JPH07119463A - Cooling device for internal combustion engine - Google Patents

Cooling device for internal combustion engine

Info

Publication number
JPH07119463A
JPH07119463A JP5288649A JP28864993A JPH07119463A JP H07119463 A JPH07119463 A JP H07119463A JP 5288649 A JP5288649 A JP 5288649A JP 28864993 A JP28864993 A JP 28864993A JP H07119463 A JPH07119463 A JP H07119463A
Authority
JP
Japan
Prior art keywords
temperature
water
cooling water
passage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5288649A
Other languages
Japanese (ja)
Inventor
Masayuki Arai
正幸 荒居
Hiroshi Arakawa
寛 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5288649A priority Critical patent/JPH07119463A/en
Publication of JPH07119463A publication Critical patent/JPH07119463A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0493Controlling the air charge temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To keep the temperature of cooling water at a proper value and to stabilize running of an internal combustion engine by a method wherein when a cooling water temperature attains a set temperature, low temperature cooling water through a low temperature confluence water passage and high temperature cooling water from an upper stream water passage are mixed together by a temperature regulating valve. CONSTITUTION:The temperature of cooling water is maintained at a proper value so that operation of an engine 1 is stabilized. In which case, when a water temperature is below a set temperature, a total amount of cooling water fed with a pressure with the aid of a water pump 2 is circulated through a high temperature cooling water circuit consisting of a number of water passages 100-103 containing a temperature regulating valve 4. Meanwhile, a low temperature cooling water circuit consisting of a number of water passages 200-205, 301, 303, and 304 causes circulation of a total amount of cooling water, fed with a pressure with the aid of a different water pump 3, through an air cooler 11, a lubricating oil cooler 12, and a heat-exchanger 21. When a water temperature attains a set temperature, low temperature cooling water through a low temperature confluence water passage 302 and high temperature cooling water through an upper stream water passage 103 are mixed together by a temperature regulating valve 4 to regulate temperature into a proper value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は過給機を装備した水冷式
内燃機関の冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for a water-cooled internal combustion engine equipped with a supercharger.

【0002】[0002]

【従来の技術】図3に過給機を装備した水冷式内燃機関
の冷却装置の第1従来例の構成図を示した。図3を参照
してその構成と作用について説明する。図において、1
はエンジン、2及び3は水ポンプ、6は冷却水の方向切
換弁、11は過給用の空気冷却器、12は潤滑油冷却
器、21及び22は熱交換器、100〜105,200
〜206は冷却水の通路、111〜112は過給用の空
気通路、121〜122は潤滑油の通路、401〜40
3は熱交換器用2次側冷却水の通路である。
2. Description of the Related Art FIG. 3 is a block diagram of a first conventional example of a cooling device for a water-cooled internal combustion engine equipped with a supercharger. The configuration and operation will be described with reference to FIG. In the figure, 1
Is an engine, 2 and 3 are water pumps, 6 is a directional control valve for cooling water, 11 is an air cooler for supercharging, 12 is a lubricating oil cooler, 21 and 22 are heat exchangers, 100 to 105,200.
˜206 are cooling water passages, 111˜112 are supercharging air passages, 121˜122 are lubricating oil passages, and 401˜40.
3 is a passage for the secondary side cooling water for the heat exchanger.

【0003】この構成では冷却水の経路がエンジン1の
シリンダ、シリンダヘッドの水ジャケットに冷却水を供
給する系統と、空気冷却器11及び潤滑油冷却器12に
冷却水を供給する系統とに区分され、水ジャケットに供
給する冷却水は熱交換器21で水通路402から403
に流動する2次側冷却水との熱交換によって冷却し、空
気冷却器11と空気冷却器に供給する冷却水は熱交換器
22で水通路401から402に流動する2次側冷却水
との熱交換によって冷却している。なお、水ジャケット
の出口側から熱交換器21に通じる冷却水の通路102
と103の間には3ポートの方向切換弁6が介設されて
いる。冷却水温度が低い場合は流路103側の弁が閉じ
られ流路104側の弁は開かれて、冷却水は熱交換器2
1を経由せず流路104から水ポンプ2を介して水ジャ
ケットに循環し、冷却水温度が適度に上昇してくると流
路104側の弁が閉じられ流路103側の弁は開かれ
て、冷却水は熱交換器21での熱交換によって冷却され
るようになる。
In this configuration, the cooling water path is divided into a system for supplying cooling water to the water jacket of the cylinder and the cylinder head of the engine 1 and a system for supplying cooling water to the air cooler 11 and the lubricating oil cooler 12. The cooling water supplied to the water jacket is supplied to the heat exchanger 21 through the water passages 402 to 403.
The cooling water that is cooled by heat exchange with the secondary cooling water flowing to the air cooling device 11 and the cooling water supplied to the air cooling device is exchanged with the secondary cooling water flowing from the water passages 401 to 402 in the heat exchanger 22. Cooling by heat exchange. The passage 102 of the cooling water leading from the outlet side of the water jacket to the heat exchanger 21
A three-port directional control valve 6 is provided between No. 103 and No. 103. When the temperature of the cooling water is low, the valve on the side of the flow path 103 is closed and the valve on the side of the flow path 104 is opened, so that the cooling water flows through the heat exchanger 2
1 is circulated from the flow passage 104 to the water jacket via the water pump 2 without passing through 1, and when the cooling water temperature rises moderately, the valve on the flow passage 104 side is closed and the valve on the flow passage 103 side is opened. Then, the cooling water is cooled by heat exchange in the heat exchanger 21.

【0004】本構成では熱交換器2台を必要とするが、
熱交換器の容量設定が適合していれば、冷却装置の温度
制御をほぼ満足し得る状態で行うことができる。また、
2次側冷却水として良質の水を供給し得る場合には、熱
交換器22を省略し、2次側冷却水を水通路200から
給水して水通路201〜206を経由して送水し、2次
側の冷却水通路402に短絡することも可能である。
Although this configuration requires two heat exchangers,
If the capacity setting of the heat exchanger is suitable, the temperature control of the cooling device can be performed in a state that can be substantially satisfied. Also,
When good quality water can be supplied as the secondary side cooling water, the heat exchanger 22 is omitted, the secondary side cooling water is supplied from the water passage 200, and the secondary side cooling water is sent via the water passages 201 to 206. It is also possible to short-circuit the cooling water passage 402 on the secondary side.

【0005】図4は過給機を装備した水冷式内燃機関の
冷却装置の第2従来例の構成図で、図に示されている各
要素の符号とその名称は冷却水の通路301と302以
外は図3で示した第1従来例の場合と同様である。熱交
換器は1台の構成で、シリンダ回りの水ジャケットの冷
却水の熱も、空気冷却器11や潤滑油冷却器12で回収
した熱もすべて熱交換器21で放熱される簡素化された
方式となっている。
FIG. 4 is a block diagram of a second conventional example of a cooling device for a water-cooled internal combustion engine equipped with a supercharger. The symbols and names of the respective elements shown in the figure are cooling water passages 301 and 302. Other than that is the same as the case of the first conventional example shown in FIG. The heat exchanger consists of one unit, and the heat of the cooling water in the water jacket around the cylinder and the heat recovered by the air cooler 11 and the lubricating oil cooler 12 are all radiated by the heat exchanger 21. It is a method.

【0006】[0006]

【発明が解決しようとする課題】内燃機関の性能向上を
図る要件として給気温度を極力低減させることが挙げら
れている。給気温度の低減によりシリンダ内を満たす空
気の密度が上昇し、燃焼に関与する空気の質量が増大す
ることにより、燃焼の改善と出力の向上を同時に達成す
ることができる。一般に高負荷のもとでの機関作動時に
は燃焼ガス温度の上昇限度が運転の継続を制約する条件
となるが、給気温度の低減を図れば燃焼ガス温度を低下
させることができ、高負荷での連続運転が可能となり、
NOx の生成を抑制する効果も得られる。
The requirement for improving the performance of an internal combustion engine is to reduce the supply air temperature as much as possible. The reduction of the supply air temperature increases the density of the air filling the cylinder, and the mass of the air involved in the combustion increases, so that the improvement of the combustion and the increase of the output can be achieved at the same time. Generally, when the engine operates under high load, the upper limit of the combustion gas temperature is a condition that restricts the continuation of operation.However, if the supply air temperature is reduced, the combustion gas temperature can be lowered, and the engine can be operated under high load. Continuous operation of
The effect of suppressing the generation of NO x is also obtained.

【0007】本発明の目的は、簡素な構成で冷却水温度
を適度に保ち、機関出力の向上と燃焼の改善を併せて達
成でき、高負荷のもとでの連続運転時にも安定した冷却
性能を維持し得る内燃機関の冷却装置を提供するにあ
る。
The object of the present invention is to maintain an appropriate cooling water temperature with a simple structure and to achieve both improved engine output and improved combustion, and stable cooling performance even during continuous operation under high load. It is to provide a cooling device for an internal combustion engine that can maintain the above.

【0008】[0008]

【課題を解決するための手段】本発明の内燃機関の冷却
装置は、過給機を装備した水冷式内燃機関において;水
ポンプ2と、冷却水の温度に連動し弁口の開閉と冷却水
流量の制御が可能な温度調整弁4と、前記水ポンプとエ
ンジン1のシリンダ回りの水ジャケットと前記温度調整
弁の間を閉回路で連通する水通路100〜103とによ
り構成される高温系冷却水回路と;水ポンプ3と、過給
用の空気冷却器11と、潤滑油冷却器12と、熱交換器
21と、前記各機器の間を閉回路で連通する水通路20
0〜205,301,303,304とにより構成され
る低温系冷却水回路と;高温系冷却水回路中の温度調整
弁4の上流部から低温系冷却水回路中の熱交換器21の
上流部に高温系の冷却水の一部を流入させる高温合流水
通路104と;前記熱交換器の上流部から前記温度調整
弁の低温側冷却水入口に低温系の冷却水の一部を流入さ
せる低温合流水通路302とを有してなることを特徴と
する。
A cooling device for an internal combustion engine according to the present invention is a water-cooled internal combustion engine equipped with a supercharger; the water pump 2 and the opening / closing of a valve opening and the cooling water linked to the temperature of the cooling water. High temperature system cooling constituted by a temperature control valve 4 capable of controlling a flow rate, and water passages 100 to 103 for communicating a closed circuit between the water pump, a water jacket around the cylinder of the engine 1 and the temperature control valve. Water circuit; water pump 3, air cooler 11 for supercharging, lubricating oil cooler 12, heat exchanger 21, and water passage 20 that communicates with each other in a closed circuit.
0-205, 301, 303, 304; a low temperature system cooling water circuit; an upstream part of the heat exchanger 21 in the low temperature system cooling water circuit from an upstream part of the temperature control valve 4 in the high temperature system cooling water circuit. A high temperature confluent water passage 104 into which a part of the high temperature system cooling water flows, and a low temperature into which a part of the low temperature system cooling water flows from the upstream part of the heat exchanger to the low temperature side cooling water inlet of the temperature control valve. It is characterized by having a confluent water passage 302.

【0009】[0009]

【作用】機関の安定した運転状態を保持するため冷却水
温度は適度の設定温度に恒温化されていることが必要で
ある。冷態時の機関始動後シリンダ回りの水ジャケット
内の水温は徐々に上昇するが、水温が設定温度以下の場
合は、水ポンプ2により水ジャケットに送り込まれた冷
却水の全量が閉回路の高温系の冷却水回路を循環し冷却
水温は上昇していく。この間、低温系冷却水回路ではポ
ンプ3によって圧送される冷却水の全量が空気冷却器1
1、潤滑油冷却器12、熱交換器21を経由して循環し
ている。
In order to maintain a stable operating condition of the engine, it is necessary that the temperature of the cooling water be kept constant at an appropriate set temperature. After the engine is started in the cold state, the water temperature in the water jacket around the cylinder gradually rises, but if the water temperature is below the set temperature, the entire amount of the cooling water sent to the water jacket by the water pump 2 is the high temperature in the closed circuit. The cooling water temperature rises as it circulates in the system cooling water circuit. In the meantime, in the low temperature system cooling water circuit, the entire amount of the cooling water pumped by the pump 3 is supplied to the air cooler 1.
1, the lubricating oil cooler 12, and the heat exchanger 21 circulate.

【0010】冷却水温が設定温度に達すると、該冷却水
温度を保持すべく温度調整弁4に低温合流水通路302
から低温系の冷却水の一部を流入させ、温度調整弁4に
上流側水通路103から流入する高温系の冷却水と弁下
流側の水通路100で合流し混合させる。この際、水通
路100に設けた温度検出器によって該水通路の冷却水
温を検出し、温度調整弁4内に設けた高温系冷却水の絞
りと低温系冷却水の絞りの開度を冷却水温に連動させて
制御し、水通路100から設定温度に保持された冷却水
が水ポンプ2に吸込まれるように作用させる。低温合流
水通路302から温度調整弁4に一部の低温系冷却水が
流入することによって水通路103で余剰となる冷却水
は、高温合流水通路104から熱交換器21に流入し回
収した熱を放出する。低温系冷却水回路では空気冷却器
11と潤滑油冷却器12が熱供給源で、回収した熱は熱
交換器21で放出させる。
When the cooling water temperature reaches the set temperature, the low temperature converging water passage 302 is connected to the temperature adjusting valve 4 so as to maintain the cooling water temperature.
A part of the cooling water of the low temperature system is caused to flow into the temperature control valve 4, and the cooling water of the high temperature system flowing from the upstream side water passage 103 is merged and mixed in the water passage 100 on the downstream side of the valve. At this time, the cooling water temperature of the water passage is detected by a temperature detector provided in the water passage 100, and the openings of the high temperature system cooling water throttle and the low temperature system cooling water throttle provided in the temperature control valve 4 are set to the cooling water temperature. The cooling water held at the set temperature is sucked into the water pump 2 through the water passage 100. The excess cooling water in the water passage 103 due to the inflow of a part of the low-temperature system cooling water from the low-temperature combined water passage 302 to the temperature control valve 4 flows into the heat exchanger 21 from the high-temperature combined water passage 104 and recovers the recovered heat. To release. In the low temperature system cooling water circuit, the air cooler 11 and the lubricating oil cooler 12 are heat supply sources, and the recovered heat is released by the heat exchanger 21.

【0011】[0011]

【実施例】図1は本発明の実施例に係る内燃機関の冷却
装置の構成図で、図2は図1における温度調整弁の機能
説明図である。図1,2を参照しその構成について説明
する。図1において、1はエンジン、2は水ポンプ、4
は温度調整弁、100〜103は水通路で、これらによ
って構成される回路を高温系冷却水回路という。また他
方のまとまりでの3は水ポンプ、11は過給用の空気冷
却器、12は潤滑油冷却器、21は熱交換器、200〜
205,301,303,304は水通路で、これらに
よって構成される回路を低温系冷却水回路という。10
4は高温合流水通路で、高温系冷却水回路の水通路10
2から低温系冷却回路の熱交換器21内を貫流する水通
路304に連通している。302は低温合流水通路で、
低温系冷却水回路の水路301から高温系冷却水回路の
温度調整弁4に連通している。111〜112は過給用
の空気通路、121〜122は潤滑油の通路であり、4
01〜402は熱交換器21用の2次側冷却水の通路で
ある。
1 is a block diagram of a cooling device for an internal combustion engine according to an embodiment of the present invention, and FIG. 2 is a functional explanatory diagram of the temperature control valve in FIG. The configuration will be described with reference to FIGS. In FIG. 1, 1 is an engine, 2 is a water pump, and 4
Is a temperature control valve, 100 to 103 are water passages, and a circuit constituted by these is called a high temperature system cooling water circuit. In the other unit, 3 is a water pump, 11 is an air cooler for supercharging, 12 is a lubricating oil cooler, 21 is a heat exchanger, and 200-
Reference numerals 205, 301, 303 and 304 are water passages, and a circuit constituted by these is called a low temperature system cooling water circuit. 10
Reference numeral 4 denotes a high temperature confluent water passage, which is a water passage 10 of the high temperature system cooling water circuit.
2 communicates with a water passage 304 that flows through the heat exchanger 21 of the low temperature system cooling circuit. 302 is a low temperature confluent water passage,
The water passage 301 of the low temperature system cooling water circuit communicates with the temperature control valve 4 of the high temperature system cooling water circuit. 111 to 112 are air passages for supercharging, 121 to 122 are passages for lubricating oil, and 4
Reference numerals 01 to 402 denote secondary cooling water passages for the heat exchanger 21.

【0012】図3に示した第1従来例では高温系冷却水
回路と低温系冷却水回路に熱交換器がありそれぞれ独立
した回路構成とされており、図4に示した第2従来例で
は高温系冷却水回路と低温系冷却水回路を合流させて単
一の回路構成としている。本実施例では高温系冷却水回
路と低温系冷却水回路の間に高温合流水通路104と低
温合流水通路302を介設し、高温系冷却水回路の水通
路に冷却水の温度を検出し水温に連動して冷却水の流動
状況を制御する温度調整弁4を配設して新しい回路を形
成している。
In the first conventional example shown in FIG. 3, there are heat exchangers in the high temperature cooling water circuit and the low temperature cooling water circuit, and they have independent circuit configurations. In the second conventional example shown in FIG. The high-temperature cooling water circuit and the low-temperature cooling water circuit are merged into a single circuit configuration. In this embodiment, a high temperature combined water passage 104 and a low temperature combined water passage 302 are provided between the high temperature system cooling water circuit and the low temperature system cooling water circuit, and the temperature of the cooling water is detected in the water passage of the high temperature system cooling water circuit. A new circuit is formed by arranging a temperature adjusting valve 4 that controls the flow state of the cooling water in association with the water temperature.

【0013】次にその作用について説明する。高温系冷
却水回路においては、熱発生源はエンジン1のシリンダ
回りで、水ポンプ2により水通路101から冷却水が水
ジャケットに送り込まれ、シリンダ回りを適度に冷却し
て温度の上昇した冷却水は水通路102から排出され
る。高温系冷却水回路では機関の安定した運転状態を保
持するため冷却水温度を適度の温度で恒温化させてい
る。この作用を高温系冷却水回路の水通路に配設した温
度調整弁4の機能説明図(図2)を参照して説明する。
温度調整弁4は弁内部の流路に高温側絞り41と低温側
絞り42を有する3ポートの方向切換弁で、水ジャケッ
ト側への流出流路100に設けた水温検出部から前記高
温側絞り41に通じる制御回路43と低温側絞り42に
通じる制御回路44が配設されている。
Next, the operation will be described. In the high temperature system cooling water circuit, the heat generation source is around the cylinder of the engine 1, and the cooling water is sent from the water passage 101 to the water jacket by the water pump 2 to cool the cylinder appropriately to raise the temperature. Is discharged from the water passage 102. In the high temperature system cooling water circuit, the cooling water temperature is kept constant at an appropriate temperature in order to maintain a stable operating condition of the engine. This function will be described with reference to the function explanatory diagram (FIG. 2) of the temperature control valve 4 arranged in the water passage of the high temperature system cooling water circuit.
The temperature control valve 4 is a three-port directional control valve having a high temperature side throttle 41 and a low temperature side throttle 42 in a flow passage inside the valve. A control circuit 43 communicating with 41 and a control circuit 44 communicating with the low temperature side diaphragm 42 are provided.

【0014】エンジンの水ジャケットに供給する冷却水
温度を75℃で恒温化させるとすれば、冷態時の機関始
動後冷却水温度は徐々に上昇していくが、75℃以下の
場合は図2の(a)に示すように水通路103から温度
調整弁4に流入した冷却水は全量が水通路100に流出
し、水ポンプ2を介して水通路101から水ジャケット
に供給され、水通路102から103に循環し冷却水温
度は上昇していく。この間、温度調整弁4の低温合流水
通路302側の流入口は閉止され、低温系冷却水回路の
冷却水は全量が水流路301,303から熱交換器21
内の水通路304に流入し回収した熱を放出する。
If the temperature of the cooling water supplied to the water jacket of the engine is kept constant at 75 ° C., the temperature of the cooling water will gradually rise after the engine is started in the cold state. As shown in FIG. 2A, the entire amount of the cooling water flowing from the water passage 103 into the temperature control valve 4 flows into the water passage 100 and is supplied from the water passage 101 to the water jacket via the water pump 2. It circulates from 102 to 103 and the cooling water temperature rises. During this time, the inlet of the temperature control valve 4 on the side of the low-temperature combined water passage 302 is closed, and the entire amount of cooling water in the low-temperature system cooling water circuit is transferred from the water flow paths 301 and 303 to the heat exchanger 21.
The heat that has flowed into the internal water passage 304 and recovered is released.

【0015】冷却水温度が設定温度75℃に達すると該
冷却水温度を保持すべく温度調整弁4は図2の(b)に
示すように作用する。低温合流水通路302側の流入口
が開かれ、該流入口から流入する低温系冷却水回路の一
部の冷却水と水通路103から流入する高温系冷却水回
路の冷却水が水通路100で合流し混合される。この
際、水通路100に設けた温度検出器によって該水通路
の冷却水温を検出し、高温側と低温側の制御回路43,
44を介して高温側の絞り41と低温側の絞り42の開
度を冷却水温に連動させて制御し、水通路100から7
5℃に保持された冷却水が水ポンプ2に吸込まれるよう
に作用させる。低温合流水通路302から一部の低温系
冷却水が温度調整弁4に流入することによって、水通路
103で余剰となる冷却水は高温合流水通路104を経
由して水通路304で低温側の冷却水と合流し熱交換器
21で熱を放出する。
When the temperature of the cooling water reaches the set temperature of 75 ° C., the temperature control valve 4 operates as shown in FIG. 2B so as to maintain the temperature of the cooling water. The inflow port on the side of the low-temperature confluent water passage 302 is opened, and a part of the cooling water of the low-temperature system cooling water circuit which flows in from the inflow port and the cooling water of the high-temperature system cooling water circuit which flows in from the water passage 103 are supplied in the water passage 100. Combine and mix. At this time, the temperature detector provided in the water passage 100 detects the cooling water temperature of the water passage, and the high temperature side and low temperature side control circuits 43,
The openings of the high-temperature side throttle 41 and the low-temperature side throttle 42 are controlled in association with the cooling water temperature via 44, and the water passages 100 to 7
The cooling water held at 5 ° C. is caused to be sucked into the water pump 2. Some of the low-temperature system cooling water flows into the temperature control valve 4 from the low-temperature confluent water passage 302, so that the surplus cooling water in the water passage 103 passes through the high-temperature confluent water passage 104 and flows to the low-temperature side in the water passage 304. It merges with the cooling water and releases heat in the heat exchanger 21.

【0016】低温系冷却水回路では空気冷却器11と潤
滑油冷却器12から回収した熱を熱交換器21で放出す
るが、一般に高温系冷却水回路より熱発生量は少ない。
なお、空気冷却器11に於て極力過給用の空気温度の低
減を図ることが、機関の出力の向上や燃焼の改善に有効
である。温度調整弁4が図2の(b)の状態にあると
き、低温系冷却水回路の冷却水の一部は水通路302か
ら低温側絞り42を介して高温系の水通路100に流出
し、該流出分だけ水量の減少した低温系回路の冷却水と
高温合流水通路104から流れ込む高温系回路の冷却水
の一部は水通路304で合流し熱交換器21で放熱す
る。図1で冷却水温が設定温度近傍に保持されていると
きの作用を図4に示した第2従来例での作用と比較する
と、熱交換器21内の水流路に流入する高温側冷却水の
流量が減量されているので、熱交換器の能力を同等であ
るとすると1次側冷却水の温度降下が増大し、冷却水ポ
ンプ3の下流水通路201の冷却水温を下げることがで
き、空気冷却器11に低温冷却水を供給することが可能
になっている。
In the low temperature system cooling water circuit, the heat recovered from the air cooler 11 and the lubricating oil cooler 12 is released by the heat exchanger 21, but generally the amount of heat generation is smaller than that in the high temperature system cooling water circuit.
It should be noted that it is effective to reduce the temperature of the air for supercharging in the air cooler 11 as much as possible in order to improve the output of the engine and the combustion. When the temperature control valve 4 is in the state of FIG. 2B, a part of the cooling water of the low temperature system cooling water circuit flows out from the water passage 302 to the high temperature system water passage 100 via the low temperature side throttle 42, A part of the cooling water of the low temperature system whose amount of water is reduced by the amount of the outflow and a part of the cooling water of the high temperature system circuit flowing from the high temperature combined water passage 104 are combined in the water passage 304 and radiated by the heat exchanger 21. Comparing the operation when the cooling water temperature is maintained near the set temperature in FIG. 1 with the operation in the second conventional example shown in FIG. 4, the high temperature side cooling water flowing into the water flow passage in the heat exchanger 21 is compared. Since the flow rate is reduced, assuming that the capacities of the heat exchangers are the same, the temperature drop of the primary side cooling water increases, and the cooling water temperature of the downstream water passage 201 of the cooling water pump 3 can be lowered. It is possible to supply low-temperature cooling water to the cooler 11.

【0017】[0017]

【発明の効果】本発明による内燃機関の冷却装置は、簡
素な構成で冷却水温度を適度に保持し、機関出力の向上
と燃焼の改善を併せて達成でき、高負荷のもとでの連続
運転時にも安定した冷却性能を維持し得る。
The cooling device for an internal combustion engine according to the present invention has a simple structure, maintains an appropriate temperature of the cooling water, and can achieve both improvement of engine output and improvement of combustion, and continuous operation under high load. Stable cooling performance can be maintained even during operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る内燃機関の冷却装置の構
成図。
FIG. 1 is a configuration diagram of a cooling device for an internal combustion engine according to an embodiment of the present invention.

【図2】図1における温度調整弁4の機能説明図。FIG. 2 is a functional explanatory view of a temperature control valve 4 in FIG.

【図3】第1従来例に係る内燃機関の冷却装置の構成
図。
FIG. 3 is a configuration diagram of a cooling device for an internal combustion engine according to a first conventional example.

【図4】第2従来例に係る内燃機関の冷却装置の構成
図。
FIG. 4 is a configuration diagram of a cooling device for an internal combustion engine according to a second conventional example.

【符号の説明】[Explanation of symbols]

1…エンジン、2…水ポンプ、3…水ポンプ、4…温度
調整弁、11…空気冷却器、12…潤滑油冷却器、21
…熱交換器、100〜103…水通路、104…高温合
流水通路、200〜205…水通路、301,303,
304…水通路,302…低温合流水通路、111,1
12…空気通路、121,122…潤滑油通路、40
1,402…2次側冷却水通路(熱交換器用)。
DESCRIPTION OF SYMBOLS 1 ... Engine, 2 ... Water pump, 3 ... Water pump, 4 ... Temperature control valve, 11 ... Air cooler, 12 ... Lubricating oil cooler, 21
... heat exchanger, 100-103 ... water passage, 104 ... high-temperature combined water passage, 200-205 ... water passage, 301, 303,
304 ... Water passage, 302 ... Low temperature confluent water passage, 111, 1
12 ... Air passage, 121, 122 ... Lubricating oil passage, 40
1, 402 ... Secondary side cooling water passage (for heat exchanger).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 過給機を装備した水冷式内燃機関におい
て;水ポンプ(2)と、冷却水の温度に連動し弁口の開
閉と冷却水流量の制御が可能な温度調整弁(4)と、前
記水ポンプとエンジン(1)のシリンダ回りの水ジャケ
ットと前記温度調整弁の間を閉回路で連通する水通路
(100〜103)とにより構成される高温系冷却水回
路と;水ポンプ(3)と、過給用の空気冷却器(11)
と、潤滑油冷却器(12)と、熱交換器(21)と、前
記各機器の間を閉回路で連通する水通路(200〜20
5,301,303,304)とにより構成される低温
系冷却水回路と;高温系冷却水回路中の温度調整弁
(4)の上流部から低温系冷却水回路中の熱交換器(2
1)の上流部に高温系の冷却水の一部を流入させる高温
合流水通路(104)と;前記熱交換器の上流部から前
記温度調整弁の低温側冷却水入口に低温系の冷却水の一
部を流入させる低温合流水通路(302)とを有してな
ることを特徴とする内燃機関の冷却装置。
1. A water-cooled internal combustion engine equipped with a supercharger; a water pump (2) and a temperature control valve (4) capable of opening and closing a valve port and controlling the flow rate of the cooling water in conjunction with the temperature of the cooling water. And a high temperature system cooling water circuit constituted by the water pump, a water jacket around the cylinder of the engine (1), and a water passage (100 to 103) communicating between the temperature control valve in a closed circuit; (3) and an air cooler (11) for supercharging
, A lubricating oil cooler (12), a heat exchanger (21), and water passages (200 to 20) communicating with each other in a closed circuit.
5, 301, 303, 304), and a heat exchanger (2 in the low temperature system cooling water circuit from the upstream of the temperature control valve (4) in the high temperature system cooling water circuit.
A high temperature confluent water passage (104) for allowing a part of the high temperature system cooling water to flow into the upstream part of 1); and a low temperature system cooling water from the upstream part of the heat exchanger to the low temperature side cooling water inlet of the temperature control valve. And a low temperature confluent water passage (302) through which a part of the internal combustion engine flows.
JP5288649A 1993-10-25 1993-10-25 Cooling device for internal combustion engine Withdrawn JPH07119463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5288649A JPH07119463A (en) 1993-10-25 1993-10-25 Cooling device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5288649A JPH07119463A (en) 1993-10-25 1993-10-25 Cooling device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH07119463A true JPH07119463A (en) 1995-05-09

Family

ID=17732903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5288649A Withdrawn JPH07119463A (en) 1993-10-25 1993-10-25 Cooling device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH07119463A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19937121A1 (en) * 1999-08-06 2001-03-01 Daimler Chrysler Ag Cooling system for an internal combustion engine
WO2002048516A1 (en) * 2000-12-11 2002-06-20 Samsung Climate Control Co., Ltd. High/low temperature water cooling system
JP2003094958A (en) * 2001-07-17 2003-04-03 Yoshitani Kikai Seisakusho:Kk Engine cooling device for fire engine
JP2011513640A (en) * 2008-03-06 2011-04-28 スカニア シーブイ アクチボラグ Device for supercharged internal combustion engine
JPWO2019123827A1 (en) * 2017-12-19 2020-07-09 オリンパス株式会社 Endoscope system and endoscope processor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19937121A1 (en) * 1999-08-06 2001-03-01 Daimler Chrysler Ag Cooling system for an internal combustion engine
WO2002048516A1 (en) * 2000-12-11 2002-06-20 Samsung Climate Control Co., Ltd. High/low temperature water cooling system
JP2003094958A (en) * 2001-07-17 2003-04-03 Yoshitani Kikai Seisakusho:Kk Engine cooling device for fire engine
JP2011513640A (en) * 2008-03-06 2011-04-28 スカニア シーブイ アクチボラグ Device for supercharged internal combustion engine
KR101531360B1 (en) * 2008-03-06 2015-06-24 스카니아 씨브이 악티에볼라그 Arrangement at a supercharged internal combustion engine
JPWO2019123827A1 (en) * 2017-12-19 2020-07-09 オリンパス株式会社 Endoscope system and endoscope processor

Similar Documents

Publication Publication Date Title
JP4644182B2 (en) Cooling circulation of an internal combustion engine with a low temperature cooler
US8739745B2 (en) Cooling system and method
JP3179971U (en) Combustion engine cooling system
JP2007519853A (en) Equipment for cooling exhaust and supply air
KR102552019B1 (en) Cooling system for engine
US20150053777A1 (en) Water-cooling apparatus for engine
JP2002227646A (en) Engine with egr cooler
JPH07119463A (en) Cooling device for internal combustion engine
JP2950879B2 (en) Cooling system for internal combustion engine
JPH0533646A (en) Cooling structure of engine
JP2001342911A (en) Exhaust gas re-circulation control device for internal combustion engine
JP5999162B2 (en) Engine cooling system
JPS6051589A (en) Fresh water preparing apparatus due to utilization of high temperature waste heat
GB2286039A (en) Engine cooling system
JP2001271644A (en) Method and device for adjusting engine oil temperature
JP3631521B2 (en) Cogeneration system cooling water circuit equipment
JPH01264179A (en) Cooler of water-cooled fuel battery generator
JP4649368B2 (en) Cooling device for internal combustion engine
JPH08158871A (en) Cooling device of internal combustion engine
JPS58106122A (en) Cooling device of internal-combustion engine
JP2004332583A (en) Cooling system for engine
JPS60224937A (en) Engine with supercharger
JPS593144Y2 (en) Supercharged diesel engine intake air cooling system
WO2022184021A1 (en) Vehicle and engine thereof
JP7460029B2 (en) vehicle cooling system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226