JP2001342911A - Exhaust gas re-circulation control device for internal combustion engine - Google Patents

Exhaust gas re-circulation control device for internal combustion engine

Info

Publication number
JP2001342911A
JP2001342911A JP2000162582A JP2000162582A JP2001342911A JP 2001342911 A JP2001342911 A JP 2001342911A JP 2000162582 A JP2000162582 A JP 2000162582A JP 2000162582 A JP2000162582 A JP 2000162582A JP 2001342911 A JP2001342911 A JP 2001342911A
Authority
JP
Japan
Prior art keywords
circuit
exhaust
exhaust gas
intake
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000162582A
Other languages
Japanese (ja)
Inventor
Toshihiko Nishiyama
利彦 西山
Yasuyuki Onodera
康之 小野寺
Yoshiki Kanzaki
芳樹 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2000162582A priority Critical patent/JP2001342911A/en
Publication of JP2001342911A publication Critical patent/JP2001342911A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/27Layout, e.g. schematics with air-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers

Abstract

PROBLEM TO BE SOLVED: To enhance an efficiency of turbo-charger in a wide engine revolution number area by carrying out a reflux of exhaust gas in the case where a pressure of suction circuit is higher than that of exhaust circuit in an internal combustion engine. SOLUTION: A first heat exchanger 15a for carrying out a heat exchange between a feed/exhaust by-path circuit 20 communicating a suction circuit 12 with an exhaust circuit 16 and an exhaust gas re-circulation circuit 15 is provided. In addition thereto, a second heat exchanger 15b for cooling a re- circulation exhaust gas with a cooling water is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気再
循環制御装置に関する。
The present invention relates to an exhaust gas recirculation control device for an internal combustion engine.

【0002】[0002]

【従来の技術】環境保全の見地から、内燃機関の排出す
る有害物質に対する規制強化が各地で進んでいる昨今、
内燃機関の排気に含まれる有害物質を低減させる方法と
して排気再循環(通称EGR)が広く知られ、用いられ
ている。燃焼室から排出される排気の一部を排気マニホ
ルドから吸気マニホルドへ還流し吸気に混合させて再度
燃焼室に送り込むことで、吸気中の酸素濃度を低下さ
せ、燃焼温度を下げる作用があり、排気に含まれる有害
物質特に窒素酸化物(以下NOと略記)の発生を抑え
る効果が大きい。
2. Description of the Related Art In recent years, from the viewpoint of environmental protection, regulations on harmful substances emitted from an internal combustion engine have been strengthened in various places.
Exhaust gas recirculation (commonly known as EGR) is widely known and used as a method of reducing harmful substances contained in exhaust gas of an internal combustion engine. A part of the exhaust gas discharged from the combustion chamber is recirculated from the exhaust manifold to the intake manifold, mixed with the intake air, and sent back to the combustion chamber, thereby reducing the oxygen concentration in the intake air and lowering the combustion temperature. The effect of suppressing the generation of harmful substances, particularly nitrogen oxides (hereinafter abbreviated as NO X ), contained in water is large.

【0003】図3に従来の形態として、特開平10−2
81017号公報に記載された、排気再循環装置を有す
るターボチャージャー付エンジン14の給排気回路図を
示す。エンジン14は、ターボチャージャー11と、吸
気回路12と、アフタクーラ13と、排気再循環回路1
5と、排気回路16とを有する。ターボチャージャー1
1のコンプレッサ11aで圧縮された吸気は吸気回路1
2を経て、その途中に設けられたアフタクーラ13で冷
却され、吸気マニホールド12aを介してエンジン本体
14aに導入される。エンジン本体14aから排出され
た排気は排気回路16を経てターボチャージャー11に
流れ込み、タービン11bを駆動して排出される。吸気
回路12のアフタクーラ13下流側と排気回路16のタ
ービン11b入口近傍との間には、これらを連通する給
排気バイパス回路20が設けられ、給排気バイパス回路
20にはこれを開閉自在とする給排気バイパス弁20a
が設けられている。排気再循環回路15は、一端を排気
回路16の排気マニホルド16a近傍に分岐接続され、
他端を吸気回路12の吸気マニホルド12a近傍に分岐
接続される。排気再循環回路15中には、排気再循環回
路15を開閉自在とするEGR弁15cと、排気再循環
回路15と給排気バイパス回路20との間で熱交換を行
う熱交換器15dとが設けられている。
FIG. 3 shows a conventional configuration as disclosed in
FIG. 1 shows a supply / exhaust circuit diagram of a turbocharged engine 14 having an exhaust gas recirculation device described in Japanese Patent No. 81017. The engine 14 includes a turbocharger 11, an intake circuit 12, an aftercooler 13, and an exhaust recirculation circuit 1.
5 and an exhaust circuit 16. Turbocharger 1
The intake air compressed by the compressor 11a is an intake circuit 1
After passing through 2, the air is cooled by an aftercooler 13 provided on the way, and is introduced into the engine body 14a via the intake manifold 12a. The exhaust gas discharged from the engine body 14a flows into the turbocharger 11 through the exhaust circuit 16, and is driven and discharged by the turbine 11b. Between the downstream side of the aftercooler 13 of the intake circuit 12 and the vicinity of the inlet of the turbine 11b of the exhaust circuit 16, there is provided a supply / exhaust bypass circuit 20 for communicating these components. Exhaust bypass valve 20a
Is provided. One end of the exhaust gas recirculation circuit 15 is branched and connected near the exhaust manifold 16a of the exhaust circuit 16,
The other end is branched and connected to the intake circuit 12 near the intake manifold 12a. In the exhaust gas recirculation circuit 15, an EGR valve 15c for opening and closing the exhaust gas recirculation circuit 15 and a heat exchanger 15d for exchanging heat between the exhaust gas recirculation circuit 15 and the supply / exhaust bypass circuit 20 are provided. Have been.

【0004】還流する排気を冷却することで、燃焼温度
が下がりNOの発生を抑えるとともに、排気回路16
に合流する吸気を加熱して膨張させることで、還流によ
る排気の損失分を補い、ターボチャージャ11の回転数
を維持することができる。
[0004] By cooling the exhaust gas reflux, while suppressing the generation of drops combustion temperature NO X, the exhaust circuit 16
By heating and expanding the intake air that joins the exhaust gas, the loss of exhaust gas due to the recirculation can be compensated for, and the rotation speed of the turbocharger 11 can be maintained.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記形態には
以下の問題がある。エンジン14がある条件、例えば中
高速・高負荷で運転される場合は、吸気マニホルド12
aの圧力が排気マニホルド16aの圧力よりも高くなる
(これは、一般的にターボチャージャの特性が、頻用さ
れる運転条件にマッチングして、エンジンの効率を向上
させて高出力・低燃費を得るように設計されるからであ
る。吸気側の圧力が高いほど、また、排気側の圧力が低
いほど、出力のロスとなる給排気抵抗は小さい)。した
がってコンプレッサ11aで加圧した吸気の一部を給排
気バイパス回路20を介して排気回路16に流し、排気
との間で熱交換を行える。しかし、吸気マニホルド12
aの圧力が排気マニホルド16aの圧力以下となるよう
な、例えば低速で低負荷運転時といった運転条件下で
は、上記のような給排気バイパス回路20内の流れは生
じない。したがって熱交換器15dを働かせて還流する
排気を冷却できる運転条件は限られている。
However, the above embodiment has the following problems. When the engine 14 is operated under a certain condition, for example, at a medium / high speed / high load, the intake manifold 12
a becomes higher than the pressure of the exhaust manifold 16a (this is because the characteristics of the turbocharger generally match the frequently-used operating conditions, thereby improving the efficiency of the engine and obtaining high output and low fuel consumption). The higher the pressure on the intake side and the lower the pressure on the exhaust side, the smaller the supply / exhaust resistance that causes a loss in output). Therefore, a part of the intake air pressurized by the compressor 11a flows to the exhaust circuit 16 via the supply / exhaust bypass circuit 20, and heat exchange with the exhaust gas can be performed. However, the intake manifold 12
Under operating conditions such as when the pressure of a is lower than the pressure of the exhaust manifold 16a, for example, during low speed and low load operation, the above-described flow in the supply / exhaust bypass circuit 20 does not occur. Therefore, the operating conditions under which the recirculated exhaust gas can be cooled by operating the heat exchanger 15d are limited.

【0006】本発明は、上記の問題点を解決すべくなさ
れたものであり、広範な運転条件において還流排気の冷
却が可能となる内燃機関の排気再循環制御装置を提供す
ることを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide an exhaust gas recirculation control device for an internal combustion engine that can cool recirculated exhaust gas under a wide range of operating conditions. .

【0007】[0007]

【課題を解決するための手段、作用及び効果】上記の目
的を達成するために、本発明は、吸気回路上に配したコ
ンプレッサと排気回路上に配したタービンとを有するタ
ーボチャージャと、排気回路のタービン−内燃機関本体
間と吸気回路のコンプレッサ−内燃機関本体間とを接続
して第1開閉弁によって開閉自在とした排気再循環回路
と、排気回路のタービン−内燃機関本体間と吸気回路の
コンプレッサ−内燃機関本体間とを接続して第2開閉弁
によって開閉自在とした給排気バイパス回路とを設ける
とともに、排気再循環回路と給排気バイパス回路との間
で熱交換を行う第1熱交換器とを有する内燃機関の排気
再循環制御装置において、水を冷媒として排気再循環回
路内の還流排気を冷却する第2熱交換器を、第1熱交換
器よりも下流側となる排気再循環回路の位置に設けたこ
とを特徴とする。
In order to achieve the above object, the present invention provides a turbocharger having a compressor disposed on an intake circuit and a turbine disposed on an exhaust circuit, and an exhaust circuit. An exhaust recirculation circuit that connects between the turbine and the internal combustion engine main body and between the compressor and the internal combustion engine main body of the intake circuit and can be opened and closed by a first on-off valve; A first heat exchange for providing heat exchange between an exhaust gas recirculation circuit and a supply / exhaust bypass circuit while providing a supply / exhaust bypass circuit which connects the compressor and the internal combustion engine body and can be freely opened / closed by a second opening / closing valve; An exhaust gas recirculation control device for an internal combustion engine having a heat exchanger, wherein a second heat exchanger that cools the recirculated exhaust gas in the exhaust gas recirculation circuit using water as a refrigerant is located downstream of the first heat exchanger. Characterized by providing a position of the exhaust gas recirculation circuit that.

【0008】また、特に、コンプレッサ−内燃機関本体
間に、吸気を冷却するアフタクーラを設けるとともに、
吸気回路に対する給排気バイパス回路の接続位置をコン
プレッサ−アフタクーラ間とするのが望ましい。
In particular, an aftercooler for cooling the intake air is provided between the compressor and the main body of the internal combustion engine.
It is desirable that the connection position of the supply / exhaust bypass circuit to the intake circuit be between the compressor and the aftercooler.

【0009】さらに、コンプレッサ−内燃機関本体間の
吸気の流れを絞る狭隘部を有する絞りを吸気回路に設け
て排気再循環回路の接続位置をこの狭隘部略中央とし、
この絞りの直上流と直下流とをバイパス接続するととも
に第3開閉弁によって開閉自在とされる吸気バイパス回
路を設けるとともに、吸気回路に対する給排気バイパス
回路の接続位置をコンプレッサ−絞り間としてもよく、
コンプレッサ−内燃機関本体間の吸気の流れを絞る絞り
弁を吸気回路に設けて排気再循環回路の接続位置をこの
絞り弁−内燃機関本体間とし、吸気回路に対する給排気
バイパス回路の接続位置をコンプレッサ−絞り弁間とし
してもよい。また、第2開閉弁は、ターボチャージャの
コンプレッサ下流側からタービン上流側への一方向のみ
の流れを可能とする逆止弁であってもよい。
Further, a throttle having a narrow portion for narrowing the flow of intake air between the compressor and the internal combustion engine main body is provided in the intake circuit, and a connection position of the exhaust gas recirculation circuit is substantially at the center of the narrow portion.
A bypass connection may be provided between the upstream and the downstream of the throttle by bypass connection and opened and closed by a third on-off valve, and the connection position of the air supply / exhaust bypass circuit with respect to the intake circuit may be between the compressor and the throttle.
A throttle valve for reducing the flow of intake air between the compressor and the internal combustion engine body is provided in the intake circuit, the connection position of the exhaust gas recirculation circuit is set between the throttle valve and the internal combustion engine body, and the connection position of the supply / exhaust bypass circuit to the intake circuit is the compressor. -It may be between throttle valves. Further, the second on-off valve may be a check valve that allows flow in only one direction from the compressor downstream of the turbocharger to the turbine upstream.

【0010】本発明の上記構成によれば、下記の効果が
得られる。 (1)還流する排気を、直列に配した第1熱交換器と第
2熱交換器との両方に通すことになる。したがって、
吸気側の圧力が排気側の圧力以下であるために給排気バ
イパス回路に流れが生じず第1熱交換器の冷却効果が得
られないような運転状態でも、水冷式の第2熱交換器で
還流する排気を冷却できる。また、吸気側の圧力が排気
側よりも高いために給排気バイパス回路に流れが生じて
第1熱交換器の冷却効果が得られるような運転状態で
は、第1熱交換器と第2熱交換器との両方で還流する排
気を冷却できるので、第2熱交換器を設けない場合と比
較して、第1熱交換器の冷却能力を小さくすなわち外寸
を小さくできる。通常、空冷式である第1熱交換器は水
冷式の第2熱交換器に比して冷却効率が劣り、必然的に
大型化しがちであるが、本発明によれば冷却能力の負担
軽減により小型化することで装置全体の小型化に対する
寄与度も大となる。さらに第1熱交換器が第2熱交換器
の上流側に位置して温度の高い排気を導入することによ
り、還流する排気とバイパスする吸気との温度差が広が
り、第2熱交換器に比して劣る第1熱交換器の冷却効率
を高められる。これにより、バイパスして排気回路に流
れる吸気の温度をより上げて体積をより膨張させ、ター
ボチャージャの回転速度をより高めることで、還流する
排気の熱エネルギをより有効に利用できる。これととも
に、第2熱交換器に導入する排気の温度が下がるので、
第2熱交換器内での冷却水の温度上昇を抑えられ、冷却
水の供給流量を、またラジエータがあればラジエータの
負担を、最小限度に抑えることができる。
According to the above configuration of the present invention, the following effects can be obtained. (1) The recirculated exhaust gas is passed through both the first heat exchanger and the second heat exchanger arranged in series. Therefore,
Even in an operation state in which the pressure on the intake side is lower than the pressure on the exhaust side, no flow occurs in the supply / exhaust bypass circuit and the cooling effect of the first heat exchanger cannot be obtained, the water-cooled second heat exchanger is used. The recirculating exhaust gas can be cooled. Further, in an operating state in which the intake side pressure is higher than the exhaust side, a flow occurs in the supply / exhaust bypass circuit, and the cooling effect of the first heat exchanger is obtained, and the first heat exchanger and the second heat exchange Since the recirculated exhaust gas can be cooled by both the heat exchanger and the heat exchanger, the cooling capacity of the first heat exchanger can be reduced, that is, the outer dimensions can be reduced as compared with the case where the second heat exchanger is not provided. Usually, the first heat exchanger of the air-cooled type has a lower cooling efficiency than the second heat exchanger of the water-cooled type, and tends to be inevitably larger. However, according to the present invention, the load on the cooling capacity is reduced. By reducing the size, the contribution to the miniaturization of the entire apparatus also increases. Furthermore, the first heat exchanger is located upstream of the second heat exchanger and introduces high-temperature exhaust gas, so that the temperature difference between the recirculated exhaust gas and the bypassed intake air is widened, and the first heat exchanger is compared with the second heat exchanger. As a result, the cooling efficiency of the inferior first heat exchanger can be increased. Thus, the temperature of the intake air flowing into the exhaust circuit by bypass is further increased to expand the volume, and the rotational speed of the turbocharger is further increased, so that the heat energy of the recirculated exhaust gas can be more effectively used. At the same time, the temperature of the exhaust gas introduced into the second heat exchanger decreases,
The temperature rise of the cooling water in the second heat exchanger can be suppressed, and the supply flow rate of the cooling water and, if there is a radiator, the burden on the radiator can be minimized.

【0011】(2)給排気バイパス回路をアフタクーラ
よりも上流側となる吸気回路の位置に接続することで、
アフタクーラの熱収支を改善できる。すなわち、排気回
路にバイパスする分、アフタクーラを通過する吸気の流
量を減らせるために通過後の吸気温度が低くなる。これ
によって燃焼温度がさらに下がり、NOの発生をより
顕著に抑えることができる。
(2) By connecting the supply / exhaust bypass circuit to a position of the intake circuit upstream of the aftercooler,
The heat balance of the aftercooler can be improved. That is, the temperature of the intake air after passing through the aftercooler is reduced to reduce the flow rate of the intake air passing through the aftercooler by an amount corresponding to the bypass to the exhaust circuit. As a result, the combustion temperature is further reduced, and the generation of NO X can be suppressed more remarkably.

【0012】(3)狭隘部を有する絞りを設けて狭隘部
略中央に排気再循環回路を接続すれば、吸気回路の狭隘
部で吸気の流速を高めその圧力を部分的に低減できるよ
うになるとともに、吸気バイパス弁の開度を調整するこ
とで狭隘部を通過する吸気の流量を調整できて自在に狭
隘部吸気圧力が調整可能となる。また、絞り弁を吸気回
路に設けて排気再循環回路の接続位置を絞り弁−内燃機
関本体間とすれば、吸気回路に排気再循環回路の接続す
る位置での圧力を絞り弁の抵抗によって低減できるよう
になる。したがって、前記2つの構成の内いずれによっ
ても、低速・低負荷領域から高速・高負荷領域まで広範
囲の運転状態下で排気再循環装置を作動させて排気中の
有害成分を低減できる。また、給排気バイパス回路を、
逆止弁という単純な要素で開閉させるようにすれば、構
造の簡素化が図れる。
(3) If a throttle having a narrow portion is provided and an exhaust recirculation circuit is connected substantially at the center of the narrow portion, the flow rate of intake air can be increased in the narrow portion of the intake circuit, and the pressure can be partially reduced. In addition, by adjusting the opening degree of the intake bypass valve, the flow rate of intake air passing through the narrow portion can be adjusted, and the narrow portion intake pressure can be freely adjusted. Also, if the throttle valve is provided in the intake circuit and the connection position of the exhaust recirculation circuit is between the throttle valve and the internal combustion engine body, the pressure at the position where the exhaust recirculation circuit is connected to the intake circuit is reduced by the resistance of the throttle valve. become able to. Therefore, in either of the two configurations, the exhaust gas recirculation device can be operated under a wide range of operating conditions from a low-speed / low-load region to a high-speed / high-load region to reduce harmful components in the exhaust gas. In addition, supply and exhaust bypass circuit
If the valve is opened and closed by a simple element called a check valve, the structure can be simplified.

【0013】[0013]

【発明の実施の形態】以下、本発明の第1実施形態につ
いて、図1を参照して説明する。なお、従来例で説明し
た構成要素と同一の構成には、同一の符号をつけ、説明
は省略する。排気再循環装置を有するターボチャージャ
ー付エンジン14において、排気再循環回路15は、吸
気回路12の吸気マニホルド12a上流側手前にて吸気
回路12に合流接続される。吸気回路12のコンプレッ
サ11a出口近傍と排気回路16のタービン11b入口
近傍との間には、これらを連通する給排気バイパス回路
20が設けられ、給排気バイパス回路20にはこれを開
閉自在とする給排気バイパス弁20aが設けられてい
る。吸気回路12の、上流側となる給排気バイパス回路
20の接続位置と下流側となる排気再循環回路15の接
続位置との間には、吸気を冷却するアフタクーラ13
と、吸気回路12の通路断面積を自在に絞る絞り弁17
とが設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described with reference to FIG. The same components as the components described in the conventional example are denoted by the same reference numerals, and description thereof will be omitted. In the turbocharged engine 14 having the exhaust gas recirculation device, the exhaust gas recirculation circuit 15 is connected to the intake circuit 12 before the intake circuit 12 on the upstream side of the intake manifold 12a. A supply / exhaust bypass circuit 20 is provided between the intake circuit 12 near the outlet of the compressor 11a and the exhaust circuit 16 near the inlet of the turbine 11b. An exhaust bypass valve 20a is provided. An aftercooler 13 for cooling the intake air is provided between a connection position of the supply / exhaust bypass circuit 20 on the upstream side of the intake circuit 12 and a connection position of the exhaust gas recirculation circuit 15 on the downstream side.
And a throttle valve 17 for freely reducing the cross-sectional area of the passage of the intake circuit 12
Are provided.

【0014】排気再循環回路15中には、上流側すなわ
ち排気回路16側から順次直列に、排気再循環回路15
を開閉自在とするEGR弁15cと、排気再循環回路1
5と給排気バイパス回路20との間で熱交換を行う第1
熱交換器15aと、排気再循環回路15中の排気をエン
ジン冷却水で冷却する第2熱交換器15bとが設けられ
ている。第2熱交換器15bに供給されるエンジン冷却
水は、図示しないラジエータで放熱しながら循環する。
In the exhaust gas recirculation circuit 15, the exhaust gas recirculation circuit 15
Valve 15c for opening and closing the exhaust gas and the exhaust gas recirculation circuit 1
5 that performs heat exchange between the air supply 5 and the supply / exhaust bypass circuit 20
A heat exchanger 15a and a second heat exchanger 15b for cooling the exhaust gas in the exhaust gas recirculation circuit 15 with engine cooling water are provided. The engine cooling water supplied to the second heat exchanger 15b circulates while radiating heat by a radiator (not shown).

【0015】エンジン14は更に、エンジン14の運転
状態を検出する検出手段31と、検出手段31からの信
号を受けて、EGR弁15cと、絞り弁17と、給排気
バイパス弁20aとの夫々の開度を制御する制御部33
とを有する。制御部33は必要に応じてEGR弁15c
の開度を調節し、還流する排気の流量(以下EGR量と
呼称)を制御する。しかし、吸気マニホルド12aの圧
力が排気マニホルド16aの圧力よりも高くなる場合に
はEGR弁15cを開いても排気の還流ができない。そ
こで、吸気マニホルド12aの圧力が排気マニホルド1
6aの圧力よりも高いことを検出手段31によって検出
し、かつ排気を還流する必要がある場合に限り、制御部
33は給排気バイパス弁20aを開く。すると、コンプ
レッサ11aで加圧した吸気の一部が給排気バイパス回
路20を介して排気回路16に流れ、吸気マニホルド1
2aの圧力が下がり、排気マニホルド16aの圧力が上
がる。もって吸気マニホルド12aの圧力を排気マニホ
ルド16aの圧力以下とできるので、排気の還流が可能
となる。また同時に制御部33は絞り弁17の開度を絞
る。すると、絞り弁17の抵抗によって絞り弁17の下
流すなわち吸気マニホルド12aの圧力がさらに下がる
ので、排気の還流がさらに容易となる。
The engine 14 further includes a detecting means 31 for detecting an operating state of the engine 14, and a signal from the detecting means 31, and receives signals from the EGR valve 15c, the throttle valve 17, and the supply / exhaust bypass valve 20a. Controller 33 for controlling opening
And The control unit 33 controls the EGR valve 15c as necessary.
Is controlled to control the flow rate of the recirculated exhaust gas (hereinafter referred to as the EGR amount). However, when the pressure of the intake manifold 12a becomes higher than the pressure of the exhaust manifold 16a, the exhaust gas cannot be recirculated even if the EGR valve 15c is opened. Therefore, the pressure of the intake manifold 12a is changed to the exhaust manifold 1
The control unit 33 opens the supply / exhaust bypass valve 20a only when it is detected by the detection unit 31 that the pressure is higher than the pressure of 6a and when it is necessary to recirculate the exhaust gas. Then, part of the intake air pressurized by the compressor 11a flows to the exhaust circuit 16 via the supply / exhaust bypass circuit 20, and the intake manifold 1
The pressure at 2a decreases and the pressure at exhaust manifold 16a increases. As a result, the pressure of the intake manifold 12a can be made equal to or lower than the pressure of the exhaust manifold 16a, so that exhaust gas can be recirculated. At the same time, the control unit 33 reduces the opening of the throttle valve 17. Then, the resistance of the throttle valve 17 further lowers the pressure downstream of the throttle valve 17, that is, the pressure of the intake manifold 12a, so that the recirculation of exhaust gas becomes easier.

【0016】吸気マニホルド12aの圧力が排気マニホ
ルド16aの圧力よりも高くなる条件下で排気を還流す
る場合は、前述の通り制御部33がEGR弁15cと給
排気バイパス弁20aとを開く。すると排気の一部が排
気回路16内で分岐して排気再循環回路15に流れ、E
GR弁15cを経て第1熱交換器15aと第2熱交換器
15bとで冷却された後、吸気回路12内で吸気と混じ
りエンジン本体14aに導入される。同時にコンプレッ
サ11aで加圧した吸気の一部が、アフタクーラ13及
び排気再循環回路15の接続位置より上流位置で給排気
バイパス回路20に流れ、給排気バイパス弁20aを経
て第1熱交換器15aで加熱された後、排気回路16内
で排気と混じりタービン11bに導入される。吸気マニ
ホルド12aの圧力が排気マニホルド16aの圧力より
も高くなるのは、例えば高負荷運転時といった運転条件
下であって、排気の温度が高いことが多い。したがっ
て、還流する排気を、第1熱交換器15aと第2熱交換
器15bとの両方で冷却することにより、効果的に温度
を下げることができる。
When the exhaust gas is recirculated under the condition that the pressure of the intake manifold 12a is higher than the pressure of the exhaust manifold 16a, the control unit 33 opens the EGR valve 15c and the supply / exhaust bypass valve 20a as described above. Then, a part of the exhaust gas branches off in the exhaust circuit 16 and flows to the exhaust gas recirculation circuit 15, where E
After being cooled by the first heat exchanger 15a and the second heat exchanger 15b via the GR valve 15c, it is mixed with intake air in the intake circuit 12 and introduced into the engine body 14a. At the same time, a part of the intake air pressurized by the compressor 11a flows to the supply / exhaust bypass circuit 20 at a position upstream of the connection position of the aftercooler 13 and the exhaust recirculation circuit 15, and passes through the supply / exhaust bypass valve 20a to the first heat exchanger 15a. After being heated, it is mixed with the exhaust gas in the exhaust circuit 16 and introduced into the turbine 11b. The pressure of the intake manifold 12a becomes higher than the pressure of the exhaust manifold 16a under operating conditions such as high load operation, and the temperature of the exhaust gas is often high. Therefore, by cooling the recirculated exhaust gas by both the first heat exchanger 15a and the second heat exchanger 15b, the temperature can be effectively lowered.

【0017】吸気マニホルド12aの圧力が排気マニホ
ルド16aの圧力以下となる条件下で排気を還流する場
合は、まず制御部33がEGR弁15cを開くとともに
給排気バイパス弁20aを閉じる。すると排気の一部が
排気回路16内で分岐して排気再循環回路15に流れ、
EGR弁15cを経て第1熱交換器15aと第2熱交換
器15bとを通過し、吸気回路12内のアフタクーラ1
3より下流位置で吸気と混じりエンジン本体14aに導
入される。このとき給排気バイパス回路20には流れが
生じないので、還流する排気を第1熱交換器15aで冷
却することはできない。還流する排気は第2熱交換器1
5bによってのみ冷却されるので、吸気マニホルド12
aの圧力が排気マニホルド16aの圧力よりも高くなる
条件下で排気を還流する場合に比べて、冷却能力は低下
する。しかし、吸気マニホルド12aの圧力が排気マニ
ホルド16aの圧力以下となるのは、例えば低速で低負
荷運転時といった運転条件下であって、排気の温度が低
いことが多く、冷却能力の低下はさほど問題にならな
い。
When the exhaust gas is recirculated under the condition that the pressure of the intake manifold 12a is equal to or less than the pressure of the exhaust manifold 16a, first, the control unit 33 opens the EGR valve 15c and closes the supply / exhaust bypass valve 20a. Then, a part of the exhaust gas branches in the exhaust circuit 16 and flows to the exhaust gas recirculation circuit 15,
After passing through the first heat exchanger 15a and the second heat exchanger 15b via the EGR valve 15c, the aftercooler 1 in the intake circuit 12
At a position downstream of 3, it is mixed with the intake air and introduced into the engine body 14a. At this time, since no flow occurs in the supply / exhaust bypass circuit 20, the recirculated exhaust gas cannot be cooled by the first heat exchanger 15a. The recirculated exhaust gas is the second heat exchanger 1
5b only cools the intake manifold 12
The cooling capacity is reduced as compared with the case where the exhaust gas is recirculated under the condition that the pressure of a becomes higher than the pressure of the exhaust manifold 16a. However, the pressure of the intake manifold 12a becomes equal to or lower than the pressure of the exhaust manifold 16a under operating conditions such as low-speed and low-load operation, and the temperature of the exhaust gas is often low. do not become.

【0018】第1実施形態によれば、還流する排気を、
直列に配した第1熱交換器15aと第2熱交換器15b
との両方に通すことになる。したがって、 吸気マニホ
ルド12aの圧力が排気マニホルド16aの圧力以下で
あるために給排気バイパス回路20に流れが生じず第1
熱交換器15aの冷却効果が得られないような運転状態
でも、水冷式の第2熱交換器15bで還流する排気を冷
却できる。また、吸気マニホルド12aの圧力が排気マ
ニホルド16aの圧力よりも高いために給排気バイパス
回路20に流れが生じて第1熱交換器15aの冷却効果
が得られるような運転状態では、第1熱交換器15aと
第2熱交換器15bとの両方で還流する排気の温度を効
果的に下げることができるので、第2熱交換器15bを
設けない場合と比較して負担が軽減され、第1熱交換器
15aの冷却能力を小さくすなわち外寸を小さく設定で
きる。通常、空冷式である第1熱交換器15aは水冷式
の第2熱交換器15bに比して冷却効率が劣り、必然的
に大型化しがちであるが、冷却能力の負担軽減により小
型化することで装置全体の小型化に対する寄与度も大と
なる。加えて、先に空冷式の第1熱交換器15aである
程度冷却した排気を水冷式の第2熱交換器15bに導入
するので、第2熱交換器15b内でのエンジン冷却水の
温度上昇を最小限度に抑え、ラジエータの負担増を最小
限度に抑えられる。それとともに、第1熱交換器15a
が先に温度の高い排気を導入することにより、還流する
排気とバイパスする吸気との温度差が広がり、第1熱交
換器15aの冷却効率を高められる。これにより、バイ
パスして排気回路16に流れる吸気の温度をより上げて
体積をより膨張させ、ターボチャージャ11の回転速度
をより高めることで、還流する排気の熱エネルギをより
有効に利用できる。
According to the first embodiment, the recirculated exhaust gas is
First heat exchanger 15a and second heat exchanger 15b arranged in series
And through both. Therefore, since the pressure of the intake manifold 12a is lower than the pressure of the exhaust manifold 16a, no flow occurs in the supply / exhaust bypass circuit 20 and the first
Even in an operation state in which the cooling effect of the heat exchanger 15a cannot be obtained, the exhaust gas recirculated by the water-cooled second heat exchanger 15b can be cooled. Further, in an operation state in which the pressure of the intake manifold 12a is higher than the pressure of the exhaust manifold 16a, a flow occurs in the supply / exhaust bypass circuit 20 and the cooling effect of the first heat exchanger 15a is obtained, the first heat exchange Since the temperature of the exhaust gas recirculated in both the heat exchanger 15a and the second heat exchanger 15b can be effectively reduced, the load is reduced as compared with the case where the second heat exchanger 15b is not provided, and the first heat The cooling capacity of the exchanger 15a can be set small, that is, the external size can be set small. Usually, the air-cooled first heat exchanger 15a is inferior to the water-cooled second heat exchanger 15b in cooling efficiency and tends to be inevitably larger, but is reduced in size by reducing the load on the cooling capacity. As a result, the contribution to the miniaturization of the entire apparatus also increases. In addition, since the exhaust gas that has been cooled to some extent by the first air-cooled first heat exchanger 15a is introduced into the second water-cooled second heat exchanger 15b, the temperature rise of the engine coolant in the second heat exchanger 15b can be reduced. Minimizing the load on the radiator. At the same time, the first heat exchanger 15a
By introducing high-temperature exhaust gas first, the temperature difference between the recirculated exhaust gas and the bypass intake air increases, and the cooling efficiency of the first heat exchanger 15a can be increased. Thus, by increasing the temperature of the intake air flowing to the exhaust circuit 16 by bypass, the volume is further expanded, and the rotational speed of the turbocharger 11 is further increased, so that the heat energy of the recirculated exhaust gas can be more effectively used.

【0019】さらに、給排気バイパス回路20をアフタ
クーラ13よりも上流側となる吸気回路12の位置に接
続することで、アフタクーラ13で冷却した吸気の一部
を給排気バイパス回路20に流して再び第1熱交換器1
5aで加熱する、といった無駄がなくなり、アフタクー
ラ13の熱収支を改善できる。すなわち、排気回路15
にバイパスする分、アフタクーラ13を通過する吸気の
流量を減らせるために通過後の吸気温度が低くなる。こ
れによって燃焼温度がさらに下がり、NOの発生をよ
り顕著に抑えることができる。その上、絞り弁の開度を
調整することで排気再循環回路の接続位置の吸気圧力が
調整可能となるので、排気の還流が可能な運転状態の範
囲が広がる。したがって、低速・低負荷領域から高速・
高負荷領域まで広範囲の運転状態下で排気再循環装置を
作動させて排気中の有害成分を低減できる。
Further, by connecting the supply / exhaust bypass circuit 20 to a position of the intake circuit 12 upstream of the aftercooler 13, a part of the intake air cooled by the aftercooler 13 flows to the supply / exhaust bypass circuit 20, and is re-established. 1 heat exchanger 1
There is no waste such as heating at 5a, and the heat balance of the aftercooler 13 can be improved. That is, the exhaust circuit 15
In order to reduce the flow rate of the intake air passing through the aftercooler 13, the intake air temperature after passing the air cooler 13 becomes lower. As a result, the combustion temperature is further reduced, and the generation of NO X can be suppressed more remarkably. In addition, since the intake pressure at the connection position of the exhaust gas recirculation circuit can be adjusted by adjusting the opening of the throttle valve, the range of the operating state in which the exhaust gas can be recirculated is widened. Therefore, from low speed / low load area to high speed / low load
By operating the exhaust gas recirculation device under a wide range of operating conditions up to a high load region, harmful components in the exhaust gas can be reduced.

【0020】本発明の第2実施形態について、図2を参
照して説明する。なお、第1実施形態で説明した構成要
素と同一の構成には、同一の符号をつけ、説明は省略す
る。吸気回路12の吸気マニホルド12a上流側手前
に、狭隘部を形成したベンチュリ12bを設ける。狭隘
部を挟むベンチュリ12bの直上流側と直下流側との間
には、これらを連通する吸気バイパス回路12cが設け
られ、吸気バイパス回路12cには、これを開閉自在と
するとともに制御部33によって制御される吸気バイパ
ス弁12dが設けられている。また、給排気バイパス回
路20中には給排気バイパス弁20aに替えて逆止弁2
0bが設けられている。逆止弁20bは吸気回路12か
ら排気回路16への1方向の流れのみを許容する。な
お、排気再循環回路15は、ベンチュリ12bの狭隘部
略中央にて吸気回路12に合流接続される。
A second embodiment of the present invention will be described with reference to FIG. The same components as those described in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. A venturi 12b having a narrow portion is provided in the intake circuit 12 upstream of the intake manifold 12a. An intake bypass circuit 12c is provided between the immediately upstream side and the downstream side of the venturi 12b sandwiching the narrow portion, and an intake bypass circuit 12c is provided to open and close the intake bypass circuit 12c. A controlled intake bypass valve 12d is provided. In the supply / exhaust bypass circuit 20, a check valve 2 is provided instead of the supply / exhaust bypass valve 20a.
0b is provided. The check valve 20b allows only one-way flow from the intake circuit 12 to the exhaust circuit 16. The exhaust gas recirculation circuit 15 is connected to the intake circuit 12 at a substantially central portion of the narrow portion of the venturi 12b.

【0021】吸気マニホルド12aの圧力が排気マニホ
ルド16aの圧力よりも高いことを検出手段31によっ
て検出し、かつ排気を還流する必要がある場合に限り、
制御部33は吸気バイパス弁12dを絞る。吸気バイパ
ス弁12dを絞ると吸気バイパス回路12cの通過流量
が減少し、その分ベンチュリ12bの通過流量が増大す
るので、狭隘部の流速が増大して狭隘部すなわち排気再
循環回路15の接続位置の圧力が低下する。これと併せ
て、吸気マニホルド12aと排気マニホルド16aとの
圧力差によって逆止弁20bが開き、コンプレッサ11
aで加圧した吸気の一部が給排気バイパス回路20を通
って排気回路16に流れ、吸気マニホルド12aの圧力
を下げ、排気マニホルド16aの圧力を上げる。上記2
つの作用によって、排気再循環回路15と吸気回路12
との接続位置の圧力を、排気再循環回路15と排気回路
12との接続位置の圧力以下とできるので、排気の還流
が可能となる。
Only when the detection means 31 detects that the pressure of the intake manifold 12a is higher than the pressure of the exhaust manifold 16a and it is necessary to recirculate the exhaust gas,
The control unit 33 throttles the intake bypass valve 12d. When the intake bypass valve 12d is throttled, the flow rate through the intake bypass circuit 12c decreases, and the flow rate through the venturi 12b increases accordingly. Therefore, the flow velocity in the narrow portion increases, and the connection position of the narrow portion, that is, the connection position of the exhaust recirculation circuit 15 is reduced. The pressure drops. At the same time, the check valve 20b opens due to the pressure difference between the intake manifold 12a and the exhaust manifold 16a, and the compressor 11
Part of the intake air pressurized by a flows through the air supply / exhaust bypass circuit 20 to the exhaust circuit 16, and reduces the pressure of the intake manifold 12a and increases the pressure of the exhaust manifold 16a. 2 above
The exhaust recirculation circuit 15 and the intake circuit 12
Can be made equal to or less than the pressure at the connection point between the exhaust gas recirculation circuit 15 and the exhaust circuit 12, so that exhaust gas can be recirculated.

【0022】また、逆止弁20bが開き、コンプレッサ
11aで加圧した吸気の一部が給排気バイパス回路20
を通って排気回路16に流れると、還流する排気を第1
熱交換器15aで冷却できるのは第1実施形態と同様で
ある。なお、吸気マニホルド12aの圧力が排気マニホ
ルド16aの圧力以下となる場合、逆止弁20bは開か
ず、よって給排気バイパス回路20に流れは生じない。
Further, the check valve 20b is opened, and a part of the intake air pressurized by the compressor 11a is
When the exhaust gas flows through the exhaust circuit 16 through the
Cooling by the heat exchanger 15a is the same as in the first embodiment. When the pressure of the intake manifold 12a becomes equal to or lower than the pressure of the exhaust manifold 16a, the check valve 20b does not open, so that no flow occurs in the supply / exhaust bypass circuit 20.

【0023】第2実施形態によれば、第1実施形態の効
果に加えて、給排気バイパス回路20を逆止弁20bと
いう単純な要素で開閉させるので、構造の簡素化が図れ
る。また、吸気回路12に設けたベンチュリ12bの狭
隘部で吸気の流速を高めその圧力を部分的に低減できる
ようになるとともにこの狭隘部略中央に排気再循環回路
を接続した。このため、吸気バイパス弁12dの開度を
調整することで狭隘部を通過する吸気の流量を調整でき
て自在に狭隘部すなわち排気再循環回路の接続位置の吸
気圧力が調整可能となるので、排気の還流が可能な運転
状態の範囲が広がる。したがって、低速・低負荷領域か
ら高速・高負荷領域まで広範囲の運転状態下で排気再循
環装置を作動させて排気中の有害成分を低減できる。
According to the second embodiment, in addition to the effects of the first embodiment, the supply / exhaust bypass circuit 20 is opened and closed by a simple element called the check valve 20b, so that the structure can be simplified. Further, the flow rate of the intake air can be increased in the narrow portion of the venturi 12b provided in the intake circuit 12, and the pressure thereof can be partially reduced, and an exhaust recirculation circuit is connected substantially at the center of the narrow portion. Therefore, by adjusting the opening of the intake bypass valve 12d, the flow rate of the intake air passing through the narrow portion can be adjusted, and the intake pressure at the narrow portion, that is, the connection position of the exhaust recirculation circuit can be freely adjusted. The range of operating conditions in which the recirculation is possible is widened. Therefore, harmful components in the exhaust gas can be reduced by operating the exhaust gas recirculation device under a wide range of operating conditions from a low speed / low load region to a high speed / high load region.

【0024】以上実施形態を例示して説明した通り、本
発明によれば、以下の効果が得られる。 (1)還流する排気を、直列に配した第1熱交換器と第
2熱交換器との両方に通すことになる。したがって、
吸気側の圧力が排気側の圧力以下であるために給排気バ
イパス回路に流れが生じず第1熱交換器の冷却効果が得
られないような運転状態でも、水冷式の第2熱交換器で
還流する排気を冷却できる。また、吸気側の圧力が排気
側よりも高いために給排気バイパス回路に流れが生じて
第1熱交換器の冷却効果が得られるような運転状態で
は、第1熱交換器と第2熱交換器との両方で還流する排
気を冷却できるので、第2熱交換器を設けない場合と比
較して、第1熱交換器の冷却能力を小さくすなわち外寸
を小さくできる。通常、空冷式である第1熱交換器は水
冷式の第2熱交換器に比して冷却効率が劣り、必然的に
大型化しがちであるが、本発明によれば冷却能力の負担
軽減により小型化することで装置全体の小型化に対する
寄与度も大となる。さらに第1熱交換器が第2熱交換器
の上流側に位置して温度の高い排気を導入することによ
り、還流する排気とバイパスする吸気との温度差が広が
り、第2熱交換器に比して劣る第1熱交換器の冷却効率
を高められる。これにより、バイパスして排気回路に流
れる吸気の温度をより上げて体積をより膨張させ、ター
ボチャージャの回転速度をより高めることで、還流する
排気の熱エネルギをより有効に利用できる。これととも
に、第2熱交換器に導入する排気の温度が下がるので、
第2熱交換器内での冷却水の温度上昇を抑えられ、冷却
水の供給流量を、またラジエータがあればラジエータの
負担を、最小限度に抑えることができる。
As described above with reference to the embodiments, according to the present invention, the following effects can be obtained. (1) The recirculated exhaust gas is passed through both the first heat exchanger and the second heat exchanger arranged in series. Therefore,
Even in an operation state in which the pressure on the intake side is lower than the pressure on the exhaust side, no flow occurs in the supply / exhaust bypass circuit and the cooling effect of the first heat exchanger cannot be obtained, the water-cooled second heat exchanger is used. The recirculating exhaust gas can be cooled. Further, in an operating state in which the intake side pressure is higher than the exhaust side, a flow occurs in the supply / exhaust bypass circuit, and the cooling effect of the first heat exchanger is obtained, and the first heat exchanger and the second heat exchange Since the recirculated exhaust gas can be cooled by both the heat exchanger and the heat exchanger, the cooling capacity of the first heat exchanger can be reduced, that is, the outer dimensions can be reduced as compared with the case where the second heat exchanger is not provided. Usually, the first heat exchanger of the air-cooled type has a lower cooling efficiency than the second heat exchanger of the water-cooled type, and tends to be inevitably larger. However, according to the present invention, the load on the cooling capacity is reduced. By reducing the size, the contribution to the miniaturization of the entire apparatus also increases. Furthermore, the first heat exchanger is located upstream of the second heat exchanger and introduces high-temperature exhaust gas, so that the temperature difference between the recirculated exhaust gas and the bypassed intake air is widened, and the first heat exchanger is compared with the second heat exchanger. As a result, the cooling efficiency of the inferior first heat exchanger can be increased. Thus, the temperature of the intake air flowing into the exhaust circuit by bypass is further increased to expand the volume, and the rotational speed of the turbocharger is further increased, so that the heat energy of the recirculated exhaust gas can be more effectively used. At the same time, the temperature of the exhaust gas introduced into the second heat exchanger decreases,
The temperature rise of the cooling water in the second heat exchanger can be suppressed, and the supply flow rate of the cooling water and, if there is a radiator, the burden on the radiator can be minimized.

【0025】(2)給排気バイパス回路をアフタクーラ
よりも上流側となる吸気回路の位置に接続すれば、アフ
タクーラの熱収支を改善できる。すなわち、排気回路に
バイパスする分、アフタクーラを通過する吸気の流量を
減らせるために通過後の吸気温度が低くなる。これによ
って燃焼温度がさらに下がり、NOの発生をより顕著
に抑えることができる。
(2) The heat balance of the aftercooler can be improved by connecting the air supply / exhaust bypass circuit to the position of the intake circuit upstream of the aftercooler. That is, the temperature of the intake air after passing through the aftercooler is reduced to reduce the flow rate of the intake air passing through the aftercooler by an amount corresponding to the bypass to the exhaust circuit. As a result, the combustion temperature is further reduced, and the generation of NO X can be suppressed more remarkably.

【0026】(3)給排気バイパス弁を逆止弁に置きか
えれば、給排気バイパス回路を、逆止弁という単純な要
素で開閉させるので、構造の簡素化が図れる。また、吸
気回路に狭隘部を有するベンチュリと、このベンチュリ
をバイパスする吸気バイパス回路と、この吸気バイパス
回路を開閉自在とするように開口面積を可変とされた吸
気バイパス弁とを設けるとともに、この狭隘部の略中央
で排気再循環回路が接続するようにする。そうすれば、
ベンチュリの狭隘部で吸気の流速を高めその圧力を部分
的に低減できるようになるとともに、吸気バイパス弁の
開度を調整することで狭隘部を通過する吸気の流量を調
整できて自在に狭隘部すなわち排気再循環回路が接続す
る位置の吸気圧力が調整可能となる。したがって、低速
・低負荷領域から高速・高負荷領域まで広範囲の運転状
態下で排気再循環装置を作動させて排気中の有害成分を
低減できる。ベンチュリ及び吸気バイパス回路の組み合
わせの替わりに、吸気回路に絞り弁を設けてこの絞り弁
とエンジン本体との間に排気再循環回路を接続しても、
絞り弁の抵抗で排気再循環回路が接続する位置の吸気圧
力を下げられるので同様の効果が得られる。
(3) If the supply / exhaust bypass valve is replaced with a check valve, the supply / exhaust bypass circuit is opened and closed by a simple element called a check valve, so that the structure can be simplified. In addition, a venturi having a narrow portion in the intake circuit, an intake bypass circuit for bypassing the venturi, and an intake bypass valve having a variable opening area so that the intake bypass circuit can be opened and closed are provided. The exhaust recirculation circuit is connected at the approximate center of the section. that way,
The flow rate of intake air passing through the narrow part can be adjusted by adjusting the opening degree of the intake bypass valve, and the flow rate of the intake air can be increased by increasing the flow velocity of the intake air in the narrow part of the venturi, and the narrow part can be freely adjusted. That is, the intake pressure at the position where the exhaust gas recirculation circuit is connected can be adjusted. Therefore, harmful components in the exhaust gas can be reduced by operating the exhaust gas recirculation device under a wide range of operating conditions from a low speed / low load region to a high speed / high load region. Even if a throttle valve is provided in the intake circuit instead of the combination of the venturi and the intake bypass circuit and an exhaust recirculation circuit is connected between the throttle valve and the engine body,
The same effect can be obtained because the intake pressure at the position where the exhaust gas recirculation circuit is connected can be reduced by the resistance of the throttle valve.

【0027】なお、本発明の実施形態は、上記二つの実
施形態に限定されるものではない。例えば、アフタクー
ラは必ずしも設けなくともよいし、第1実施形態におけ
る絞り弁は開度一定の固定絞りに置き換えてもよい。ま
た、上記二つの実施形態では第2熱交換器の冷媒をエン
ジン冷却水としたが、運転に支障なく連続供給可能でさ
えあれば、例えば水道、クーリングタワー、給水車、
海、河川または湖沼といった水源から、冷媒となる冷却
水を導入してもよい。
The embodiments of the present invention are not limited to the above two embodiments. For example, an aftercooler may not necessarily be provided, and the throttle valve in the first embodiment may be replaced with a fixed throttle having a fixed opening. Further, in the above two embodiments, the refrigerant of the second heat exchanger is the engine cooling water. However, as long as continuous supply is possible without impeding operation, for example, water supply, cooling tower, water supply vehicle,
Cooling water serving as a coolant may be introduced from a water source such as the sea, a river, or a lake.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の給排気回路図である。FIG. 1 is a supply and exhaust circuit diagram of a first embodiment of the present invention.

【図2】本発明の第2実施形態の給排気回路図である。FIG. 2 is a supply / exhaust circuit diagram of a second embodiment of the present invention.

【図3】従来技術の給排気回路図である。FIG. 3 is a diagram of a supply / exhaust circuit of the prior art.

【符号の説明】[Explanation of symbols]

11…ターボチャージャ、11a…コンプレッサ、11
b…タービン、12…吸気回路、12b…ベンチュリ、
12c…吸気バイパス回路、12d…吸気バイパス弁、
15…排気再循環回路、15a…第1熱交換器、15b
…第2熱交換器、17…絞り弁、20…給排気バイパス
回路、20a…給排気バイパス弁、20b…逆止弁。
11 Turbocharger, 11a Compressor, 11
b: turbine, 12: intake circuit, 12b: venturi,
12c: intake bypass circuit, 12d: intake bypass valve,
15: exhaust gas recirculation circuit, 15a: first heat exchanger, 15b
... second heat exchanger, 17 ... throttle valve, 20 ... supply / exhaust bypass circuit, 20a ... supply / exhaust bypass valve, 20b ... check valve.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G005 EA04 EA16 GB03 GB18 GD13 GD14 HA12 JA24 JA25 JA28 3G062 AA05 BA00 BA06 CA07 CA08 DA01 ED04 ED08 ED10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3G005 EA04 EA16 GB03 GB18 GD13 GD14 HA12 JA24 JA25 JA28 3G062 AA05 BA00 BA06 CA07 CA08 DA01 ED04 ED08 ED10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 吸気回路(12)上に配したコンプレッサ(1
1a)と排気回路(16)上に配したタービン(11b)とを有する
ターボチャージャ(11)と、排気回路(16)のタービン(11
b)−内燃機関本体(14a)間と吸気回路(12)のコンプレッ
サ(11a)−内燃機関本体(14a)間とを接続して第1開閉弁
(15c)によって開閉自在とした排気再循環回路(15)と、
排気回路(16)のタービン(11b)−内燃機関本体(14a)間と
吸気回路(12)のコンプレッサ(11a)−内燃機関本体(14a)
間とを接続して第2開閉弁(20a)によって開閉自在とし
た給排気バイパス回路(20)とを設けるとともに、 排気再循環回路(15)と給排気バイパス回路(20)との間で
熱交換を行う第1熱交換器(15a)とを有する内燃機関の
排気再循環制御装置において、 水を冷媒として排気再循環回路(15)内の還流排気を冷却
する第2熱交換器(15b)を、第1熱交換器(15a)よりも下
流側となる排気再循環回路(15)の位置に設けたことを特
徴とする内燃機関の排気再循環制御装置。
A compressor (1) disposed on an intake circuit (12).
1a) and a turbocharger (11) having a turbine (11b) disposed on an exhaust circuit (16), and a turbine (11
b) -the internal combustion engine body (14a) and the compressor (11a) of the intake circuit (12) -the internal combustion engine body (14a) are connected to form a first on-off valve.
(15c) an exhaust recirculation circuit (15) that can be opened and closed freely,
Between the turbine (11b) of the exhaust circuit (16) and the internal combustion engine body (14a) and between the compressor (11a) of the intake circuit (12) and the internal combustion engine body (14a)
And a supply / exhaust bypass circuit (20) that can be opened and closed by a second opening / closing valve (20a) by connecting between the exhaust gas recirculation circuit (15) and the supply / exhaust bypass circuit (20). An exhaust gas recirculation control device for an internal combustion engine having a first heat exchanger (15a) for performing exchange, a second heat exchanger (15b) for cooling recirculated exhaust gas in an exhaust gas recirculation circuit (15) using water as a refrigerant. At an exhaust recirculation circuit (15) downstream of the first heat exchanger (15a).
【請求項2】 コンプレッサ(11a)−内燃機関本体(14a)
間に、吸気を冷却するアフタクーラ(13)を設けるととも
に、 吸気回路(12)に対する給排気バイパス回路(20)の接続位
置をコンプレッサ(11a)−アフタクーラ(13)間としたこ
とを特徴とする請求項1に記載の内燃機関の排気再循環
制御装置。
2. A compressor (11a) -an internal combustion engine main body (14a).
An aftercooler (13) for cooling intake air is provided between the compressor and the intake / exhaust bypass circuit (20) with respect to the intake circuit (12) between the compressor (11a) and the aftercooler (13). Item 2. An exhaust gas recirculation control device for an internal combustion engine according to Item 1.
【請求項3】 コンプレッサ(11a)−内燃機関本体(14a)
間の吸気の流れを絞る狭隘部を有する絞り(12b)を吸気
回路(12)に設けて排気再循環回路(15)の接続位置をこの
狭隘部略中央とし、 この絞り(12b)の直上流と直下流とをバイパス接続する
とともに第3開閉弁(12d)によって開閉自在とされる吸
気バイパス回路(12c)を設け、 吸気回路(12)に対する給排気バイパス回路(20)の接続位
置をコンプレッサ(11a)−絞り(12b)間としたことを特徴
とする請求項1または請求項2に記載の内燃機関の排気
再循環制御装置。
3. A compressor (11a) -an internal combustion engine main body (14a).
A throttle (12b) having a narrow portion for narrowing the flow of intake air is provided in the intake circuit (12), and the connection position of the exhaust recirculation circuit (15) is set to approximately the center of the narrow portion, and immediately upstream of the throttle (12b) An intake bypass circuit (12c) is provided, which is bypass-connected to the immediately downstream side and can be opened and closed by a third on-off valve (12d). The connection position of the supply / exhaust bypass circuit (20) to the intake circuit (12) is 3. The exhaust gas recirculation control device for an internal combustion engine according to claim 1, wherein the distance is set between 11a) and a throttle (12b).
【請求項4】 コンプレッサ(11a)−内燃機関本体(14a)
間の吸気の流れを絞る絞り弁(17)を吸気回路(12)に設け
て排気再循環回路(15)の接続位置をこの絞り弁(17)−内
燃機関本体(14a)間とし、 吸気回路(12)に対する給排気バイパス回路(20)の接続位
置をコンプレッサ(11a)−絞り弁(17)間としたことを特
徴とする請求項1または請求項2に記載の内燃機関の排
気再循環制御装置。
4. A compressor (11a) -an internal combustion engine main body (14a).
A throttle valve (17) is provided in the intake circuit (12) to reduce the flow of intake air between the throttle valve (17) and the internal combustion engine body (14a). The exhaust gas recirculation control for an internal combustion engine according to claim 1 or 2, wherein a connection position of the supply / exhaust bypass circuit (20) to the (12) is located between the compressor (11a) and the throttle valve (17). apparatus.
【請求項5】 第2開閉弁(20a)は、ターボチャージャ
(11)のコンプレッサ(11a)下流側からタービン(11b)上流
側への一方向のみの流れを可能とする逆止弁(20b)であ
ることを特徴とする、請求項1、請求項2、請求項3ま
たは請求項4に記載の内燃機関の排気再循環制御装置。
5. The second on-off valve (20a) is a turbocharger.
The check valve (20b), which allows a flow in only one direction from the downstream side of the compressor (11a) to the upstream side of the turbine (11b) of (11), characterized in that it is a check valve (20b), The exhaust gas recirculation control device for an internal combustion engine according to claim 3 or 4.
JP2000162582A 2000-05-31 2000-05-31 Exhaust gas re-circulation control device for internal combustion engine Pending JP2001342911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000162582A JP2001342911A (en) 2000-05-31 2000-05-31 Exhaust gas re-circulation control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000162582A JP2001342911A (en) 2000-05-31 2000-05-31 Exhaust gas re-circulation control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2001342911A true JP2001342911A (en) 2001-12-14

Family

ID=18666463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000162582A Pending JP2001342911A (en) 2000-05-31 2000-05-31 Exhaust gas re-circulation control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2001342911A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090290A (en) * 2003-09-16 2005-04-07 Hino Motors Ltd Exhaust gas recirculation device for diesel engine
JP2007051638A (en) * 2005-08-19 2007-03-01 Deere & Co Exhaust gas recirculation system
WO2009053025A1 (en) * 2007-10-26 2009-04-30 Behr Gmbh & Co. Kg Apparatus and method for returning exhaust gas of an internal combustion engine
JP2010531412A (en) * 2007-06-26 2010-09-24 ボルボ ラストバグナー アーベー Charge air system and charge air system operation method
EP2058504A3 (en) * 2007-11-12 2012-09-19 MAN Truck & Bus AG Internal combustion engine with AGR cooler
JP2013047517A (en) * 2012-10-01 2013-03-07 Volvo Lastvagnar Ab Charge air system and operation method of charge air system
EP1883749A4 (en) * 2005-05-18 2014-09-03 Scania Cv Abp Arrangement for recirculation of exhaust gases of a supercharged internal combustion engine
EP3406871A1 (en) * 2017-05-26 2018-11-28 Honeywell International Inc. Method and system for aftertreatment preheating
US11885250B1 (en) 2023-05-10 2024-01-30 GM Global Technology Operations LLC Vehicle systems and methods for aftertreatment preheating

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090290A (en) * 2003-09-16 2005-04-07 Hino Motors Ltd Exhaust gas recirculation device for diesel engine
EP1883749A4 (en) * 2005-05-18 2014-09-03 Scania Cv Abp Arrangement for recirculation of exhaust gases of a supercharged internal combustion engine
JP2007051638A (en) * 2005-08-19 2007-03-01 Deere & Co Exhaust gas recirculation system
JP2010531412A (en) * 2007-06-26 2010-09-24 ボルボ ラストバグナー アーベー Charge air system and charge air system operation method
WO2009053025A1 (en) * 2007-10-26 2009-04-30 Behr Gmbh & Co. Kg Apparatus and method for returning exhaust gas of an internal combustion engine
EP2058504A3 (en) * 2007-11-12 2012-09-19 MAN Truck & Bus AG Internal combustion engine with AGR cooler
EP3048291A3 (en) * 2007-11-12 2016-08-17 MAN Truck & Bus AG Internal combustion engine with agr cooler
EP3051114A3 (en) * 2007-11-12 2016-08-17 MAN Truck & Bus AG Internal combustion engine with agr cooler
JP2013047517A (en) * 2012-10-01 2013-03-07 Volvo Lastvagnar Ab Charge air system and operation method of charge air system
EP3406871A1 (en) * 2017-05-26 2018-11-28 Honeywell International Inc. Method and system for aftertreatment preheating
US10598109B2 (en) 2017-05-26 2020-03-24 Garrett Transportation I Inc. Methods and systems for aftertreatment preheating
US11885250B1 (en) 2023-05-10 2024-01-30 GM Global Technology Operations LLC Vehicle systems and methods for aftertreatment preheating

Similar Documents

Publication Publication Date Title
JP4692202B2 (en) EGR system for two-stage supercharged engine
US20160003127A1 (en) Intake-air cooling device for engine and method for cooling engine
US20140075936A1 (en) Exhaust power turbine driven egr pump for diesel engines
US4959961A (en) Supercharged internal combustion engine
JP2010521614A (en) Vehicle cooling device
KR20110003324A (en) Arrangement at a supercharged internal combustion engine
JP2007100627A (en) Egr system for internal combustion engine
JP2002188526A (en) Egr device
JP5050998B2 (en) Waste heat recovery device
JP2001342911A (en) Exhaust gas re-circulation control device for internal combustion engine
JP2001342838A (en) Diesel engine having supercharger
JP2017057788A (en) Supercharging system for internal combustion engine with egr device
JP2005009314A (en) Supercharger for engine
JP2007077900A (en) Two-stage supercharging system
JPS6165017A (en) Intake device of engine with supercharger
JP2002147291A (en) Exhaust gas recirculation device with cooler
JP2010127126A (en) Two-stage supercharging system
JP2010242681A (en) Egr system for internal combustion engine
JP2005002975A (en) Exhaust purification device for engine
JPH10325368A (en) Egr gas cooling device
KR20120062095A (en) Apparatus for cooling the charged air of diesel engine with water cooling type intercooler and cooling method therefor
JP5918474B2 (en) EGR device
JP5918475B2 (en) EGR device
JP3550694B2 (en) Engine exhaust gas recirculation system
JP5983453B2 (en) Intake air cooling system