えば、
前記傾斜部材は、前記平坦度に要求される空間分解能に応じるように、前記試料面を前記参照平面に対し前記一方向に傾斜させてもよい。
In the first aspect, for example,
The tilting member may tilt the sample surface in one direction with respect to the reference plane so as to meet the spatial resolution required for the flatness.

上記第2態様において、例えば、
前記傾斜ステップは、前記平坦度に要求される空間分解能に応じるように、前記試料面を前記参照平面に対し前記一方向に傾斜させてもよい。
In the second aspect, for example,
The tilting step may tilt the sample surface in one direction with respect to the reference plane so as to meet the spatial resolution required for the flatness.

これらの態様において、平坦度の空間分解能は、干渉縞の明領域(または暗領域)の間隔に依存する。一方、干渉縞の明領域(または暗領域)の間隔は、参照平面に対する試料面の傾斜角に依存する。したがって、これらの態様によれば、平坦度に要求される空間分解能に応じるように、試料面が参照平面に対し一方向に傾斜しているため、平坦度に要求される空間分解能を満たすことができる。 In these embodiments, the spatial resolution of flatness depends on the spacing of the bright (or dark) regions of the interference fringes. On the other hand, the spacing between the bright (or dark) regions of the interference fringes depends on the angle of inclination of the sample plane with respect to the reference plane. Therefore, according to these aspects, the sample surface is inclined in one direction with respect to the reference plane so as to meet the spatial resolution required for flatness, so that the spatial resolution required for flatness can be satisfied. can.

上記第1態様において、例えば、
前記平坦度演算部は、前記斜入射干渉計で形成される干渉縞から空間周波数スペクトルを求め、前記空間周波数スペクトルにおける、前記干渉縞の周波数成分を含む所定の周波数範囲から前記干渉縞の位相を求め、前記求めた干渉縞の位相から前記平坦度を求めてもよい。
In the first aspect, for example,
The flatness calculation unit obtains a spatial frequency spectrum from the interference fringes formed by the oblique incident interferometer, and obtains the phase of the interference fringes from a predetermined frequency range including the frequency component of the interference fringes in the spatial frequency spectrum. The flatness may be obtained from the obtained and the phase of the obtained interference fringes.

上記第2態様において、例えば、
前記平坦度演算ステップは、前記斜入射干渉計で形成される干渉縞から空間周波数スペクトルを求め、前記空間周波数スペクトルにおける、前記干渉縞の周波数成分を含む所定の周波数範囲から前記干渉縞の位相を求め、前記求めた干渉縞の位相から前記平坦度を求めてもよい。
In the second aspect, for example,
In the flatness calculation step, the spatial frequency spectrum is obtained from the interference fringes formed by the oblique incident interferometer, and the phase of the interference fringes is obtained from a predetermined frequency range including the frequency component of the interference fringes in the spatial frequency spectrum. The flatness may be obtained from the obtained and the phase of the obtained interference fringes.

これらの態様によれば、空間周波数スペクトルにおける、干渉縞の周波数成分を含む所定の周波数範囲から干渉縞の位相が求められているため、位相の計算時間を、より低減することができる。 According to these aspects, since the phase of the interference fringes is obtained from a predetermined frequency range including the frequency component of the interference fringes in the spatial frequency spectrum, the phase calculation time can be further reduced.

本発明によれば、参照平面を移動させることなく平坦度を求めることにより、従来に比べて測定時間を短縮することが可能になる。 According to the present invention, by obtaining the flatness without moving the reference plane, it is possible to shorten the measurement time as compared with the conventional case.

本実施形態における平坦度測定装置の構成を概略的に示すブロック図である。It is a block diagram which shows schematic structure of the flatness measuring apparatus in this embodiment. 斜入射干渉計および撮像部の構成を概略的に示す図である。It is a figure which shows schematic structure of the oblique incident interferometer and the image pickup part. 撮像部によって撮像された干渉縞の画像を示す図である。It is a figure which shows the image of the interference fringes imaged by the image pickup unit. フーリエ変換の結果を概略的に示す図である。It is a figure which shows the result of the Fourier transform schematicly. フーリエ変換の結果を概略的に示す図である。It is a figure which shows the result of the Fourier transform schematicly. 位相の算出結果を概略的に示す図である。It is a figure which shows the calculation result of a phase roughly. 平坦度測定装置の動作手順を概略的に示すフローチャートである。It is a flowchart which shows schematic operation procedure of the flatness measuring apparatus.

(実施の形態)
以下、本発明の実施の形態が、図面を参照しながら説明される。なお、各図面において、同じ構成要素については同じ符号が用いられ、適宜、詳細な説明は省略される。
(Embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing, the same reference numerals are used for the same components, and detailed description thereof will be omitted as appropriate.

図1は、本実施形態における、平坦度測定方法を実行する平坦度測定装置100の構成を概略的に示すブロック図である。図2は、斜入射干渉計10および撮像部110の構成を概略的に示す図である。 FIG. 1 is a block diagram schematically showing the configuration of a flatness measuring device 100 that executes the flatness measuring method in the present embodiment. FIG. 2 is a diagram schematically showing the configurations of the oblique incident interferometer 10 and the imaging unit 110.

図2に示されるように、斜入射干渉計10は、光源部105、第1、第2、第3光学系L1,L2,L3、ミラーM1、光学部材P、および傾斜部材15を含む。傾斜部材15には、試料面20Sを有する測定試料20が載置されている。測定試料20は、例えば、直径120mmを有する、平面視でドーナツ形状の円板である。 As shown in FIG. 2, the oblique incident interferometer 10 includes a light source unit 105, first, second, and third optical systems L1, L2, L3, a mirror M1, an optical member P, and an inclined member 15. A measurement sample 20 having a sample surface 20S is placed on the inclined member 15. The measurement sample 20 is, for example, a donut-shaped disk in a plan view having a diameter of 120 mm.

光学部材Pは、参照平面を持ち、前記参照平面と測定試料20の試料面20Sとで光干渉計を形成する光学素子である。光学部材Pは、本実施形態では、例えば、断面二等辺三角形、より具体的には断面直角二等辺三角形の三角プリズムであり、その底面が参照平面20Pとなっている。参照平面20Pの一方側に連結される一方側面は、光源部105から射出される可干渉光が入射される入射面21Pとなり、参照平面20Pの他方側に連結される他方側面は、光干渉計で可干渉光が干渉することによって生じた干渉光を射出する射出面22Pとなっている。 The optical member P is an optical element having a reference plane and forming an optical interference meter between the reference plane and the sample surface 20S of the measurement sample 20. In the present embodiment, the optical member P is, for example, a triangular prism having an isosceles right triangle in cross section, more specifically, an isosceles right triangle in cross section, and its bottom surface is a reference plane 20P. One side surface connected to one side of the reference plane 20P is an incident surface 21P to which the coherent light emitted from the light source unit 105 is incident, and the other side surface connected to the other side of the reference plane 20P is an optical coherometer. The injection surface 22P emits the interference light generated by the interference of the coherent light.

光源部105は、制御回路130(図1)に接続され、制御回路130の制御に従って、可干渉光として所定の波長のレーザ光を射出する装置である。光源部105は、例えば、波長632.8nmのレーザ光を出射するHe−Neレーザ装置を備えて構成される。 The light source unit 105 is a device connected to the control circuit 130 (FIG. 1) and emits a laser beam having a predetermined wavelength as coherent light according to the control of the control circuit 130. The light source unit 105 includes, for example, a He-Ne laser device that emits a laser beam having a wavelength of 632.8 nm.

撮像部110は、制御回路130(図1)に接続され、制御回路130の制御に従って、参照平面20Pと測定試料20の試料面20Sとで形成される光干渉計で生成される干渉縞(干渉光の光像)を撮像する装置である。撮像部110は、例えば、CCD型またはCMOS型の二次元イメージセンサの撮像素子を有するデジタルカメラを備えて構成される。干渉縞の画像(画像データ)は、撮像部110から制御回路130へ出力される。 The imaging unit 110 is connected to the control circuit 130 (FIG. 1), and according to the control of the control circuit 130, interference fringes (interference) generated by an optical interferometer formed by the reference plane 20P and the sample surface 20S of the measurement sample 20. It is a device that captures an image of light). The image pickup unit 110 includes, for example, a digital camera having an image pickup element of a CCD type or CMOS type two-dimensional image sensor. The image (image data) of the interference fringes is output from the imaging unit 110 to the control circuit 130.

傾斜部材15は、測定試料20の試料面20Sを光学部材Pの参照平面20Pに対し一方向DRに傾斜させる部材である。傾斜部材15は、本実施形態では、例えば、柱状部材であり、測定試料20を載置する載置面15Uと、載置面15Uに対向する下面15Dとを備える。下面15Dが水平方向に平行な水平面となるように傾斜部材15が配置される場合、載置面15Uは、下面15Dに対し、一方向DRに傾斜角θで傾斜するように、形成され、そして、光学部材Pの参照平面20Pが、載置面15Uに平板状の測定試料20を載置した場合に測定試料20の試料面20Sから離間して、下面15Dと平行になるように、光学部材Pは、図略の支持部材で支持されている。したがって、載置面15Uに測定試料20が載置された場合に、傾斜部材15は、試料面20Sを参照平面20Pに対し一方向DRに傾斜角θで傾斜させる。すなわち、試料面20Sと参照平面20Pとの間隔は、前記水平方向の一方端から他方端にかけて徐々に拡がる。 The tilting member 15 is a member that tilts the sample surface 20S of the measurement sample 20 in one direction DR with respect to the reference plane 20P of the optical member P. In the present embodiment, the inclined member 15 is, for example, a columnar member, and includes a mounting surface 15U on which the measurement sample 20 is placed and a lower surface 15D facing the mounting surface 15U. When the inclined member 15 is arranged so that the lower surface 15D is a horizontal plane parallel to the horizontal direction, the mounting surface 15U is formed so as to be inclined with respect to the lower surface 15D at an inclination angle θ in one direction DR. , The optical member so that the reference plane 20P of the optical member P is separated from the sample surface 20S of the measurement sample 20 and parallel to the lower surface 15D when the flat plate-shaped measurement sample 20 is placed on the mounting surface 15U. P is supported by a support member (not shown). Therefore, when the measurement sample 20 is placed on the mounting surface 15U, the tilting member 15 tilts the sample surface 20S in a unidirectional DR with respect to the reference plane 20P at an tilt angle θ. That is, the distance between the sample surface 20S and the reference plane 20P gradually increases from one end to the other end in the horizontal direction.

なお、干渉縞の明領域(または暗領域)の間隔から、その位置における位相が算出される。このため、空間分解能は、干渉縞の明領域(または暗領域)の間隔、すなわち傾斜角θに依存する。このように、本実施形態では、平坦度測定に要求される空間分解能に応じて、傾斜部材15の載置面15Uの傾斜角θが決定されている。 The phase at that position is calculated from the interval between the bright regions (or dark regions) of the interference fringes. Therefore, the spatial resolution depends on the interval between the bright regions (or dark regions) of the interference fringes, that is, the inclination angle θ. As described above, in the present embodiment, the inclination angle θ of the mounting surface 15U of the inclination member 15 is determined according to the spatial resolution required for the flatness measurement.

これら光学部材P、光源部105および撮像部110において、光源部105から射出された可干渉光が参照平面20Pに所定の入射角で斜めに入射されるように、光源部105は、光学部材Pに対し配置され、撮像部110は、参照平面20Pに入射した可干渉光の正反射方向となるように、配置される。 In these optical members P, the light source unit 105, and the image pickup unit 110, the light source unit 105 is the optical member P so that the interfering light emitted from the light source unit 105 is obliquely incident on the reference plane 20P at a predetermined incident angle. The imaging unit 110 is arranged so as to be in the specular reflection direction of the interfering light incident on the reference plane 20P.

そして、本実施形態では、装置の小型化のために、光源部105と光学部材Pとの間の光路中に、光路を折り曲げるミラーM1が配置され、可干渉光の照射領域(照射面積)を広げるために、光源部105とミラーM1との間の光路中に、第1光学系L1が配置され、ミラーM1と光学部材Pとの間の光路中に、第2光学系L2が配置されている。これら第1光学系L1、ミラーM1および第2光学系L2は、光源部105から射出された可干渉光を参照平面20Pに照射する照明光学系を構成する。 Then, in the present embodiment, in order to reduce the size of the apparatus, a mirror M1 that bends the optical path is arranged in the optical path between the light source unit 105 and the optical member P, and an irradiation region (irradiation area) of interfering light is provided. In order to expand, the first optical system L1 is arranged in the optical path between the light source unit 105 and the mirror M1, and the second optical system L2 is arranged in the optical path between the mirror M1 and the optical member P. There is. The first optical system L1, the mirror M1, and the second optical system L2 constitute an illumination optical system that irradiates the reference plane 20P with coherent light emitted from the light source unit 105.

一方、光学部材Pと撮像部110との間の光路中に、光学部材Pの射出面22Pから射出された可干渉光の干渉光を撮像部110に導光する受光光学系としての第3光学系L3が、その光軸が撮像部110の光軸と一致するように、配置されている。第3光学系L3は、1または複数のレンズを備えて構成される。 On the other hand, the third optical as a light receiving optical system that guides the interference light of the coherent light emitted from the ejection surface 22P of the optical member P to the imaging unit 110 in the optical path between the optical member P and the imaging unit 110. The system L3 is arranged so that its optical axis coincides with the optical axis of the imaging unit 110. The third optical system L3 is configured to include one or more lenses.

第1光学系L1は、入射光を集光する光学素子であり、1または複数のレンズを備えて構成される。ミラーM1は、好ましくは全反射ミラーであり、第1光学系L1から、第1光学系L1の焦点距離より離れた位置に配置される。第2光学系L2は、入射光を平行化する光学素子であり、1または複数のレンズを備えて構成される。これら光源部105、第1光学系L1および第2光学系L2は、各光軸が互いに一致するように、配置される。 The first optical system L1 is an optical element that collects incident light, and includes one or a plurality of lenses. The mirror M1 is preferably a total reflection mirror, and is arranged at a position away from the first optical system L1 and the focal length of the first optical system L1. The second optical system L2 is an optical element that parallelizes incident light, and includes one or a plurality of lenses. The light source unit 105, the first optical system L1 and the second optical system L2 are arranged so that their optical axes coincide with each other.

光源部105から射出された可干渉光は、第1光学系L1に入射され、第1光学系L1によって前記焦点距離で集光された後に拡がってミラーM1に入射され、ミラーM1で反射されることで光路が第2光学系L2へ向けて折り曲げられ、第2光学系L2に入射され、第2光学系L2で平行光となって入射面21Pを介して光学部材Pに入射される。光学部材Pに入射された可干渉光は、参照平面20Pに斜めに入射され、その一部が参照平面20Pで反射され、その残部が参照平面20Pを透過して試料面20Sで反射される。参照平面20Pで反射された可干渉光と試料面20Sで反射された可干渉光とは、干渉し、この干渉光は、光学部材Pから射出面22Pを介して射出され、第3光学系L3を介して、干渉縞画像として、撮像部110に入射される。 The interfering light emitted from the light source unit 105 is incident on the first optical system L1, collected by the first optical system L1 at the focal distance, spreads, is incident on the mirror M1, and is reflected by the mirror M1. As a result, the optical path is bent toward the second optical system L2, is incident on the second optical system L2, becomes parallel light in the second optical system L2, and is incident on the optical member P via the incident surface 21P. The coherent light incident on the optical member P is obliquely incident on the reference plane 20P, a part of the light is reflected on the reference plane 20P, and the rest thereof is transmitted through the reference plane 20P and reflected on the sample surface 20S. The coherent light reflected on the reference plane 20P and the coherent light reflected on the sample surface 20S interfere with each other, and this coherent light is emitted from the optical member P via the ejection surface 22P, and is emitted from the optical member P via the ejection surface 22P. As an interference fringe image, the light is incident on the imaging unit 110.

本例では、干渉縞を、第3光学系L3によって、撮像部110で結像する構成であるが、射出面22Pの後に、スクリーンを配置し、同スクリーンで得られる干渉縞を、撮像する形態でもよい。この場合、第3光学系L3の口径を干渉縞画像の大きさより小さくできるメリットがある。 In this example, the interference fringes are imaged by the imaging unit 110 by the third optical system L3. However, a screen is arranged after the ejection surface 22P, and the interference fringes obtained by the screen are imaged. It may be. In this case, there is an advantage that the aperture of the third optical system L3 can be made smaller than the size of the interference fringe image.

図1に示されるように、平坦度測定装置100は、斜入射干渉計10、撮像部110、ディスプレイ115、入力部120、制御回路130を備える。斜入射干渉計10は、光源部105を含む。制御回路130は、メモリ140、中央演算処理装置(CPU)150、および周辺回路(図示省略)を含む。図1に示される平坦度測定装置100は、例えば測定試料20を生産する工場の検査工程に設けられている。 As shown in FIG. 1, the flatness measuring device 100 includes an oblique interferometer 10, an imaging unit 110, a display 115, an input unit 120, and a control circuit 130. The oblique incident interferometer 10 includes a light source unit 105. The control circuit 130 includes a memory 140, a central processing unit (CPU) 150, and peripheral circuits (not shown). The flatness measuring device 100 shown in FIG. 1 is provided, for example, in an inspection process of a factory that produces a measurement sample 20.

メモリ140は、例えば半導体メモリ等により構成される。メモリ140は、例えばリードオンリーメモリ(ROM)、ランダムアクセスメモリ(RAM)、電気的に消去書き換え可能なROM(EEPROM)などを含む。CPU150は、メモリ140の例えばROMに記憶された本実施形態の制御プログラムにしたがって動作することによって、測定制御部151、および平坦度演算部152として機能する。平坦度演算部152は、フーリエ変換計算部161、および逆フーリエ変換計算部162を含む。 The memory 140 is composed of, for example, a semiconductor memory or the like. The memory 140 includes, for example, a read-only memory (ROM), a random access memory (RAM), an electrically erasable and rewritable ROM (EEPROM), and the like. The CPU 150 functions as the measurement control unit 151 and the flatness calculation unit 152 by operating according to the control program of the present embodiment stored in the memory 140, for example, the ROM. The flatness calculation unit 152 includes a Fourier transform calculation unit 161 and an inverse Fourier transform calculation unit 162.

測定制御部151は、光源部105を制御して、光源部105から可干渉光を射出させて、干渉縞を生成させる。測定制御部151は、撮像部110を制御して、干渉縞を撮像させ、干渉縞の画像データを取得する。平坦度演算部152は、干渉縞の画像データに基づき、測定試料20の試料面20Sの平坦度を算出する。フーリエ変換計算部161および逆フーリエ変換計算部162の各機能は後述される。 The measurement control unit 151 controls the light source unit 105 to emit coherent light from the light source unit 105 to generate interference fringes. The measurement control unit 151 controls the imaging unit 110 to image the interference fringes and acquire the image data of the interference fringes. The flatness calculation unit 152 calculates the flatness of the sample surface 20S of the measurement sample 20 based on the image data of the interference fringes. Each function of the Fourier transform calculation unit 161 and the inverse Fourier transform calculation unit 162 will be described later.

ディスプレイ115は、例えば液晶ディスプレイパネルを含む。ディスプレイ115は、CPU150により制御されて、例えば試料面20Sの平坦度を表示する。 The display 115 includes, for example, a liquid crystal display panel. The display 115 is controlled by the CPU 150 to display, for example, the flatness of the sample surface 20S.

入力部120は、例えばマウスまたはキーボードを含む。入力部120は、ユーザにより操作されると、その操作内容を示す操作信号を制御回路130に出力する。なお、ディスプレイ115がタッチパネル式ディスプレイの場合には、マウスまたはキーボードに代えて、タッチパネル式ディスプレイが入力部120を兼用してもよい。 The input unit 120 includes, for example, a mouse or a keyboard. When operated by the user, the input unit 120 outputs an operation signal indicating the operation content to the control circuit 130. When the display 115 is a touch panel display, the touch panel display may also serve as the input unit 120 instead of the mouse or keyboard.

図3は、撮像部によって撮像された干渉縞の画像を示す図である。図4、図5は、フーリエ変換の結果を概略的に示す図である。図6は、位相の算出結果を概略的に示す図である。図7は、平坦度測定装置の動作手順を概略的に示すフローチャートである。図1〜図6を参照しつつ、図7のフローチャートに従って、平坦度測定装置100の動作が説明される。例えば工場の搬送路に沿って検査工程に搬送されてきた測定試料20の搬送タイミングに合わせて、図7の動作が繰り返し実行される。 FIG. 3 is a diagram showing an image of interference fringes captured by the imaging unit. 4 and 5 are diagrams schematically showing the results of the Fourier transform. FIG. 6 is a diagram schematically showing the calculation result of the phase. FIG. 7 is a flowchart schematically showing an operating procedure of the flatness measuring device. The operation of the flatness measuring device 100 will be described with reference to FIGS. 1 to 6 according to the flowchart of FIG. 7. For example, the operation of FIG. 7 is repeatedly executed in accordance with the transport timing of the measurement sample 20 that has been transported to the inspection process along the transport path of the factory.

図7のステップS1000(傾斜ステップの一例に相当)において、例えば、測定試料20が傾斜部材15の載置面15Uに載せられて、測定試料20の試料面20Sを、光学部材Pの参照平面20Pに対して傾斜角θで傾斜させる。例えば、オペレータあるいはロボットアームが、光学部材Pに接触しないように、測定試料20を傾斜部材15の載置面15Uに載せてもよい。 In step S1000 of FIG. 7 (corresponding to an example of the tilt step), for example, the measurement sample 20 is placed on the mounting surface 15U of the tilt member 15, and the sample surface 20S of the measurement sample 20 is referred to the reference plane 20P of the optical member P. It is tilted at an inclination angle θ. For example, the measurement sample 20 may be placed on the mounting surface 15U of the tilting member 15 so that the operator or the robot arm does not come into contact with the optical member P.

ステップS1005において、測定制御部151は、光源部105を制御して可干渉光を射出させて干渉縞を生成させ、さらに撮像部110を制御して、撮像部110に試料面20S全体を撮像させて、干渉縞の画像を取得する。光学部材Pの参照平面20Pでの反射光と、測定試料20の試料面20Sでの反射光とは、光干渉して、互いの光路長の差に応じた干渉縞が生成される。また、上述のように、測定試料20の試料面20Sは、光学部材Pの参照平面20Pに対して、一方向DRに傾斜角θで傾斜している。このため、撮像部110は、図3に示されるように、明暗パターンが上記一方向DRに並んだ干渉縞の干渉縞画像30を取得する。干渉縞画像30は、上記一方向DRに並ぶ線状の明領域30aと線状の暗領域30bとが交互に繰り返されて構成されている。 In step S1005, the measurement control unit 151 controls the light source unit 105 to emit coherent light to generate interference fringes, and further controls the image pickup unit 110 to cause the image pickup unit 110 to image the entire sample surface 20S. And acquire the image of the interference fringes. The reflected light on the reference plane 20P of the optical member P and the reflected light on the sample surface 20S of the measurement sample 20 interfere with each other, and interference fringes corresponding to the difference in optical path lengths are generated. Further, as described above, the sample surface 20S of the measurement sample 20 is inclined with respect to the reference plane 20P of the optical member P in a unidirectional DR at an inclination angle θ. Therefore, as shown in FIG. 3, the imaging unit 110 acquires the interference fringe image 30 of the interference fringes in which the light and dark patterns are arranged in the one-way DR. The interference fringe image 30 is configured by alternately repeating linear bright regions 30a and linear dark regions 30b arranged in the one-way DR.

試料面20Sが、完全に平坦である場合に生じる干渉縞に比べて、試料面20Sに凹凸があると、前記凹凸の存在する場所で干渉縞がずれる(完全に平坦である場合に生じる干渉縞の明領域(または暗領域)の位置をPtとし、前記明領域(または暗領域)に対応する、前記凹凸の存在する場所での干渉縞の明領域(または暗領域)の位置をPrとすると、Pt≠Prとなり、前記明領域(または暗領域)の位置が変化する)。この干渉縞のずれを表す干渉縞の位相を算出することによって、試料面20Sの凹凸、つまり平坦度を測定できる。 Compared to the interference fringes that occur when the sample surface 20S is completely flat, when the sample surface 20S has irregularities, the interference fringes shift at the place where the irregularities exist (interference fringes that occur when the sample surface 20S is completely flat). Let Pt be the position of the bright region (or dark region) of the interference fringe, and Pr be the position of the bright region (or dark region) of the interference fringes in the place where the unevenness exists, which corresponds to the bright region (or dark region). , Pt ≠ Pr, and the position of the bright region (or dark region) changes). By calculating the phase of the interference fringes representing the deviation of the interference fringes, the unevenness of the sample surface 20S, that is, the flatness can be measured.

なお、本実施形態では、平坦度測定における試料面20Sの空間分解能は、約4mmに設定されている。このため、干渉縞の明領域(または暗領域)の間隔が約4mmとなるように、傾斜部材15の載置面15Uの傾斜角θが設定されている。なお、測定試料20の直径が120mmであるので、干渉縞の明領域(または暗領域)の本数は、試料面20Sの全面で約30本である。 In the present embodiment, the spatial resolution of the sample surface 20S in the flatness measurement is set to about 4 mm. Therefore, the inclination angle θ of the mounting surface 15U of the inclination member 15 is set so that the interval between the bright regions (or dark regions) of the interference fringes is about 4 mm. Since the diameter of the measurement sample 20 is 120 mm, the number of bright regions (or dark regions) of the interference fringes is about 30 on the entire surface of the sample surface 20S.

簡単のために一次元で表現すると、干渉縞の光強度I(X)は、一般に、
I(X)
=B(X)+Acos(KX+φ(X))
=B(X)+(A/2)ej(KX+φ(X))+(A/2)e−j(KX+φ(X)) (式1)
で表される。上記(式1)において、係数A,Bは、第1、第2、第3光学系L1,L2,L3の透過率、試料面20Sの反射率等に依存する。位相φは、試料面20Sの平坦度を表す。係数Kは、干渉縞の波数である。干渉縞を密にする(つまり干渉縞の空間分解能を向上する)ことで、係数Kを大きくすることができる。
Expressed in one dimension for simplicity, the light intensity I (X) of the interference fringes is generally,
I (X)
= B (X) + Acos (KX + φ (X))
= B (X) + (A / 2) e j (KX + φ (X)) + (A / 2) e −j (KX + φ (X)) (Equation 1)
It is represented by. In the above (Equation 1), the coefficients A and B depend on the transmittance of the first, second and third optical systems L1, L2 and L3, the reflectance of the sample surface 20S and the like. The phase φ represents the flatness of the sample surface 20S. The coefficient K is the wave number of the interference fringes. The coefficient K can be increased by making the interference fringes denser (that is, improving the spatial resolution of the interference fringes).

図7に戻り、ステップS1010において、フーリエ変換計算部161は、干渉縞画像30の座標(X,Y)ごとの画素値に基づき、干渉縞画像30全体をフーリエ変換する。フーリエ変換によって、上記(式1)の右辺の3項を分離することができる。図4には、簡単のために一次元で表した場合のフーリエ変換の結果が概略的に示されている。図4において、横軸は空間周波数を表し、縦軸はパワースペクトルを表す。図5には、二次元で表した場合のフーリエ変換の結果が概略的に示されている。図4、図5において、ピーク値P1は、上記(式1)の右辺の第1項に相当し、直流成分となる。また、ピーク値P1を挟んだ両端のピーク値P2,P3は、それぞれ、上記(式1)の右辺の第2項、第3項に相当し、干渉縞の周波数成分および位相成分を含む。上記(式1)から分かるように、位相φを含むピーク値P2,P3は共役であるので、一方のデータのみを用いればよい。 Returning to FIG. 7, in step S1010, the Fourier transform calculation unit 161 Fourier transforms the entire interference fringe image 30 based on the pixel values for each coordinate (X, Y) of the interference fringe image 30. By Fourier transform, the three terms on the right side of the above (Equation 1) can be separated. FIG. 4 schematically shows the result of the Fourier transform when expressed in one dimension for the sake of simplicity. In FIG. 4, the horizontal axis represents the spatial frequency and the vertical axis represents the power spectrum. FIG. 5 schematically shows the result of the Fourier transform when expressed in two dimensions. In FIGS. 4 and 5, the peak value P1 corresponds to the first term on the right side of the above (Equation 1) and is a DC component. Further, the peak values P2 and P3 at both ends of the peak value P1 correspond to the second and third terms on the right side of the above (Equation 1), respectively, and include the frequency component and the phase component of the interference fringes. As can be seen from the above (Equation 1), since the peak values P2 and P3 including the phase φ are conjugated, only one of the data needs to be used.

図7に戻り、ステップS1015において、逆フーリエ変換計算部162は、一方端のピーク値を含む所定周波数範囲のスペクトルを抽出する。図4の例では、逆フーリエ変換計算部162は、右端のピーク値P3を含む、半値幅Dの3倍の周波数範囲D3のスペクトルを抽出する。図4の周波数範囲D3は、図5では周波数範囲RD3に相当する。 Returning to FIG. 7, in step S1015, the inverse Fourier transform calculation unit 162 extracts a spectrum in a predetermined frequency range including the peak value at one end. In the example of FIG. 4, the inverse Fourier transform calculation unit 162 extracts the spectrum of the frequency range D3 including the peak value P3 at the right end, which is three times the half width D. The frequency range D3 in FIG. 4 corresponds to the frequency range RD3 in FIG.

図7に戻り、ステップS1020において、逆フーリエ変換計算部162は、ステップS1015で抽出されたスペクトルに対して、周波数をKだけシフトしたものを逆フーリエ変換する。これによって、
Ift(X)=(A/2)ejφ(X) (式2)
が得られ、この実部(R)と虚部(I)より、位相φ=tan−1(I/R)が求まる。
Returning to FIG. 7, in step S1020, the inverse Fourier transform calculation unit 162 performs inverse Fourier transform on the spectrum extracted in step S1015 with the frequency shifted by K. by this,
Ift (X) = (A / 2) e jφ (X) (Equation 2)
Is obtained, and the phase φ = tan -1 (I / R) can be obtained from the real part (R) and the imaginary part (I).

ステップS1025において、平坦度演算部152は、上記(式2)から、項(KX)を消去して、位相φを求める。なお、上記(式1)、(式2)では、上述のように、簡単のために一次元で表現されているが、実際には、平坦度演算部152は、図6に示されるように、座標(X,Y)ごとに、位相φを求める。図6では、位相の変化が白から黒へのグレースケールで示されている。 In step S1025, the flatness calculation unit 152 eliminates the term (KX) from the above (Equation 2) to obtain the phase φ. In the above (Equation 1) and (Equation 2), as described above, they are expressed in one dimension for simplicity, but in reality, the flatness calculation unit 152 is as shown in FIG. , The phase φ is obtained for each coordinate (X, Y). In FIG. 6, the phase change is shown in grayscale from white to black.

図7に戻り、ステップS1030において、平坦度演算部152は、ステップS1025で算出された位相φと傾斜角θと光源部105の波長λとを用いて、座標(X,Y)ごとに、参照平面20Pからの試料面20Sの高さΔZを、
ΔZ=(λ/cosθ)φ/4π (式3)
によって算出する。なお、ステップS1025で算出された位相φは、0≦φ≦2πの範囲であるので、位相φに2πの飛びが生じた場合には、+2πまたは−2πの補正を行うことにより、位相接続が行われる。
Returning to FIG. 7, in step S1030, the flatness calculation unit 152 refers to each coordinate (X, Y) using the phase φ calculated in step S1025, the inclination angle θ, and the wavelength λ of the light source unit 105. The height ΔZ of the sample surface 20S from the plane 20P,
ΔZ = (λ / cosθ) φ / 4π (Equation 3)
Calculated by. Since the phase φ calculated in step S1025 is in the range of 0 ≦ φ ≦ 2π, if a 2π jump occurs in the phase φ, the phase connection can be made by correcting + 2π or -2π. Will be done.

平坦度演算部152は、さらに、高さΔZの最大値ΔZmaxおよび最小値ΔZminを求め、それらの差ΔZdifを
ΔZdif=ΔZmax−ΔZmin
により算出して、この差ΔZdifを試料面20Sの平坦度として求める。その後、図7の動作は終了する。
The flatness calculation unit 152 further obtains the maximum value ΔZmax and the minimum value ΔZmin of the height ΔZ, and sets the difference ΔZdif between them as ΔZdim = ΔZmax−ΔZmin.
This difference ΔZdif is calculated as the flatness of the sample surface 20S. After that, the operation of FIG. 7 ends.

なお、平坦度演算部152は、差ΔZdifを試料面20Sの平坦度としてディスプレイ115に表示してもよい。また、平坦度演算部152は、高さΔZから得られる上記差ΔZdif以外の他の指標を試料面20Sの平坦度として求めてもよい。本実施形態において、ステップS1010〜S1030は、平坦度演算ステップの一例に相当する。 The flatness calculation unit 152 may display the difference ΔZdiv as the flatness of the sample surface 20S on the display 115. Further, the flatness calculation unit 152 may obtain an index other than the difference ΔZdif obtained from the height ΔZ as the flatness of the sample surface 20S. In this embodiment, steps S101 to S1030 correspond to an example of a flatness calculation step.

以上説明されたように、本実施形態では、試料面20Sを撮像して得られた干渉縞画像30全体をフーリエ変換して、干渉縞の位相φを算出し、試料面20Sの平坦度を求めている。したがって、本実施形態によれば、光学部材Pを移動させる従来に比べて測定時間を短縮することができる。本実施形態によれば、測定時間を100msec程度に短縮できるので、測定試料20を生産する工場において、検査工程に連続して搬送されてくる測定試料20を長時間にわたって滞留させることなく、各測定試料20の平坦度を測定することができる。 As described above, in the present embodiment, the entire interference fringe image 30 obtained by imaging the sample surface 20S is Fourier transformed to calculate the phase φ of the interference fringes, and the flatness of the sample surface 20S is obtained. ing. Therefore, according to the present embodiment, the measurement time can be shortened as compared with the conventional method of moving the optical member P. According to this embodiment, the measurement time can be shortened to about 100 msec. Therefore, in the factory where the measurement sample 20 is produced, each measurement is performed without retaining the measurement sample 20 continuously transported in the inspection process for a long time. The flatness of the sample 20 can be measured.

一般に、干渉縞の解析は、局所域における干渉縞の位相を計算することによっても実施できるが、この場合には、当該局所域に異物等が存在すると、位相を算出することができない局所域が発生する。また、算出される位相φは0≦φ≦2πの範囲であるため、隣接する局所域間で2πの飛びがある場合、+2πまたは−2πの補正を行いつつ、位相を接続する必要がある。しかし、位相を算出することができない局所域が発生すると、隣接する局所域間で位相を接続することができないため、その局所域が起点となって、測定領域の全域に悪影響を及ぼす。 Generally, the analysis of the interference fringes can be performed by calculating the phase of the interference fringes in the local region, but in this case, if a foreign substance or the like exists in the local region, the phase cannot be calculated in the local region. appear. Further, since the calculated phase φ is in the range of 0 ≦ φ ≦ 2π, when there is a jump of 2π between adjacent local regions, it is necessary to connect the phases while correcting + 2π or -2π. However, when a local region in which the phase cannot be calculated occurs, the phase cannot be connected between adjacent local regions, so that the local region becomes the starting point and adversely affects the entire measurement region.

これに対して、本実施形態では、干渉縞画像30全体がフーリエ変換されて、空間周波数スペクトルに展開され、所望の空間周波数スペクトル領域が抽出されている。このため、上記のような局所域の異物等に起因する高周波成分を除去することができる。さらに、抽出された空間周波数スペクトル領域が逆フーリエ変換されている。よって、異物の悪影響なく、干渉縞の位相を算出することができる。 On the other hand, in the present embodiment, the entire interference fringe image 30 is Fourier transformed and expanded into a spatial frequency spectrum, and a desired spatial frequency spectrum region is extracted. Therefore, it is possible to remove the high frequency component caused by the foreign matter in the local region as described above. Furthermore, the extracted spatial frequency spectral region is inverse Fourier transformed. Therefore, the phase of the interference fringes can be calculated without the adverse effect of foreign matter.

また、本実施形態では、測定試料20の試料面20Sは、光学部材Pの参照平面20Pに対して一方向に傾斜して配置されている。したがって、本実施形態によれば、明暗パターンが一方向に並んだ干渉縞を発生させることができる。 Further, in the present embodiment, the sample surface 20S of the measurement sample 20 is arranged so as to be inclined in one direction with respect to the reference plane 20P of the optical member P. Therefore, according to the present embodiment, it is possible to generate interference fringes in which light and dark patterns are arranged in one direction.

また、本実施形態では、斜入射干渉計10を用いて、可干渉光を試料面20Sに対して斜めに入射させている。平坦度の測定精度は、撮像部110によって得られた干渉縞画像30のS/Nに依存するが、可干渉光を試料面20Sに対して斜めに入射させると、試料面20Sが粗面であっても、一般に、反射光のうち正反射成分の強度が向上する。このため、干渉縞画像30のS/Nを高めることができるので、より高精度で平坦度を測定することができる。 Further, in the present embodiment, the interfering light is obliquely incident on the sample surface 20S by using the oblique interferometer 10. The measurement accuracy of the flatness depends on the S / N of the interference fringe image 30 obtained by the imaging unit 110, but when the coherent light is obliquely incident on the sample surface 20S, the sample surface 20S becomes a rough surface. Even if there is, the intensity of the specular reflection component of the reflected light is generally improved. Therefore, since the S / N of the interference fringe image 30 can be increased, the flatness can be measured with higher accuracy.

また、本実施形態では、干渉縞の明領域30aまたは暗領域30bの間隔が、平坦度測定に対して要求される試料面20Sの空間分解能に応じるように、傾斜部材15の載置面15Uの傾斜角が決められている。したがって、傾斜部材15の載置面15Uの傾斜角が異なるものに入れ替えることによって、種々の空間分解能に対応することができる。また、本実施形態では、干渉縞の鮮明度および撮像部110の分解能を考量しつつ、要求される空間分解能に応じて干渉縞の間隔を設定することが好ましい。 Further, in the present embodiment, the mounting surface 15U of the inclined member 15 is provided so that the distance between the bright region 30a or the dark region 30b of the interference fringes corresponds to the spatial resolution of the sample surface 20S required for the flatness measurement. The tilt angle is fixed. Therefore, various spatial resolutions can be supported by replacing the tilting member 15 with a mounting surface 15U having a different tilt angle. Further, in the present embodiment, it is preferable to set the interval of the interference fringes according to the required spatial resolution while considering the sharpness of the interference fringes and the resolution of the imaging unit 110.

(その他)
(1)上記実施形態では、傾斜部材15の下面15Dが水平方向に平行な水平面となるように傾斜部材15が配置される場合、載置面15Uは、下面15Dに対し、一方向に傾斜角θで傾斜するように、形成されているが、傾斜部材15の構造は、これに限られない。例えば、測定試料20を載置する平板状の載置板を支持台上において少なくとも2か所のピエゾ素子で支持し、載置板の傾斜角θを変更できるように構成してもよい。或いは、平板状の載置板を、その一端を中心に回転可能に支持し、他端をシリンダまたはボルト等により昇降可能に支持して、載置板の傾斜角θを変更できるように構成してもよい。
(others)
(1) In the above embodiment, when the inclined member 15 is arranged so that the lower surface 15D of the inclined member 15 is a horizontal plane parallel to the horizontal direction, the mounting surface 15U has an inclination angle in one direction with respect to the lower surface 15D. Although it is formed so as to be inclined at θ, the structure of the inclined member 15 is not limited to this. For example, a flat plate-shaped mounting plate on which the measurement sample 20 is placed may be supported by at least two piezo elements on the support base so that the inclination angle θ of the mounting plate can be changed. Alternatively, a flat plate-shaped mounting plate is rotatably supported around one end thereof, and the other end is rotatably supported by a cylinder, a bolt, or the like so that the inclination angle θ of the mounting plate can be changed. You may.

(2)上記実施形態では、フーリエ変換計算部161は、干渉縞画像30の座標(X,Y)ごとの画素値に基づき、干渉縞画像30全体をフーリエ変換しているが、フーリエ変換の計算手法は、これに限られない。例えば、フーリエ変換計算部161は、まず座標Y1のラインにおいて、一次元のX座標で計算し、次に座標Y2のラインにおいて、一次元のX座標で計算するというように、ラインごとに一次元のX座標で計算し、その計算結果をY軸方向に積算してもよい。 (2) In the above embodiment, the Fourier transform calculation unit 161 Fourier transforms the entire interference fringe image 30 based on the pixel values for each coordinate (X, Y) of the interference fringe image 30, but calculates the Fourier transform. The method is not limited to this. For example, the Fourier transform calculation unit 161 first calculates in the line of the coordinate Y1 with the one-dimensional X coordinate, and then in the line of the coordinate Y2, calculates with the one-dimensional X coordinate, and so on. It may be calculated with the X coordinate of, and the calculation result may be integrated in the Y-axis direction.

或いは、測定試料20の仕様によっては、予め決められたY座標において直径方向の1ラインだけ平坦度を評価すればよい場合、予め決められた45度方向だけ平坦度を評価すればよい場合、予め決められた2方向だけ平坦度を評価すればよい場合などには、フーリエ変換計算部161は、一次元のX座標でフーリエ変換すればよい。 Alternatively, depending on the specifications of the measurement sample 20, if the flatness needs to be evaluated only for one line in the radial direction at the predetermined Y coordinate, or if the flatness needs to be evaluated only in the predetermined 45 degree direction, the flatness needs to be evaluated in advance. When the flatness needs to be evaluated only in the determined two directions, the Fourier transform calculation unit 161 may perform the Fourier transform with the one-dimensional X coordinate.

(3)上記実施形態では、光学部材Pは、参照平面20Pが鉛直方向に直交する水平面に平行になるように配置され、傾斜部材15の載置面15Uは、鉛直方向に直交する水平面に対して傾斜するように形成されているが、これに限られない。例えば、傾斜部材15の上面が鉛直方向に直交する水平面に対して平行になるように形成され、光学部材Pは、参照平面20Pが鉛直方向に直交する水平面に傾斜するように配置されてもよい。すなわち、測定試料20の試料面20Sおよび光学部材Pの参照平面20Pは、互いに一方向に傾斜して配置されていればよい。 (3) In the above embodiment, the optical member P is arranged so that the reference plane 20P is parallel to the horizontal plane orthogonal to the vertical direction, and the mounting surface 15U of the inclined member 15 is arranged with respect to the horizontal plane orthogonal to the vertical direction. It is formed so as to be inclined, but it is not limited to this. For example, the upper surface of the inclined member 15 may be formed so as to be parallel to the horizontal plane orthogonal to the vertical direction, and the optical member P may be arranged so that the reference plane 20P is inclined to the horizontal plane orthogonal to the vertical direction. .. That is, the sample surface 20S of the measurement sample 20 and the reference plane 20P of the optical member P may be arranged so as to be inclined in one direction with each other.

(4)上記実施形態では、平坦度演算部152は、右端のピーク値P3を含む、半値幅Dの3倍の周波数範囲D3のパワースペクトルを抽出しているが、これに限られない。平坦度演算部152は、例えば、右端のピーク値P3を含む、半値幅Dの2倍程度の周波数範囲を抽出してもよい。平坦度演算部152は、例えば、左端のピーク値P2を含む所定周波数範囲を抽出してもよい。要は、平坦度演算部152は、左端のピーク値P2または右端のピーク値P3を含み、中央のピーク値P1に重ならない周波数範囲を抽出すればよい。 (4) In the above embodiment, the flatness calculation unit 152 extracts the power spectrum of the frequency range D3 including the peak value P3 at the right end, which is three times the half width D, but is not limited to this. The flatness calculation unit 152 may extract, for example, a frequency range of about twice the full width at half maximum D, including the peak value P3 at the right end. The flatness calculation unit 152 may, for example, extract a predetermined frequency range including the peak value P2 at the left end. In short, the flatness calculation unit 152 may extract a frequency range that includes the peak value P2 at the left end or the peak value P3 at the right end and does not overlap with the peak value P1 at the center.

15 傾斜部材
15U 載置面
20 測定試料
20S 試料面
20P 参照平面
30 干渉縞画像
10 斜入射干渉計
100 平坦度測定装置
105 光源部
151 測定制御部
152 平坦度演算部
161 フーリエ変換計算部
162 逆フーリエ変換計算部
P 光学部材
15 Inclined member 15U Mounting surface 20 Measurement sample 20S Sample surface 20P Reference plane 30 Interference fringe image 10 Oblique interferometer 100 Flatness measuring device 105 Light source unit 151 Measurement control unit 152 Flatness calculation unit 161 Fourier transform calculation unit 162 Inverse Fourier Conversion calculation unit P Optical member

Claims (6)

参照平面を持ち、前記参照平面と測定試料の試料面とで光干渉計を形成する光学部材、および、前記参照平面に斜めに可干渉光を照射する光源部を備える斜入射干渉計と、
前記試料面を前記参照平面に対し一方向に傾斜させる傾斜部材と、
前記斜入射干渉計で形成される干渉縞に基づいて前記試料面の平坦度を求める平坦度演算部と、を備える、
平坦度測定装置。
An optical member having a reference plane and forming an optical coherometer between the reference plane and the sample surface of the measurement sample, and an oblique incident interferometer provided with a light source unit that obliquely irradiates the reference plane with coherent light.
An inclined member that inclines the sample surface in one direction with respect to the reference plane,
A flatness calculation unit for obtaining the flatness of the sample surface based on the interference fringes formed by the oblique incident interferometer is provided.
Flatness measuring device.
前記傾斜部材は、前記平坦度に要求される空間分解能に応じるように、前記試料面を前記参照平面に対し前記一方向に傾斜させる、
請求項1に記載の平坦度測定装置。
The tilting member tilts the sample surface in one direction with respect to the reference plane so as to meet the spatial resolution required for the flatness.
The flatness measuring device according to claim 1.
前記平坦度演算部は、前記斜入射干渉計で形成される干渉縞から空間周波数スペクトルを求め、前記空間周波数スペクトルにおける、前記干渉縞の周波数成分を含む所定の周波数範囲から前記干渉縞の位相を求め、前記求めた干渉縞の位相から前記平坦度を求める、
請求項1または請求項2に記載の平坦度測定装置。
The flatness calculation unit obtains a spatial frequency spectrum from the interference fringes formed by the oblique incident interferometer, and obtains the phase of the interference fringes from a predetermined frequency range including the frequency component of the interference fringes in the spatial frequency spectrum. The flatness is obtained from the phase of the obtained interference fringes.
The flatness measuring device according to claim 1 or 2.
参照平面を持ち、前記参照平面と測定試料の試料面とで光干渉計を形成する光学部材、および、前記参照平面に斜めに可干渉光を照射する光源部を備える斜入射干渉計を用いて前記試料面の平坦度を求める平坦度測定方法であって、
前記試料面を前記参照平面に対し一方向に傾斜させる傾斜ステップと、
前記斜入射干渉計で形成される干渉縞に基づいて前記試料面の平坦度を求める平坦度演算ステップと、を備える、
平坦度測定方法。
Using an optical member having a reference plane and forming an optical coherometer between the reference plane and the sample surface of the measurement sample, and an oblique incident interferometer provided with a light source unit that obliquely irradiates the reference plane with coherent light. A flatness measuring method for determining the flatness of the sample surface.
A tilting step that tilts the sample surface in one direction with respect to the reference plane.
A flatness calculation step for obtaining the flatness of the sample surface based on the interference fringes formed by the oblique incident interferometer is provided.
Flatness measurement method.
前記傾斜ステップは、前記平坦度に要求される空間分解能に応じるように、前記試料面を前記参照平面に対し前記一方向に傾斜させる、
請求項4に記載の平坦度測定方法。
The tilting step tilts the sample surface in one direction with respect to the reference plane so as to meet the spatial resolution required for the flatness.
The flatness measuring method according to claim 4.
前記平坦度演算ステップは、前記斜入射干渉計で形成される干渉縞から空間周波数スペクトルを求め、前記空間周波数スペクトルにおける、前記干渉縞の周波数成分を含む所定の周波数範囲から前記干渉縞の位相を求め、前記求めた干渉縞の位相から前記平坦度を求める、
請求項4または請求項5に記載の平坦度測定方法。
In the flatness calculation step, the spatial frequency spectrum is obtained from the interference fringes formed by the oblique incident interferometer, and the phase of the interference fringes is obtained from a predetermined frequency range including the frequency component of the interference fringes in the spatial frequency spectrum. The flatness is obtained from the phase of the obtained interference fringes.
The flatness measuring method according to claim 4 or 5.
JP2020071484A 2020-04-13 2020-04-13 Flatness measuring device and method Pending JP2021167786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020071484A JP2021167786A (en) 2020-04-13 2020-04-13 Flatness measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020071484A JP2021167786A (en) 2020-04-13 2020-04-13 Flatness measuring device and method

Publications (1)

Publication Number Publication Date
JP2021167786A true JP2021167786A (en) 2021-10-21

Family

ID=78079638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020071484A Pending JP2021167786A (en) 2020-04-13 2020-04-13 Flatness measuring device and method

Country Status (1)

Country Link
JP (1) JP2021167786A (en)

Similar Documents

Publication Publication Date Title
US8319975B2 (en) Methods and apparatus for wavefront manipulations and improved 3-D measurements
US4818110A (en) Method and apparatus of using a two beam interference microscope for inspection of integrated circuits and the like
US9568304B2 (en) Image sequence and evaluation method and system for structured illumination microscopy
JP4924042B2 (en) Three-dimensional shape measuring apparatus, calibration method thereof, program, and computer-readable recording medium
US6532073B2 (en) Fringe analysis error detection method and fringe analysis error correction method
TW201903388A (en) Optical measurement apparatus and optical measurement method
KR20150018456A (en) Phase-controlled model-based overlay measurement systems and methods
JP2005520353A (en) Overlay error detection
JP2012078164A (en) Pattern inspection device
JP5397704B2 (en) Shape measuring device
KR20180021132A (en) Interference roll-off measurements using static fringe patterns
US20030179385A1 (en) Surface shape measuring system
JP5740230B2 (en) Measuring method of surface shape of sample by scanning white interferometer
JP4183220B2 (en) Optical spherical curvature radius measuring device
JP2021167786A (en) Flatness measuring device and method
KR20210125428A (en) Optical measuring system and optical measuring method
EP2884338A1 (en) Method of selecting a region of interest from interferometric measurements
CN112629433A (en) Analysis apparatus, analysis method, interferometry system, and storage medium
JP2004286689A (en) Simultaneous measuring method for profile and film thickness distribution for multilayer film, and device therefor
JP4156133B2 (en) Specimen inspection apparatus provided with conveying fringe generating means
US11561080B2 (en) Optical sensor for surface inspection and metrology
US11703461B2 (en) Optical sensor for surface inspection and metrology
JP5933273B2 (en) Measuring method of surface shape of sample by scanning white interferometer
JP6874211B2 (en) Eccentricity measuring device and method
US11442025B1 (en) Optical sensor for surface inspection and metrology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231205